linux_old1/fs/ntfs/file.c

2042 lines
61 KiB
C
Raw Normal View History

/*
* file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
*
* Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
*
* This program/include file is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program/include file is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (in the main directory of the Linux-NTFS
* distribution in the file COPYING); if not, write to the Free Software
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/backing-dev.h>
#include <linux/buffer_head.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/sched.h>
#include <linux/swap.h>
#include <linux/uio.h>
#include <linux/writeback.h>
#include <asm/page.h>
#include <asm/uaccess.h>
#include "attrib.h"
#include "bitmap.h"
#include "inode.h"
#include "debug.h"
#include "lcnalloc.h"
#include "malloc.h"
#include "mft.h"
#include "ntfs.h"
/**
* ntfs_file_open - called when an inode is about to be opened
* @vi: inode to be opened
* @filp: file structure describing the inode
*
* Limit file size to the page cache limit on architectures where unsigned long
* is 32-bits. This is the most we can do for now without overflowing the page
* cache page index. Doing it this way means we don't run into problems because
* of existing too large files. It would be better to allow the user to read
* the beginning of the file but I doubt very much anyone is going to hit this
* check on a 32-bit architecture, so there is no point in adding the extra
* complexity required to support this.
*
* On 64-bit architectures, the check is hopefully optimized away by the
* compiler.
*
* After the check passes, just call generic_file_open() to do its work.
*/
static int ntfs_file_open(struct inode *vi, struct file *filp)
{
if (sizeof(unsigned long) < 8) {
if (i_size_read(vi) > MAX_LFS_FILESIZE)
return -EOVERFLOW;
}
return generic_file_open(vi, filp);
}
#ifdef NTFS_RW
/**
* ntfs_attr_extend_initialized - extend the initialized size of an attribute
* @ni: ntfs inode of the attribute to extend
* @new_init_size: requested new initialized size in bytes
*
* Extend the initialized size of an attribute described by the ntfs inode @ni
* to @new_init_size bytes. This involves zeroing any non-sparse space between
* the old initialized size and @new_init_size both in the page cache and on
* disk (if relevant complete pages are already uptodate in the page cache then
* these are simply marked dirty).
*
* As a side-effect, the file size (vfs inode->i_size) may be incremented as,
* in the resident attribute case, it is tied to the initialized size and, in
* the non-resident attribute case, it may not fall below the initialized size.
*
* Note that if the attribute is resident, we do not need to touch the page
* cache at all. This is because if the page cache page is not uptodate we
* bring it uptodate later, when doing the write to the mft record since we
* then already have the page mapped. And if the page is uptodate, the
* non-initialized region will already have been zeroed when the page was
* brought uptodate and the region may in fact already have been overwritten
* with new data via mmap() based writes, so we cannot just zero it. And since
* POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
* is unspecified, we choose not to do zeroing and thus we do not need to touch
* the page at all. For a more detailed explanation see ntfs_truncate() in
* fs/ntfs/inode.c.
*
* Return 0 on success and -errno on error. In the case that an error is
* encountered it is possible that the initialized size will already have been
* incremented some way towards @new_init_size but it is guaranteed that if
* this is the case, the necessary zeroing will also have happened and that all
* metadata is self-consistent.
*
* Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
* held by the caller.
*/
static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
{
s64 old_init_size;
loff_t old_i_size;
pgoff_t index, end_index;
unsigned long flags;
struct inode *vi = VFS_I(ni);
ntfs_inode *base_ni;
MFT_RECORD *m = NULL;
ATTR_RECORD *a;
ntfs_attr_search_ctx *ctx = NULL;
struct address_space *mapping;
struct page *page = NULL;
u8 *kattr;
int err;
u32 attr_len;
read_lock_irqsave(&ni->size_lock, flags);
old_init_size = ni->initialized_size;
old_i_size = i_size_read(vi);
BUG_ON(new_init_size > ni->allocated_size);
read_unlock_irqrestore(&ni->size_lock, flags);
ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
"old_initialized_size 0x%llx, "
"new_initialized_size 0x%llx, i_size 0x%llx.",
vi->i_ino, (unsigned)le32_to_cpu(ni->type),
(unsigned long long)old_init_size,
(unsigned long long)new_init_size, old_i_size);
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
/* Use goto to reduce indentation and we need the label below anyway. */
if (NInoNonResident(ni))
goto do_non_resident_extend;
BUG_ON(old_init_size != old_i_size);
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
m = NULL;
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto err_out;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto err_out;
}
m = ctx->mrec;
a = ctx->attr;
BUG_ON(a->non_resident);
/* The total length of the attribute value. */
attr_len = le32_to_cpu(a->data.resident.value_length);
BUG_ON(old_i_size != (loff_t)attr_len);
/*
* Do the zeroing in the mft record and update the attribute size in
* the mft record.
