linux_old1/net/sunrpc/xprtrdma/transport.c

777 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* transport.c
*
* This file contains the top-level implementation of an RPC RDMA
* transport.
*
* Naming convention: functions beginning with xprt_ are part of the
* transport switch. All others are RPC RDMA internal.
*/
#include <linux/module.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/seq_file.h>
#include "xprt_rdma.h"
#ifdef RPC_DEBUG
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
MODULE_AUTHOR("Network Appliance, Inc.");
/*
* tunables
*/
static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
static unsigned int xprt_rdma_inline_write_padding;
static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
int xprt_rdma_pad_optimize = 0;
#ifdef RPC_DEBUG
static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
static unsigned int zero;
static unsigned int max_padding = PAGE_SIZE;
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
static unsigned int max_memreg = RPCRDMA_LAST - 1;
static struct ctl_table_header *sunrpc_table_header;
static ctl_table xr_tunables_table[] = {
{
.procname = "rdma_slot_table_entries",
.data = &xprt_rdma_slot_table_entries,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_slot_table_size,
.extra2 = &max_slot_table_size
},
{
.procname = "rdma_max_inline_read",
.data = &xprt_rdma_max_inline_read,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "rdma_max_inline_write",
.data = &xprt_rdma_max_inline_write,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "rdma_inline_write_padding",
.data = &xprt_rdma_inline_write_padding,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &zero,
.extra2 = &max_padding,
},
{
.procname = "rdma_memreg_strategy",
.data = &xprt_rdma_memreg_strategy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_memreg,
.extra2 = &max_memreg,
},
{
.procname = "rdma_pad_optimize",
.data = &xprt_rdma_pad_optimize,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{ },
};
static ctl_table sunrpc_table[] = {
{
.procname = "sunrpc",
.mode = 0555,
.child = xr_tunables_table
},
{ },
};
#endif
static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
static void
xprt_rdma_format_addresses(struct rpc_xprt *xprt)
{
struct sockaddr *sap = (struct sockaddr *)
&rpcx_to_rdmad(xprt).addr;
struct sockaddr_in *sin = (struct sockaddr_in *)sap;
char buf[64];
(void)rpc_ntop(sap, buf, sizeof(buf));
xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
/* netid */
xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
}
static void
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
{
unsigned int i;
for (i = 0; i < RPC_DISPLAY_MAX; i++)
switch (i) {
case RPC_DISPLAY_PROTO:
case RPC_DISPLAY_NETID:
continue;
default:
kfree(xprt->address_strings[i]);
}
}
static void
xprt_rdma_connect_worker(struct work_struct *work)
{
struct rpcrdma_xprt *r_xprt =
container_of(work, struct rpcrdma_xprt, rdma_connect.work);
struct rpc_xprt *xprt = &r_xprt->xprt;
int rc = 0;
current->flags |= PF_FSTRANS;
xprt_clear_connected(xprt);
dprintk("RPC: %s: %sconnect\n", __func__,
r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
if (rc)
xprt_wake_pending_tasks(xprt, rc);
dprintk("RPC: %s: exit\n", __func__);
xprt_clear_connecting(xprt);
nfs: skip commit in releasepage if we're freeing memory for fs-related reasons We've had some reports of a deadlock where rpciod ends up with a stack trace like this: PID: 2507 TASK: ffff88103691ab40 CPU: 14 COMMAND: "rpciod/14" #0 [ffff8810343bf2f0] schedule at ffffffff814dabd9 #1 [ffff8810343bf3b8] nfs_wait_bit_killable at ffffffffa038fc04 [nfs] #2 [ffff8810343bf3c8] __wait_on_bit at ffffffff814dbc2f #3 [ffff8810343bf418] out_of_line_wait_on_bit at ffffffff814dbcd8 #4 [ffff8810343bf488] nfs_commit_inode at ffffffffa039e0c1 [nfs] #5 [ffff8810343bf4f8] nfs_release_page at ffffffffa038bef6 [nfs] #6 [ffff8810343bf528] try_to_release_page at ffffffff8110c670 #7 [ffff8810343bf538] shrink_page_list.clone.0 at ffffffff81126271 #8 [ffff8810343bf668] shrink_inactive_list at ffffffff81126638 #9 [ffff8810343bf818] shrink_zone at ffffffff8112788f #10 [ffff8810343bf8c8] do_try_to_free_pages at ffffffff81127b1e #11 [ffff8810343bf958] try_to_free_pages at ffffffff8112812f #12 [ffff8810343bfa08] __alloc_pages_nodemask at ffffffff8111fdad #13 [ffff8810343bfb28] kmem_getpages at ffffffff81159942 #14 [ffff8810343bfb58] fallback_alloc at ffffffff8115a55a #15 [ffff8810343bfbd8] ____cache_alloc_node at ffffffff8115a2d9 #16 [ffff8810343bfc38] kmem_cache_alloc at ffffffff8115b09b #17 [ffff8810343bfc78] sk_prot_alloc at ffffffff81411808 #18 [ffff8810343bfcb8] sk_alloc at ffffffff8141197c #19 [ffff8810343bfce8] inet_create at ffffffff81483ba6 #20 [ffff8810343bfd38] __sock_create at ffffffff8140b4a7 #21 [ffff8810343bfd98] xs_create_sock at ffffffffa01f649b [sunrpc] #22 [ffff8810343bfdd8] xs_tcp_setup_socket at ffffffffa01f6965 [sunrpc] #23 [ffff8810343bfe38] worker_thread at ffffffff810887d0 #24 [ffff8810343bfee8] kthread at ffffffff8108dd96 #25 [ffff8810343bff48] kernel_thread at ffffffff8100c1ca rpciod is trying to allocate memory for a new socket to talk to the server. The VM ends up calling ->releasepage to get more memory, and it tries to do a blocking commit. That commit can't succeed however without a connected socket, so we deadlock. Fix this by setting PF_FSTRANS on the workqueue task prior to doing the socket allocation, and having nfs_release_page check for that flag when deciding whether to do a commit call. Also, set PF_FSTRANS unconditionally in rpc_async_schedule since that function can also do allocations sometimes. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: stable@vger.kernel.org
2012-07-24 01:58:51 +08:00
current->flags &= ~PF_FSTRANS;
}
/*
* xprt_rdma_destroy
*
* Destroy the xprt.
* Free all memory associated with the object, including its own.
* NOTE: none of the *destroy methods free memory for their top-level
* objects, even though they may have allocated it (they do free
* private memory). It's up to the caller to handle it. In this
* case (RDMA transport), all structure memory is inlined with the
* struct rpcrdma_xprt.
*/
static void
xprt_rdma_destroy(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int rc;
dprintk("RPC: %s: called\n", __func__);
cancel_delayed_work_sync(&r_xprt->rdma_connect);
xprt_clear_connected(xprt);
rpcrdma_buffer_destroy(&r_xprt->rx_buf);
rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
if (rc)
dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
__func__, rc);
rpcrdma_ia_close(&r_xprt->rx_ia);
xprt_rdma_free_addresses(xprt);
xprt_free(xprt);
dprintk("RPC: %s: returning\n", __func__);
module_put(THIS_MODULE);
}
static const struct rpc_timeout xprt_rdma_default_timeout = {
.to_initval = 60 * HZ,
.to_maxval = 60 * HZ,
};
/**
* xprt_setup_rdma - Set up transport to use RDMA
*
* @args: rpc transport arguments
*/
static struct rpc_xprt *
xprt_setup_rdma(struct xprt_create *args)
{
struct rpcrdma_create_data_internal cdata;
struct rpc_xprt *xprt;
struct rpcrdma_xprt *new_xprt;
struct rpcrdma_ep *new_ep;
struct sockaddr_in *sin;
int rc;
if (args->addrlen > sizeof(xprt->addr)) {
dprintk("RPC: %s: address too large\n", __func__);
return ERR_PTR(-EBADF);
}
xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
xprt_rdma_slot_table_entries,
xprt_rdma_slot_table_entries);
if (xprt == NULL) {
dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
__func__);
return ERR_PTR(-ENOMEM);
}
/* 60 second timeout, no retries */
xprt->timeout = &xprt_rdma_default_timeout;
xprt->bind_timeout = (60U * HZ);
xprt->reestablish_timeout = (5U * HZ);
xprt->idle_timeout = (5U * 60 * HZ);
xprt->resvport = 0; /* privileged port not needed */
xprt->tsh_size = 0; /* RPC-RDMA handles framing */
xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
xprt->ops = &xprt_rdma_procs;
/*
* Set up RDMA-specific connect data.
