linux_old1/arch/mips/kernel/perf_event.c

489 lines
12 KiB
C
Raw Normal View History

/*
* Linux performance counter support for MIPS.
*
* Copyright (C) 2010 MIPS Technologies, Inc.
* Author: Deng-Cheng Zhu
*
* This code is based on the implementation for ARM, which is in turn
* based on the sparc64 perf event code and the x86 code. Performance
* counter access is based on the MIPS Oprofile code.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/stacktrace.h>
#include <asm/time.h> /* For perf_irq */
/* These are for 32bit counters. For 64bit ones, define them accordingly. */
#define MAX_PERIOD ((1ULL << 32) - 1)
#define VALID_COUNT 0x7fffffff
#define TOTAL_BITS 32
#define HIGHEST_BIT 31
#define MIPS_MAX_HWEVENTS 4
struct cpu_hw_events {
/* Array of events on this cpu. */
struct perf_event *events[MIPS_MAX_HWEVENTS];
/*
* Set the bit (indexed by the counter number) when the counter
* is used for an event.
*/
unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
/*
* The borrowed MSB for the performance counter. A MIPS performance
* counter uses its bit 31 (for 32bit counters) or bit 63 (for 64bit
* counters) as a factor of determining whether a counter overflow
* should be signaled. So here we use a separate MSB for each
* counter to make things easy.
*/
unsigned long msbs[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
/*
* Software copy of the control register for each performance counter.
* MIPS CPUs vary in performance counters. They use this differently,
* and even may not use it.
*/
unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
};
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
.saved_ctrl = {0},
};
/* The description of MIPS performance events. */
struct mips_perf_event {
unsigned int event_id;
/*
* MIPS performance counters are indexed starting from 0.
* CNTR_EVEN indicates the indexes of the counters to be used are
* even numbers.
*/
unsigned int cntr_mask;
#define CNTR_EVEN 0x55555555
#define CNTR_ODD 0xaaaaaaaa
#ifdef CONFIG_MIPS_MT_SMP
enum {
T = 0,
V = 1,
P = 2,
} range;
#else
#define T
#define V
#define P
#endif
};
#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
#define C(x) PERF_COUNT_HW_CACHE_##x
struct mips_pmu {
const char *name;
int irq;
irqreturn_t (*handle_irq)(int irq, void *dev);
int (*handle_shared_irq)(void);
void (*start)(void);
void (*stop)(void);
int (*alloc_counter)(struct cpu_hw_events *cpuc,
struct hw_perf_event *hwc);
u64 (*read_counter)(unsigned int idx);
void (*write_counter)(unsigned int idx, u64 val);
void (*enable_event)(struct hw_perf_event *evt, int idx);
void (*disable_event)(int idx);
const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
const struct mips_perf_event (*cache_event_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
unsigned int num_counters;
};
static const struct mips_pmu *mipspmu;
static int
mipspmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
s64 left = local64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int ret = 0;
u64 uleft;
unsigned long flags;
if (unlikely(left <= -period)) {
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (left > (s64)MAX_PERIOD)
left = MAX_PERIOD;
local64_set(&hwc->prev_count, (u64)-left);
local_irq_save(flags);
uleft = (u64)(-left) & MAX_PERIOD;
uleft > VALID_COUNT ?
set_bit(idx, cpuc->msbs) : clear_bit(idx, cpuc->msbs);
mipspmu->write_counter(idx, (u64)(-left) & VALID_COUNT);
local_irq_restore(flags);
perf_event_update_userpage(event);
return ret;
}
static int mipspmu_enable(struct perf_event *event)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx;
int err = 0;
/* To look for a free counter for this event. */
idx = mipspmu->alloc_counter(cpuc, hwc);
if (idx < 0) {
err = idx;
goto out;
}
/*
* If there is an event in the counter we are going to use then
* make sure it is disabled.
*/
event->hw.idx = idx;
mipspmu->disable_event(idx);
cpuc->events[idx] = event;
/* Set the period for the event. */
mipspmu_event_set_period(event, hwc, idx);
/* Enable the event. */
mipspmu->enable_event(hwc, idx);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
out:
return err;
}
static void mipspmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
unsigned long flags;
int shift = 64 - TOTAL_BITS;
s64 prev_raw_count, new_raw_count;
s64 delta;
again:
prev_raw_count = local64_read(&hwc->prev_count);
local_irq_save(flags);
/* Make the counter value be a "real" one. */
new_raw_count = mipspmu->read_counter(idx);
if (new_raw_count & (test_bit(idx, cpuc->msbs) << HIGHEST_BIT)) {
new_raw_count &= VALID_COUNT;
clear_bit(idx, cpuc->msbs);
} else
new_raw_count |= (test_bit(idx, cpuc->msbs) << HIGHEST_BIT);
local_irq_restore(flags);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
delta = (new_raw_count << shift) - (prev_raw_count << shift);
delta >>= shift;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
return;
}
static void mipspmu_disable(struct perf_event *event)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
/* We are working on a local event. */
mipspmu->disable_event(idx);
barrier();
mipspmu_event_update(event, hwc, idx);
cpuc->events[idx] = NULL;
clear_bit(idx, cpuc->used_mask);
perf_event_update_userpage(event);
}
static void mipspmu_unthrottle(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
mipspmu->enable_event(hwc, hwc->idx);
}
static void mipspmu_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* Don't read disabled counters! */
if (hwc->idx < 0)
return;
mipspmu_event_update(event, hwc, hwc->idx);
}
static struct pmu pmu = {
.enable = mipspmu_enable,
.disable = mipspmu_disable,
.unthrottle = mipspmu_unthrottle,
.read = mipspmu_read,
};
static atomic_t active_events = ATOMIC_INIT(0);
static DEFINE_MUTEX(pmu_reserve_mutex);
static int (*save_perf_irq)(void);
static int mipspmu_get_irq(void)
{
int err;
if (mipspmu->irq >= 0) {
/* Request my own irq handler. */
err = request_irq(mipspmu->irq, mipspmu->handle_irq,
IRQF_DISABLED | IRQF_NOBALANCING,
"mips_perf_pmu", NULL);
if (err) {
pr_warning("Unable to request IRQ%d for MIPS "
"performance counters!\n", mipspmu->irq);
}
} else if (cp0_perfcount_irq < 0) {
/*
* We are sharing the irq number with the timer interrupt.