*/
kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
memset(kattr + attr_len, 0, new_init_size - attr_len);
a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
/* Finally, update the sizes in the vfs and ntfs inodes. */
write_lock_irqsave(&ni->size_lock, flags);
i_size_write(vi, new_init_size);
ni->initialized_size = new_init_size;
write_unlock_irqrestore(&ni->size_lock, flags);
goto done;
do_non_resident_extend:
/*
* If the new initialized size @new_init_size exceeds the current file
* size (vfs inode->i_size), we need to extend the file size to the
* new initialized size.
*/
if (new_init_size > old_i_size) {
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
m = NULL;
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto err_out;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto err_out;
}
m = ctx->mrec;
a = ctx->attr;
BUG_ON(!a->non_resident);
BUG_ON(old_i_size != (loff_t)
sle64_to_cpu(a->data.non_resident.data_size));
a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
/* Update the file size in the vfs inode. */
i_size_write(vi, new_init_size);
ntfs_attr_put_search_ctx(ctx);
ctx = NULL;
unmap_mft_record(base_ni);
m = NULL;
}
mapping = vi->i_mapping;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
index = old_init_size >> PAGE_SHIFT;
end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
do {
/*
* Read the page. If the page is not present, this will zero
* the uninitialized regions for us.
*/
page = read_mapping_page(mapping, index, NULL);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto init_err_out;
}
if (unlikely(PageError(page))) {
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
put_page(page);
err = -EIO;
goto init_err_out;
}
/*
* Update the initialized size in the ntfs inode. This is
* enough to make ntfs_writepage() work.
*/
write_lock_irqsave(&ni->size_lock, flags);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
if (ni->initialized_size > new_init_size)
ni->initialized_size = new_init_size;
write_unlock_irqrestore(&ni->size_lock, flags);
/* Set the page dirty so it gets written out. */
set_page_dirty(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
put_page(page);
/*
* Play nice with the vm and the rest of the system. This is
* very much needed as we can potentially be modifying the
* initialised size from a very small value to a really huge
* value, e.g.
* f = open(somefile, O_TRUNC);
* truncate(f, 10GiB);
* seek(f, 10GiB);
* write(f, 1);
* And this would mean we would be marking dirty hundreds of
* thousands of pages or as in the above example more than
* two and a half million pages!
*
* TODO: For sparse pages could optimize this workload by using
* the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
* would be set in readpage for sparse pages and here we would
* not need to mark dirty any pages which have this bit set.
* The only caveat is that we have to clear the bit everywhere
* where we allocate any clusters that lie in the page or that
* contain the page.
*
* TODO: An even greater optimization would be for us to only
* call readpage() on pages which are not in sparse regions as
* determined from the runlist. This would greatly reduce the
* number of pages we read and make dirty in the case of sparse
* files.
*/
balance_dirty_pages_ratelimited(mapping);
cond_resched();
} while (++index < end_index);
read_lock_irqsave(&ni->size_lock, flags);
BUG_ON(ni->initialized_size != new_init_size);
read_unlock_irqrestore(&ni->size_lock, flags);
/* Now bring in sync the initialized_size in the mft record. */
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
m = NULL;
goto init_err_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto init_err_out;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto init_err_out;
}
m = ctx->mrec;
a = ctx->attr;
BUG_ON(!a->non_resident);
a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
done:
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(base_ni);
ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
(unsigned long long)new_init_size, i_size_read(vi));
return 0;
init_err_out:
write_lock_irqsave(&ni->size_lock, flags);
ni->initialized_size = old_init_size;
write_unlock_irqrestore(&ni->size_lock, flags);
err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(base_ni);
ntfs_debug("Failed. Returning error code %i.", err);
return err;
}
static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
struct iov_iter *from)
{
loff_t pos;
s64 end, ll;
ssize_t err;
unsigned long flags;
struct file *file = iocb->ki_filp;
struct inode *vi = file_inode(file);
ntfs_inode *base_ni, *ni = NTFS_I(vi);
ntfs_volume *vol = ni->vol;
ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
"0x%llx, count 0x%zx.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type),
(unsigned long long)iocb->ki_pos,
iov_iter_count(from));
err = generic_write_checks(iocb, from);
if (unlikely(err <= 0))
goto out;
/*
* All checks have passed. Before we start doing any writing we want
* to abort any totally illegal writes.
*/
BUG_ON(NInoMstProtected(ni));
BUG_ON(ni->type != AT_DATA);
/* If file is encrypted, deny access, just like NT4. */
if (NInoEncrypted(ni)) {
/* Only $DATA attributes can be encrypted. */
/*
* Reminder for later: Encrypted files are _always_
* non-resident so that the content can always be encrypted.