*/
/* Put server RDMA address in local cdata */
memcpy(&cdata.addr, args->dstaddr, args->addrlen);
/* Ensure xprt->addr holds valid server TCP (not RDMA)
* address, for any side protocols which peek at it */
xprt->prot = IPPROTO_TCP;
xprt->addrlen = args->addrlen;
memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
sin = (struct sockaddr_in *)&cdata.addr;
if (ntohs(sin->sin_port) != 0)
xprt_set_bound(xprt);
dprintk("RPC: %s: %pI4:%u\n",
__func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
/* Set max requests */
cdata.max_requests = xprt->max_reqs;
/* Set some length limits */
cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
cdata.inline_wsize = xprt_rdma_max_inline_write;
if (cdata.inline_wsize > cdata.wsize)
cdata.inline_wsize = cdata.wsize;
cdata.inline_rsize = xprt_rdma_max_inline_read;
if (cdata.inline_rsize > cdata.rsize)
cdata.inline_rsize = cdata.rsize;
cdata.padding = xprt_rdma_inline_write_padding;
/*
* Create new transport instance, which includes initialized
* o ia
* o endpoint
* o buffers
*/
new_xprt = rpcx_to_rdmax(xprt);
rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
xprt_rdma_memreg_strategy);
if (rc)
goto out1;
/*
* initialize and create ep
*/
new_xprt->rx_data = cdata;
new_ep = &new_xprt->rx_ep;
new_ep->rep_remote_addr = cdata.addr;
rc = rpcrdma_ep_create(&new_xprt->rx_ep,
&new_xprt->rx_ia, &new_xprt->rx_data);
if (rc)
goto out2;
/*
* Allocate pre-registered send and receive buffers for headers and
* any inline data. Also specify any padding which will be provided
* from a preregistered zero buffer.
*/
rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
&new_xprt->rx_data);
if (rc)
goto out3;
/*
* Register a callback for connection events. This is necessary because
* connection loss notification is async. We also catch connection loss
* when reaping receives.
*/
INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
new_ep->rep_func = rpcrdma_conn_func;
new_ep->rep_xprt = xprt;
xprt_rdma_format_addresses(xprt);
if (!try_module_get(THIS_MODULE))
goto out4;
return xprt;
out4:
xprt_rdma_free_addresses(xprt);
rc = -EINVAL;
out3:
(void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
out2:
rpcrdma_ia_close(&new_xprt->rx_ia);
out1:
xprt_free(xprt);
return ERR_PTR(rc);
}
/*
* Close a connection, during shutdown or timeout/reconnect
*/
static void
xprt_rdma_close(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
dprintk("RPC: %s: closing\n", __func__);
if (r_xprt->rx_ep.rep_connected > 0)
xprt->reestablish_timeout = 0;
xprt_disconnect_done(xprt);
(void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
}
static void
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
{
struct sockaddr_in *sap;
sap = (struct sockaddr_in *)&xprt->addr;
sap->sin_port = htons(port);
sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
sap->sin_port = htons(port);
dprintk("RPC: %s: %u\n", __func__, port);
}
static void
xprt_rdma_connect(struct rpc_task *task)
{
struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
if (r_xprt->rx_ep.rep_connected != 0) {
/* Reconnect */
schedule_delayed_work(&r_xprt->rdma_connect,
xprt->reestablish_timeout);
xprt->reestablish_timeout <<= 1;
if (xprt->reestablish_timeout > (30 * HZ))
xprt->reestablish_timeout = (30 * HZ);
else if (xprt->reestablish_timeout < (5 * HZ))
xprt->reestablish_timeout = (5 * HZ);
} else {
schedule_delayed_work(&r_xprt->rdma_connect, 0);
if (!RPC_IS_ASYNC(task))
flush_delayed_work(&r_xprt->rdma_connect);
}
}
static int
xprt_rdma_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
/* == RPC_CWNDSCALE @ init, but *after* setup */
if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
dprintk("RPC: %s: cwndscale %lu\n", __func__,
r_xprt->rx_buf.rb_cwndscale);
BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
}
xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
return xprt_reserve_xprt_cong(xprt, task);
}
/*
* The RDMA allocate/free functions need the task structure as a place
* to hide the struct rpcrdma_req, which is necessary for the actual send/recv
* sequence. For this reason, the recv buffers are attached to send
* buffers for portions of the RPC. Note that the RPC layer allocates
* both send and receive buffers in the same call. We may register
* the receive buffer portion when using reply chunks.
