linux_old1/drivers/rtc/Kconfig

221 lines
6.1 KiB
Plaintext
Raw Normal View History

\#
# RTC class/drivers configuration
#
menu "Real Time Clock"
config RTC_LIB
tristate
config RTC_CLASS
tristate "RTC class"
depends on EXPERIMENTAL
default n
select RTC_LIB
help
Generic RTC class support. If you say yes here, you will
be allowed to plug one or more RTCs to your system. You will
probably want to enable one of more of the interfaces below.
This driver can also be built as a module. If so, the module
will be called rtc-class.
config RTC_HCTOSYS
bool "Set system time from RTC on startup"
depends on RTC_CLASS = y
default y
help
If you say yes here, the system time will be set using
the value read from the specified RTC device. This is useful
in order to avoid unnecessary fschk runs.
config RTC_HCTOSYS_DEVICE
string "The RTC to read the time from"
depends on RTC_HCTOSYS = y
default "rtc0"
help
The RTC device that will be used as the source for
the system time, usually rtc0.
comment "RTC interfaces"
depends on RTC_CLASS
config RTC_INTF_SYSFS
tristate "sysfs"
depends on RTC_CLASS && SYSFS
default RTC_CLASS
help
Say yes here if you want to use your RTC using the sysfs
interface, /sys/class/rtc/rtcX .
This driver can also be built as a module. If so, the module
will be called rtc-sysfs.
config RTC_INTF_PROC
tristate "proc"
depends on RTC_CLASS && PROC_FS
default RTC_CLASS
help
Say yes here if you want to use your RTC using the proc
interface, /proc/driver/rtc .
This driver can also be built as a module. If so, the module
will be called rtc-proc.
config RTC_INTF_DEV
tristate "dev"
depends on RTC_CLASS
default RTC_CLASS
help
Say yes here if you want to use your RTC using the dev
interface, /dev/rtc .
This driver can also be built as a module. If so, the module
will be called rtc-dev.
config RTC_INTF_DEV_UIE_EMUL
bool "RTC UIE emulation on dev interface"
depends on RTC_INTF_DEV
help
Provides an emulation for RTC_UIE if the underlaying rtc chip
driver did not provide RTC_UIE ioctls.
comment "RTC drivers"
depends on RTC_CLASS
config RTC_DRV_X1205
tristate "Xicor/Intersil X1205"
depends on RTC_CLASS && I2C
help
If you say yes here you get support for the
Xicor/Intersil X1205 RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-x1205.
config RTC_DRV_DS1307
tristate "Dallas/Maxim DS1307 and similar I2C RTC chips"
depends on RTC_CLASS && I2C
help
If you say yes here you get support for various compatible RTC
chips (often with battery backup) connected with I2C. This driver
should handle DS1307, DS1337, DS1338, DS1339, DS1340, ST M41T00,
and probably other chips. In some cases the RTC must already
have been initialized (by manufacturing or a bootloader).
The first seven registers on these chips hold an RTC, and other
registers may add features such as NVRAM, a trickle charger for
the RTC/NVRAM backup power, and alarms. This driver may not
expose all those available chip features.
This driver can also be built as a module. If so, the module
will be called rtc-ds1307.
config RTC_DRV_DS1672
tristate "Dallas/Maxim DS1672"
depends on RTC_CLASS && I2C
help
If you say yes here you get support for the
Dallas/Maxim DS1672 timekeeping chip.
This driver can also be built as a module. If so, the module
will be called rtc-ds1672.
config RTC_DRV_PCF8563
tristate "Philips PCF8563/Epson RTC8564"
depends on RTC_CLASS && I2C
help
If you say yes here you get support for the
Philips PCF8563 RTC chip. The Epson RTC8564
should work as well.
This driver can also be built as a module. If so, the module
will be called rtc-pcf8563.
config RTC_DRV_PCF8583
tristate "Philips PCF8583"
depends on RTC_CLASS && I2C
help
If you say yes here you get support for the
Philips PCF8583 RTC chip.
This driver can also be built as a module. If so, the module
will be called rtc-pcf8583.
config RTC_DRV_RS5C372
tristate "Ricoh RS5C372A/B"
depends on RTC_CLASS && I2C
help
If you say yes here you get support for the
Ricoh RS5C372A and RS5C372B RTC chips.
This driver can also be built as a module. If so, the module
will be called rtc-rs5c372.
config RTC_DRV_M48T86
tristate "ST M48T86/Dallas DS12887"
depends on RTC_CLASS
help
If you say Y here you will get support for the
ST M48T86 and Dallas DS12887 RTC chips.
This driver can also be built as a module. If so, the module
will be called rtc-m48t86.
config RTC_DRV_EP93XX
tristate "Cirrus Logic EP93XX"
depends on RTC_CLASS && ARCH_EP93XX
help
If you say yes here you get support for the
RTC embedded in the Cirrus Logic EP93XX processors.
This driver can also be built as a module. If so, the module
will be called rtc-ep93xx.
config RTC_DRV_SA1100
tristate "SA11x0/PXA2xx"
depends on RTC_CLASS && (ARCH_SA1100 || ARCH_PXA)
help
If you say Y here you will get access to the real time clock
built into your SA11x0 or PXA2xx CPU.
To compile this driver as a module, choose M here: the
module will be called rtc-sa1100.
config RTC_DRV_VR41XX
tristate "NEC VR41XX"
depends on RTC_CLASS && CPU_VR41XX
help
If you say Y here you will get access to the real time clock
built into your NEC VR41XX CPU.
To compile this driver as a module, choose M here: the
module will be called rtc-vr41xx.
config RTC_DRV_PL031
tristate "ARM AMBA PL031 RTC"
depends on RTC_CLASS && ARM_AMBA
help
If you say Y here you will get access to ARM AMBA
PrimeCell PL031 UART found on certain ARM SOCs.
To compile this driver as a module, choose M here: the
module will be called rtc-pl031.
config RTC_DRV_TEST
tristate "Test driver/device"
depends on RTC_CLASS
help
If you say yes here you get support for the
RTC test driver. It's a software RTC which can be
used to test the RTC subsystem APIs. It gets
the time from the system clock.
You want this driver only if you are doing development
on the RTC subsystem. Please read the source code
for further details.
This driver can also be built as a module. If so, the module
will be called rtc-test.
endmenu