*/
ntfs_debug("Denying write access to encrypted file.");
err = -EACCES;
goto out;
}
if (NInoCompressed(ni)) {
/* Only unnamed $DATA attribute can be compressed. */
BUG_ON(ni->name_len);
/*
* Reminder for later: If resident, the data is not actually
* compressed. Only on the switch to non-resident does
* compression kick in. This is in contrast to encrypted files
* (see above).
*/
ntfs_error(vi->i_sb, "Writing to compressed files is not "
"implemented yet. Sorry.");
err = -EOPNOTSUPP;
goto out;
}
base_ni = ni;
if (NInoAttr(ni))
base_ni = ni->ext.base_ntfs_ino;
err = file_remove_privs(file);
if (unlikely(err))
goto out;
/*
* Our ->update_time method always succeeds thus file_update_time()
* cannot fail either so there is no need to check the return code.
*/
file_update_time(file);
pos = iocb->ki_pos;
/* The first byte after the last cluster being written to. */
end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
~(u64)vol->cluster_size_mask;
/*
* If the write goes beyond the allocated size, extend the allocation
* to cover the whole of the write, rounded up to the nearest cluster.
*/
read_lock_irqsave(&ni->size_lock, flags);
ll = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
if (end > ll) {
/*
* Extend the allocation without changing the data size.
*
* Note we ensure the allocation is big enough to at least
* write some data but we do not require the allocation to be
* complete, i.e. it may be partial.
*/
ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
if (likely(ll >= 0)) {
BUG_ON(pos >= ll);
/* If the extension was partial truncate the write. */
if (end > ll) {
ntfs_debug("Truncating write to inode 0x%lx, "
"attribute type 0x%x, because "
"the allocation was only "
"partially extended.",
vi->i_ino, (unsigned)
le32_to_cpu(ni->type));
iov_iter_truncate(from, ll - pos);
}
} else {
err = ll;
read_lock_irqsave(&ni->size_lock, flags);
ll = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
/* Perform a partial write if possible or fail. */
if (pos < ll) {
ntfs_debug("Truncating write to inode 0x%lx "
"attribute type 0x%x, because "
"extending the allocation "
"failed (error %d).",
vi->i_ino, (unsigned)
le32_to_cpu(ni->type),
(int)-err);
iov_iter_truncate(from, ll - pos);
} else {
if (err != -ENOSPC)
ntfs_error(vi->i_sb, "Cannot perform "
"write to inode "
"0x%lx, attribute "
"type 0x%x, because "
"extending the "
"allocation failed "
"(error %ld).",
vi->i_ino, (unsigned)
le32_to_cpu(ni->type),
(long)-err);
else
ntfs_debug("Cannot perform write to "
"inode 0x%lx, "
"attribute type 0x%x, "
"because there is not "
"space left.",
vi->i_ino, (unsigned)
le32_to_cpu(ni->type));
goto out;
}
}
}
/*
* If the write starts beyond the initialized size, extend it up to the
* beginning of the write and initialize all non-sparse space between
* the old initialized size and the new one. This automatically also
* increments the vfs inode->i_size to keep it above or equal to the
* initialized_size.
*/
read_lock_irqsave(&ni->size_lock, flags);
ll = ni->initialized_size;
read_unlock_irqrestore(&ni->size_lock, flags);
if (pos > ll) {
/*
* Wait for ongoing direct i/o to complete before proceeding.
* New direct i/o cannot start as we hold i_mutex.
*/
inode_dio_wait(vi);
err = ntfs_attr_extend_initialized(ni, pos);
if (unlikely(err < 0))
ntfs_error(vi->i_sb, "Cannot perform write to inode "
"0x%lx, attribute type 0x%x, because "
"extending the initialized size "
"failed (error %d).", vi->i_ino,
(unsigned)le32_to_cpu(ni->type),
(int)-err);
}
out:
return err;
}
/**
* __ntfs_grab_cache_pages - obtain a number of locked pages
* @mapping: address space mapping from which to obtain page cache pages
* @index: starting index in @mapping at which to begin obtaining pages
* @nr_pages: number of page cache pages to obtain
* @pages: array of pages in which to return the obtained page cache pages
* @cached_page: allocated but as yet unused page
*
* Obtain @nr_pages locked page cache pages from the mapping @mapping and
* starting at index @index.
*
* If a page is newly created, add it to lru list
*
* Note, the page locks are obtained in ascending page index order.