*/
static void *
xprt_rdma_allocate(struct rpc_task *task, size_t size)
{
struct rpc_xprt *xprt = task->tk_xprt;
struct rpcrdma_req *req, *nreq;
req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
BUG_ON(NULL == req);
if (size > req->rl_size) {
dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
"prog %d vers %d proc %d\n",
__func__, size, req->rl_size,
task->tk_client->cl_prog, task->tk_client->cl_vers,
task->tk_msg.rpc_proc->p_proc);
/*
* Outgoing length shortage. Our inline write max must have
* been configured to perform direct i/o.
*
* This is therefore a large metadata operation, and the
* allocate call was made on the maximum possible message,
* e.g. containing long filename(s) or symlink data. In
* fact, while these metadata operations *might* carry
* large outgoing payloads, they rarely *do*. However, we
* have to commit to the request here, so reallocate and
* register it now. The data path will never require this
* reallocation.
*
* If the allocation or registration fails, the RPC framework
* will (doggedly) retry.
*/
if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
RPCRDMA_BOUNCEBUFFERS) {
/* forced to "pure inline" */
dprintk("RPC: %s: too much data (%zd) for inline "
"(r/w max %d/%d)\n", __func__, size,
rpcx_to_rdmad(xprt).inline_rsize,
rpcx_to_rdmad(xprt).inline_wsize);
size = req->rl_size;
rpc_exit(task, -EIO); /* fail the operation */
rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
goto out;
}
if (task->tk_flags & RPC_TASK_SWAPPER)
nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
else
nreq = kmalloc(sizeof *req + size, GFP_NOFS);
if (nreq == NULL)
goto outfail;
if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
nreq->rl_base, size + sizeof(struct rpcrdma_req)
- offsetof(struct rpcrdma_req, rl_base),
&nreq->rl_handle, &nreq->rl_iov)) {
kfree(nreq);
goto outfail;
}
rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
nreq->rl_size = size;
nreq->rl_niovs = 0;
nreq->rl_nchunks = 0;
nreq->rl_buffer = (struct rpcrdma_buffer *)req;
nreq->rl_reply = req->rl_reply;
memcpy(nreq->rl_segments,
req->rl_segments, sizeof nreq->rl_segments);
/* flag the swap with an unused field */
nreq->rl_iov.length = 0;
req->rl_reply = NULL;
req = nreq;
}
dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
out:
req->rl_connect_cookie = 0; /* our reserved value */
return req->rl_xdr_buf;
outfail:
rpcrdma_buffer_put(req);
rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
return NULL;
}
/*
* This function returns all RDMA resources to the pool.
*/
static void
xprt_rdma_free(void *buffer)
{
struct rpcrdma_req *req;
struct rpcrdma_xprt *r_xprt;
struct rpcrdma_rep *rep;
int i;
if (buffer == NULL)
return;
req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
if (req->rl_iov.length == 0) { /* see allocate above */
r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
struct rpcrdma_xprt, rx_buf);
} else
r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
rep = req->rl_reply;
dprintk("RPC: %s: called on 0x%p%s\n",
__func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
/*
* Finish the deregistration. When using mw bind, this was
* begun in rpcrdma_reply_handler(). In all other modes, we
* do it here, in thread context. The process is considered
* complete when the rr_func vector becomes NULL - this
* was put in place during rpcrdma_reply_handler() - the wait
* call below will not block if the dereg is "done". If
* interrupted, our framework will clean up.
*/
for (i = 0; req->rl_nchunks;) {
--req->rl_nchunks;
i += rpcrdma_deregister_external(
&req->rl_segments[i], r_xprt, NULL);
}
if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
rep->rr_func = NULL; /* abandon the callback */
req->rl_reply = NULL;
}
if (req->rl_iov.length == 0) { /* see allocate above */
struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
oreq->rl_reply = req->rl_reply;
(void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
req->rl_handle,
&req->rl_iov);
kfree(req);
req = oreq;
}
/* Put back request+reply buffers */
rpcrdma_buffer_put(req);
}
/*
* send_request invokes the meat of RPC RDMA. It must do the following:
* 1. Marshal the RPC request into an RPC RDMA request, which means
* putting a header in front of data, and creating IOVs for RDMA
* from those in the request.