*/
save_perf_irq = perf_irq;
perf_irq = mipspmu->handle_shared_irq;
err = 0;
} else {
pr_warning("The platform hasn't properly defined its "
"interrupt controller.\n");
err = -ENOENT;
}
return err;
}
static void mipspmu_free_irq(void)
{
if (mipspmu->irq >= 0)
free_irq(mipspmu->irq, NULL);
else if (cp0_perfcount_irq < 0)
perf_irq = save_perf_irq;
}
static inline unsigned int
mipspmu_perf_event_encode(const struct mips_perf_event *pev)
{
/*
* Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
* event_id.
*/
#ifdef CONFIG_MIPS_MT_SMP
return ((unsigned int)pev->range << 24) |
(pev->cntr_mask & 0xffff00) |
(pev->event_id & 0xff);
#else
return (pev->cntr_mask & 0xffff00) |
(pev->event_id & 0xff);
#endif
}
static const struct mips_perf_event *
mipspmu_map_general_event(int idx)
{
const struct mips_perf_event *pev;
pev = ((*mipspmu->general_event_map)[idx].event_id ==
UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
&(*mipspmu->general_event_map)[idx]);
return pev;
}
static const struct mips_perf_event *
mipspmu_map_cache_event(u64 config)
{
unsigned int cache_type, cache_op, cache_result;
const struct mips_perf_event *pev;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return ERR_PTR(-EINVAL);
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return ERR_PTR(-EINVAL);
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return ERR_PTR(-EINVAL);
pev = &((*mipspmu->cache_event_map)
[cache_type]
[cache_op]
[cache_result]);
if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
return ERR_PTR(-EOPNOTSUPP);
return pev;
}
static int validate_event(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct hw_perf_event fake_hwc = event->hw;
if (event->pmu && event->pmu != &pmu)
return 0;
return mipspmu->alloc_counter(cpuc, &fake_hwc) >= 0;
}
static int validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct cpu_hw_events fake_cpuc;
memset(&fake_cpuc, 0, sizeof(fake_cpuc));
if (!validate_event(&fake_cpuc, leader))
return -ENOSPC;
list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
if (!validate_event(&fake_cpuc, sibling))
return -ENOSPC;
}
if (!validate_event(&fake_cpuc, event))
return -ENOSPC;
return 0;
}
/*
* mipsxx/rm9000/loongson2 have different performance counters, they have
* specific low-level init routines.
*/
static int __hw_perf_event_init(struct perf_event *event);
static void hw_perf_event_destroy(struct perf_event *event)
{
if (atomic_dec_and_mutex_lock(&active_events,
&pmu_reserve_mutex)) {
/*
* We must not call the destroy function with interrupts
* disabled.
*/
on_each_cpu(reset_counters,
(void *)(long)mipspmu->num_counters, 1);
mipspmu_free_irq();
mutex_unlock(&pmu_reserve_mutex);
}
}
const struct pmu *hw_perf_event_init(struct perf_event *event)
{
int err = 0;
if (!mipspmu || event->cpu >= nr_cpumask_bits ||
(event->cpu >= 0 && !cpu_online(event->cpu)))
return ERR_PTR(-ENODEV);
if (!atomic_inc_not_zero(&active_events)) {
if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
atomic_dec(&active_events);
return ERR_PTR(-ENOSPC);
}
mutex_lock(&pmu_reserve_mutex);
if (atomic_read(&active_events) == 0)
err = mipspmu_get_irq();
if (!err)
atomic_inc(&active_events);
mutex_unlock(&pmu_reserve_mutex);
}
if (err)
return ERR_PTR(err);
err = __hw_perf_event_init(event);
if (err)
hw_perf_event_destroy(event);
return err ? ERR_PTR(err) : &pmu;
}
void hw_perf_enable(void)
{
if (mipspmu)
mipspmu->start();
}
void hw_perf_disable(void)
{
if (mipspmu)
mipspmu->stop();
}
/* This is needed by specific irq handlers in perf_event_*.c */
static void
handle_associated_event(struct cpu_hw_events *cpuc,
int idx, struct perf_sample_data *data, struct pt_regs *regs)
{
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc = &event->hw;
mipspmu_event_update(event, hwc, idx);
data->period = event->hw.last_period;
if (!mipspmu_event_set_period(event, hwc, idx))
return;
if (perf_event_overflow(event, 0, data, regs))
mipspmu->disable_event(idx);
}