*/
static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
pgoff_t index, const unsigned nr_pages, struct page **pages,
struct page **cached_page)
{
int err, nr;
BUG_ON(!nr_pages);
err = nr = 0;
do {
pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
FGP_ACCESSED);
if (!pages[nr]) {
if (!*cached_page) {
*cached_page = page_cache_alloc(mapping);
if (unlikely(!*cached_page)) {
err = -ENOMEM;
goto err_out;
}
}
err = add_to_page_cache_lru(*cached_page, mapping,
index,
mapping_gfp_constraint(mapping, GFP_KERNEL));
if (unlikely(err)) {
if (err == -EEXIST)
continue;
goto err_out;
}
pages[nr] = *cached_page;
*cached_page = NULL;
}
index++;
nr++;
} while (nr < nr_pages);
out:
return err;
err_out:
while (nr > 0) {
unlock_page(pages[--nr]);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
put_page(pages[nr]);
}
goto out;
}
static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
{
lock_buffer(bh);
get_bh(bh);
bh->b_end_io = end_buffer_read_sync;
return submit_bh(REQ_OP_READ, 0, bh);
}
/**
* ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
* @pages: array of destination pages
* @nr_pages: number of pages in @pages
* @pos: byte position in file at which the write begins
* @bytes: number of bytes to be written
*
* This is called for non-resident attributes from ntfs_file_buffered_write()
* with i_mutex held on the inode (@pages[0]->mapping->host). There are
* @nr_pages pages in @pages which are locked but not kmap()ped. The source
* data has not yet been copied into the @pages.
*
* Need to fill any holes with actual clusters, allocate buffers if necessary,
* ensure all the buffers are mapped, and bring uptodate any buffers that are
* only partially being written to.
*
* If @nr_pages is greater than one, we are guaranteed that the cluster size is
* greater than PAGE_SIZE, that all pages in @pages are entirely inside
* the same cluster and that they are the entirety of that cluster, and that
* the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
*
* i_size is not to be modified yet.
*
* Return 0 on success or -errno on error.
*/
static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
unsigned nr_pages, s64 pos, size_t bytes)
{
VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
LCN lcn;
s64 bh_pos, vcn_len, end, initialized_size;
sector_t lcn_block;
struct page *page;
struct inode *vi;
ntfs_inode *ni, *base_ni = NULL;
ntfs_volume *vol;
runlist_element *rl, *rl2;
struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
ntfs_attr_search_ctx *ctx = NULL;
MFT_RECORD *m = NULL;
ATTR_RECORD *a = NULL;
unsigned long flags;
u32 attr_rec_len = 0;
unsigned blocksize, u;
int err, mp_size;
bool rl_write_locked, was_hole, is_retry;
unsigned char blocksize_bits;
struct {
u8 runlist_merged:1;
u8 mft_attr_mapped:1;
u8 mp_rebuilt:1;
u8 attr_switched:1;
} status = { 0, 0, 0, 0 };
BUG_ON(!nr_pages);
BUG_ON(!pages);
BUG_ON(!*pages);
vi = pages[0]->mapping->host;
ni = NTFS_I(vi);
vol = ni->vol;
ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
vi->i_ino, ni->type, pages[0]->index, nr_pages,
(long long)pos, bytes);
blocksize = vol->sb->s_blocksize;
blocksize_bits = vol->sb->s_blocksize_bits;
u = 0;
do {
page = pages[u];
BUG_ON(!page);
/*
* create_empty_buffers() will create uptodate/dirty buffers if
* the page is uptodate/dirty.
*/
if (!page_has_buffers(page)) {
create_empty_buffers(page, blocksize, 0);
if (unlikely(!page_has_buffers(page)))
return -ENOMEM;
}
} while (++u < nr_pages);
rl_write_locked = false;
rl = NULL;
err = 0;
vcn = lcn = -1;
vcn_len = 0;
lcn_block = -1;
was_hole = false;
cpos = pos >> vol->cluster_size_bits;
end = pos + bytes;
cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
/*
* Loop over each page and for each page over each buffer. Use goto to
* reduce indentation.
*/
u = 0;
do_next_page:
page = pages[u];
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
bh_pos = (s64)page->index << PAGE_SHIFT;
bh = head = page_buffers(page);
do {
VCN cdelta;
s64 bh_end;
unsigned bh_cofs;
/* Clear buffer_new on all buffers to reinitialise state. */
if (buffer_new(bh))
clear_buffer_new(bh);
bh_end = bh_pos + blocksize;
bh_cpos = bh_pos >> vol->cluster_size_bits;
bh_cofs = bh_pos & vol->cluster_size_mask;
if (buffer_mapped(bh)) {
/*
* The buffer is already mapped. If it is uptodate,
* ignore it.
*/
if (buffer_uptodate(bh))
continue;
/*
* The buffer is not uptodate. If the page is uptodate
* set the buffer uptodate and otherwise ignore it.
*/
if (PageUptodate(page)) {
set_buffer_uptodate(bh);
continue;
}
/*
* Neither the page nor the buffer are uptodate. If
* the buffer is only partially being written to, we
* need to read it in before the write, i.e. now.
*/
if ((bh_pos < pos && bh_end > pos) ||
(bh_pos < end && bh_end > end)) {
/*
* If the buffer is fully or partially within
* the initialized size, do an actual read.
* Otherwise, simply zero the buffer.