* 2. In marshaling, detect opportunities for RDMA, and use them.
* 3. Post a recv message to set up asynch completion, then send
* the request (rpcrdma_ep_post).
* 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
*/
static int
xprt_rdma_send_request(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpc_xprt *xprt = task->tk_xprt;
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
/* marshal the send itself */
if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
r_xprt->rx_stats.failed_marshal_count++;
dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
__func__);
return -EIO;
}
if (req->rl_reply == NULL) /* e.g. reconnection */
rpcrdma_recv_buffer_get(req);
if (req->rl_reply) {
req->rl_reply->rr_func = rpcrdma_reply_handler;
/* this need only be done once, but... */
req->rl_reply->rr_xprt = xprt;
}
/* Must suppress retransmit to maintain credits */
if (req->rl_connect_cookie == xprt->connect_cookie)
goto drop_connection;
req->rl_connect_cookie = xprt->connect_cookie;
if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
goto drop_connection;
rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
rqst->rq_bytes_sent = 0;
return 0;
drop_connection:
xprt_disconnect_done(xprt);
return -ENOTCONN; /* implies disconnect */
}
static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
long idle_time = 0;
if (xprt_connected(xprt))
idle_time = (long)(jiffies - xprt->last_used) / HZ;
seq_printf(seq,
"\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
"%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
0, /* need a local port? */
xprt->stat.bind_count,
xprt->stat.connect_count,
xprt->stat.connect_time,
idle_time,
xprt->stat.sends,
xprt->stat.recvs,
xprt->stat.bad_xids,
xprt->stat.req_u,
xprt->stat.bklog_u,
r_xprt->rx_stats.read_chunk_count,
r_xprt->rx_stats.write_chunk_count,
r_xprt->rx_stats.reply_chunk_count,
r_xprt->rx_stats.total_rdma_request,
r_xprt->rx_stats.total_rdma_reply,
r_xprt->rx_stats.pullup_copy_count,
r_xprt->rx_stats.fixup_copy_count,
r_xprt->rx_stats.hardway_register_count,
r_xprt->rx_stats.failed_marshal_count,
r_xprt->rx_stats.bad_reply_count);
}
/*
* Plumbing for rpc transport switch and kernel module
*/
static struct rpc_xprt_ops xprt_rdma_procs = {
.reserve_xprt = xprt_rdma_reserve_xprt,
.release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
.alloc_slot = xprt_alloc_slot,
.release_request = xprt_release_rqst_cong, /* ditto */
.set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
.rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
.set_port = xprt_rdma_set_port,
.connect = xprt_rdma_connect,
.buf_alloc = xprt_rdma_allocate,
.buf_free = xprt_rdma_free,
.send_request = xprt_rdma_send_request,
.close = xprt_rdma_close,
.destroy = xprt_rdma_destroy,
.print_stats = xprt_rdma_print_stats
};
static struct xprt_class xprt_rdma = {
.list = LIST_HEAD_INIT(xprt_rdma.list),
.name = "rdma",
.owner = THIS_MODULE,
.ident = XPRT_TRANSPORT_RDMA,
.setup = xprt_setup_rdma,
};
static void __exit xprt_rdma_cleanup(void)
{
int rc;
dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
#ifdef RPC_DEBUG
if (sunrpc_table_header) {
unregister_sysctl_table(sunrpc_table_header);
sunrpc_table_header = NULL;
}
#endif
rc = xprt_unregister_transport(&xprt_rdma);
if (rc)
dprintk("RPC: %s: xprt_unregister returned %i\n",
__func__, rc);
}
static int __init xprt_rdma_init(void)
{
int rc;
rc = xprt_register_transport(&xprt_rdma);
if (rc)
return rc;
dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
dprintk(KERN_INFO "Defaults:\n");
dprintk(KERN_INFO "\tSlots %d\n"
"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
xprt_rdma_slot_table_entries,
xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
#ifdef RPC_DEBUG
if (!sunrpc_table_header)
sunrpc_table_header = register_sysctl_table(sunrpc_table);
#endif
return 0;
}
module_init(xprt_rdma_init);
module_exit(xprt_rdma_cleanup);