*/
read_lock_irqsave(&ni->size_lock, flags);
initialized_size = ni->initialized_size;
read_unlock_irqrestore(&ni->size_lock, flags);
if (bh_pos < initialized_size) {
ntfs_submit_bh_for_read(bh);
*wait_bh++ = bh;
} else {
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:29 +08:00
zero_user(page, bh_offset(bh),
blocksize);
set_buffer_uptodate(bh);
}
}
continue;
}
/* Unmapped buffer. Need to map it. */
bh->b_bdev = vol->sb->s_bdev;
/*
* If the current buffer is in the same clusters as the map
* cache, there is no need to check the runlist again. The
* map cache is made up of @vcn, which is the first cached file
* cluster, @vcn_len which is the number of cached file
* clusters, @lcn is the device cluster corresponding to @vcn,
* and @lcn_block is the block number corresponding to @lcn.
*/
cdelta = bh_cpos - vcn;
if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
map_buffer_cached:
BUG_ON(lcn < 0);
bh->b_blocknr = lcn_block +
(cdelta << (vol->cluster_size_bits -
blocksize_bits)) +
(bh_cofs >> blocksize_bits);
set_buffer_mapped(bh);
/*
* If the page is uptodate so is the buffer. If the
* buffer is fully outside the write, we ignore it if
* it was already allocated and we mark it dirty so it
* gets written out if we allocated it. On the other
* hand, if we allocated the buffer but we are not
* marking it dirty we set buffer_new so we can do
* error recovery.
*/
if (PageUptodate(page)) {
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
if (unlikely(was_hole)) {
/* We allocated the buffer. */
unmap_underlying_metadata(bh->b_bdev,
bh->b_blocknr);
if (bh_end <= pos || bh_pos >= end)
mark_buffer_dirty(bh);
else
set_buffer_new(bh);
}
continue;
}
/* Page is _not_ uptodate. */
if (likely(!was_hole)) {
/*
* Buffer was already allocated. If it is not
* uptodate and is only partially being written
* to, we need to read it in before the write,
* i.e. now.
*/
if (!buffer_uptodate(bh) && bh_pos < end &&
bh_end > pos &&
(bh_pos < pos ||
bh_end > end)) {
/*
* If the buffer is fully or partially
* within the initialized size, do an
* actual read. Otherwise, simply zero
* the buffer.
*/
read_lock_irqsave(&ni->size_lock,
flags);
initialized_size = ni->initialized_size;
read_unlock_irqrestore(&ni->size_lock,
flags);
if (bh_pos < initialized_size) {
ntfs_submit_bh_for_read(bh);
*wait_bh++ = bh;
} else {
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:29 +08:00
zero_user(page, bh_offset(bh),
blocksize);
set_buffer_uptodate(bh);
}
}
continue;
}
/* We allocated the buffer. */
unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
/*
* If the buffer is fully outside the write, zero it,
* set it uptodate, and mark it dirty so it gets
* written out. If it is partially being written to,
* zero region surrounding the write but leave it to
* commit write to do anything else. Finally, if the
* buffer is fully being overwritten, do nothing.
*/
if (bh_end <= pos || bh_pos >= end) {
if (!buffer_uptodate(bh)) {
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:29 +08:00
zero_user(page, bh_offset(bh),
blocksize);
set_buffer_uptodate(bh);
}
mark_buffer_dirty(bh);
continue;
}
set_buffer_new(bh);
if (!buffer_uptodate(bh) &&
(bh_pos < pos || bh_end > end)) {
u8 *kaddr;
unsigned pofs;
kaddr = kmap_atomic(page);
if (bh_pos < pos) {
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
pofs = bh_pos & ~PAGE_MASK;
memset(kaddr + pofs, 0, pos - bh_pos);
}
if (bh_end > end) {
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
pofs = end & ~PAGE_MASK;
memset(kaddr + pofs, 0, bh_end - end);
}
kunmap_atomic(kaddr);
flush_dcache_page(page);
}
continue;
}
/*
* Slow path: this is the first buffer in the cluster. If it
* is outside allocated size and is not uptodate, zero it and
* set it uptodate.
*/
read_lock_irqsave(&ni->size_lock, flags);
initialized_size = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
if (bh_pos > initialized_size) {
if (PageUptodate(page)) {
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
} else if (!buffer_uptodate(bh)) {
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:29 +08:00
zero_user(page, bh_offset(bh), blocksize);
set_buffer_uptodate(bh);
}
continue;
}
is_retry = false;
if (!rl) {
down_read(&ni->runlist.lock);
retry_remap:
rl = ni->runlist.rl;
}
if (likely(rl != NULL)) {
/* Seek to element containing target cluster. */
while (rl->length && rl[1].vcn <= bh_cpos)
rl++;
lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
if (likely(lcn >= 0)) {
/*
* Successful remap, setup the map cache and
* use that to deal with the buffer.
*/
was_hole = false;
vcn = bh_cpos;
vcn_len = rl[1].vcn - vcn;
lcn_block = lcn << (vol->cluster_size_bits -
blocksize_bits);
cdelta = 0;
/*
* If the number of remaining clusters touched
* by the write is smaller or equal to the
* number of cached clusters, unlock the
* runlist as the map cache will be used from
* now on.
*/
if (likely(vcn + vcn_len >= cend)) {
if (rl_write_locked) {
up_write(&ni->runlist.lock);
rl_write_locked = false;
} else
up_read(&ni->runlist.lock);
rl = NULL;
}
goto map_buffer_cached;
}
} else
lcn = LCN_RL_NOT_MAPPED;
/*
* If it is not a hole and not out of bounds, the runlist is
* probably unmapped so try to map it now.
*/
if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
/* Attempt to map runlist. */
if (!rl_write_locked) {
/*
* We need the runlist locked for
* writing, so if it is locked for
* reading relock it now and retry in
* case it changed whilst we dropped
* the lock.
*/
up_read(&ni->runlist.lock);
down_write(&ni->runlist.lock);
rl_write_locked = true;
goto retry_remap;
}
err = ntfs_map_runlist_nolock(ni, bh_cpos,
NULL);
if (likely(!err)) {
is_retry = true;
goto retry_remap;
}
/*
* If @vcn is out of bounds, pretend @lcn is
* LCN_ENOENT. As long as the buffer is out
* of bounds this will work fine.
*/
if (err == -ENOENT) {
lcn = LCN_ENOENT;
err = 0;
goto rl_not_mapped_enoent;
}
} else
err = -EIO;
/* Failed to map the buffer, even after retrying. */
bh->b_blocknr = -1;
ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
"attribute type 0x%x, vcn 0x%llx, "
"vcn offset 0x%x, because its "
"location on disk could not be "
"determined%s (error code %i).",
ni->mft_no, ni->type,
(unsigned long long)bh_cpos,
(unsigned)bh_pos &
vol->cluster_size_mask,
is_retry ? " even after retrying" : "",
err);
break;
}
rl_not_mapped_enoent:
/*
* The buffer is in a hole or out of bounds. We need to fill
* the hole, unless the buffer is in a cluster which is not
* touched by the write, in which case we just leave the buffer
* unmapped. This can only happen when the cluster size is
* less than the page cache size.
*/
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
if (unlikely(vol->cluster_size < PAGE_SIZE)) {
bh_cend = (bh_end + vol->cluster_size - 1) >>
vol->cluster_size_bits;
if ((bh_cend <= cpos || bh_cpos >= cend)) {
bh->b_blocknr = -1;
/*
* If the buffer is uptodate we skip it. If it
* is not but the page is uptodate, we can set
* the buffer uptodate. If the page is not
* uptodate, we can clear the buffer and set it
* uptodate. Whether this is worthwhile is
* debatable and this could be removed.
*/
if (PageUptodate(page)) {
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
} else if (!buffer_uptodate(bh)) {
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:29 +08:00
zero_user(page, bh_offset(bh),
blocksize);
set_buffer_uptodate(bh);
}
continue;
}
}
/*
* Out of bounds buffer is invalid if it was not really out of
* bounds.
*/
BUG_ON(lcn != LCN_HOLE);
/*
* We need the runlist locked for writing, so if it is locked
* for reading relock it now and retry in case it changed
* whilst we dropped the lock.
*/
BUG_ON(!rl);
if (!rl_write_locked) {
up_read(&ni->runlist.lock);
down_write(&ni->runlist.lock);
rl_write_locked = true;
goto retry_remap;
}
/* Find the previous last allocated cluster. */
BUG_ON(rl->lcn != LCN_HOLE);
lcn = -1;
rl2 = rl;
while (--rl2 >= ni->runlist.rl) {
if (rl2->lcn >= 0) {
lcn = rl2->lcn + rl2->length;
break;
}
}
rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
false);
if (IS_ERR(rl2)) {
err = PTR_ERR(rl2);
ntfs_debug("Failed to allocate cluster, error code %i.",
err);
break;
}
lcn = rl2->lcn;
rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
if (IS_ERR(rl)) {
err = PTR_ERR(rl);
if (err != -ENOMEM)
err = -EIO;
if (ntfs_cluster_free_from_rl(vol, rl2)) {
ntfs_error(vol->sb, "Failed to release "
"allocated cluster in error "
"code path. Run chkdsk to "
"recover the lost cluster.");
NVolSetErrors(vol);
}
ntfs_free(rl2);
break;
}
ni->runlist.rl = rl;
status.runlist_merged = 1;
ntfs_debug("Allocated cluster, lcn 0x%llx.",
(unsigned long long)lcn);
/* Map and lock the mft record and get the attribute record. */
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
break;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
unmap_mft_record(base_ni);
break;
}
status.mft_attr_mapped = 1;
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
break;
}
m = ctx->mrec;
a = ctx->attr;
/*
* Find the runlist element with which the attribute extent
* starts. Note, we cannot use the _attr_ version because we
* have mapped the mft record. That is ok because we know the
* runlist fragment must be mapped already to have ever gotten
* here, so we can just use the _rl_ version.
*/
vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
BUG_ON(!rl2);
BUG_ON(!rl2->length);
BUG_ON(rl2->lcn < LCN_HOLE);
highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
/*
* If @highest_vcn is zero, calculate the real highest_vcn
* (which can really be zero).
*/
if (!highest_vcn)
highest_vcn = (sle64_to_cpu(
a->data.non_resident.allocated_size) >>
vol->cluster_size_bits) - 1;
/*
* Determine the size of the mapping pairs array for the new
* extent, i.e. the old extent with the hole filled.
*/
mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
highest_vcn);
if (unlikely(mp_size <= 0)) {
if (!(err = mp_size))
err = -EIO;
ntfs_debug("Failed to get size for mapping pairs "
"array, error code %i.", err);
break;
}
/*
* Resize the attribute record to fit the new mapping pairs
* array.
*/
attr_rec_len = le32_to_cpu(a->length);
err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
a->data.non_resident.mapping_pairs_offset));
if (unlikely(err)) {
BUG_ON(err != -ENOSPC);
// TODO: Deal with this by using the current attribute
// and fill it with as much of the mapping pairs
// array as possible. Then loop over each attribute
// extent rewriting the mapping pairs arrays as we go
// along and if when we reach the end we have not
// enough space, try to resize the last attribute
// extent and if even that fails, add a new attribute
// extent.
// We could also try to resize at each step in the hope
// that we will not need to rewrite every single extent.
// Note, we may need to decompress some extents to fill
// the runlist as we are walking the extents...
ntfs_error(vol->sb, "Not enough space in the mft "
"record for the extended attribute "
"record. This case is not "
"implemented yet.");
err = -EOPNOTSUPP;
break ;
}
status.mp_rebuilt = 1;
/*
* Generate the mapping pairs array directly into the attribute
* record.
*/
err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
a->data.non_resident.mapping_pairs_offset),
mp_size, rl2, vcn, highest_vcn, NULL);
if (unlikely(err)) {
ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
"attribute type 0x%x, because building "
"the mapping pairs failed with error "
"code %i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
err = -EIO;
break;
}
/* Update the highest_vcn but only if it was not set. */
if (unlikely(!a->data.non_resident.highest_vcn))
a->data.non_resident.highest_vcn =
cpu_to_sle64(highest_vcn);
/*
* If the attribute is sparse/compressed, update the compressed
* size in the ntfs_inode structure and the attribute record.
*/
if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
/*
* If we are not in the first attribute extent, switch
* to it, but first ensure the changes will make it to
* disk later.
*/
if (a->data.non_resident.lowest_vcn) {
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_reinit_search_ctx(ctx);
err = ntfs_attr_lookup(ni->type, ni->name,
ni->name_len, CASE_SENSITIVE,
0, NULL, 0, ctx);
if (unlikely(err)) {
status.attr_switched = 1;
break;
}
/* @m is not used any more so do not set it. */
a = ctx->attr;
}
write_lock_irqsave(&ni->size_lock, flags);
ni->itype.compressed.size += vol->cluster_size;
a->data.non_resident.compressed_size =
cpu_to_sle64(ni->itype.compressed.size);
write_unlock_irqrestore(&ni->size_lock, flags);
}
/* Ensure the changes make it to disk. */
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
/* Successfully filled the hole. */
status.runlist_merged = 0;
status.mft_attr_mapped = 0;
status.mp_rebuilt = 0;
/* Setup the map cache and use that to deal with the buffer. */
was_hole = true;
vcn = bh_cpos;
vcn_len = 1;
lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
cdelta = 0;
/*
* If the number of remaining clusters in the @pages is smaller
* or equal to the number of cached clusters, unlock the
* runlist as the map cache will be used from now on.
*/
if (likely(vcn + vcn_len >= cend)) {
up_write(&ni->runlist.lock);
rl_write_locked = false;
rl = NULL;
}
goto map_buffer_cached;
} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
/* If there are no errors, do the next page. */
if (likely(!err && ++u < nr_pages))
goto do_next_page;
/* If there are no errors, release the runlist lock if we took it. */
if (likely(!err)) {
if (unlikely(rl_write_locked)) {
up_write(&ni->runlist.lock);
rl_write_locked = false;
} else if (unlikely(rl))
up_read(&ni->runlist.lock);
rl = NULL;
}
/* If we issued read requests, let them complete. */
read_lock_irqsave(&ni->size_lock, flags);
initialized_size = ni->initialized_size;
read_unlock_irqrestore(&ni->size_lock, flags);
while (wait_bh > wait) {
bh = *--wait_bh;
wait_on_buffer(bh);
if (likely(buffer_uptodate(bh))) {
page = bh->b_page;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
bh_pos = ((s64)page->index << PAGE_SHIFT) +
bh_offset(bh);
/*
* If the buffer overflows the initialized size, need
* to zero the overflowing region.
*/
if (unlikely(bh_pos + blocksize > initialized_size)) {
int ofs = 0;
if (likely(bh_pos < initialized_size))
ofs = initialized_size - bh_pos;
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:29 +08:00
zero_user_segment(page, bh_offset(bh) + ofs,
blocksize);
}
} else /* if (unlikely(!buffer_uptodate(bh))) */
err = -EIO;
}
if (likely(!err)) {
/* Clear buffer_new on all buffers. */
u = 0;
do {
bh = head = page_buffers(pages[u]);
do {
if (buffer_new(bh))
clear_buffer_new(bh);
} while ((bh = bh->b_this_page) != head);
} while (++u < nr_pages);
ntfs_debug("Done.");
return err;
}
if (status.attr_switched) {
/* Get back to the attribute extent we modified. */
ntfs_attr_reinit_search_ctx(ctx);
if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
ntfs_error(vol->sb, "Failed to find required "
"attribute extent of attribute in "
"error code path. Run chkdsk to "
"recover.");
write_lock_irqsave(&ni->size_lock, flags);
ni->itype.compressed.size += vol->cluster_size;
write_unlock_irqrestore(&ni->size_lock, flags);
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
/*
* The only thing that is now wrong is the compressed
* size of the base attribute extent which chkdsk
* should be able to fix.
*/
NVolSetErrors(vol);
} else {
m = ctx->mrec;
a = ctx->attr;
status.attr_switched = 0;
}
}
/*
* If the runlist has been modified, need to restore it by punching a
* hole into it and we then need to deallocate the on-disk cluster as
* well. Note, we only modify the runlist if we are able to generate a
* new mapping pairs array, i.e. only when the mapped attribute extent
* is not switched.
*/
if (status.runlist_merged && !status.attr_switched) {
BUG_ON(!rl_write_locked);
/* Make the file cluster we allocated sparse in the runlist. */
if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
ntfs_error(vol->sb, "Failed to punch hole into "
"attribute runlist in error code "
"path. Run chkdsk to recover the "
"lost cluster.");
NVolSetErrors(vol);
} else /* if (success) */ {
status.runlist_merged = 0;
/*
* Deallocate the on-disk cluster we allocated but only
* if we succeeded in punching its vcn out of the
* runlist.
*/
down_write(&vol->lcnbmp_lock);
if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
ntfs_error(vol->sb, "Failed to release "
"allocated cluster in error "
"code path. Run chkdsk to "
"recover the lost cluster.");
NVolSetErrors(vol);
}
up_write(&vol->lcnbmp_lock);
}
}
/*
* Resize the attribute record to its old size and rebuild the mapping
* pairs array. Note, we only can do this if the runlist has been
* restored to its old state which also implies that the mapped
* attribute extent is not switched.
*/
if (status.mp_rebuilt && !status.runlist_merged) {
if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
ntfs_error(vol->sb, "Failed to restore attribute "
"record in error code path. Run "
"chkdsk to recover.");
NVolSetErrors(vol);
} else /* if (success) */ {
if (ntfs_mapping_pairs_build(vol, (u8*)a +
le16_to_cpu(a->data.non_resident.
mapping_pairs_offset), attr_rec_len -
le16_to_cpu(a->data.non_resident.
mapping_pairs_offset), ni->runlist.rl,
vcn, highest_vcn, NULL)) {
ntfs_error(vol->sb, "Failed to restore "
"mapping pairs array in error "
"code path. Run chkdsk to "
"recover.");
NVolSetErrors(vol);
}
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
}
}
/* Release the mft record and the attribute. */
if (status.mft_attr_mapped) {
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
}
/* Release the runlist lock. */
if (rl_write_locked)
up_write(&ni->runlist.lock);
else if (rl)
up_read(&ni->runlist.lock);
/*
* Zero out any newly allocated blocks to avoid exposing stale data.
* If BH_New is set, we know that the block was newly allocated above
* and that it has not been fully zeroed and marked dirty yet.
*/
nr_pages = u;
u = 0;
end = bh_cpos << vol->cluster_size_bits;
do {
page = pages[u];
bh = head = page_buffers(page);
do {
if (u == nr_pages &&
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
((s64)page->index << PAGE_SHIFT) +
bh_offset(bh) >= end)
break;
if (!buffer_new(bh))
continue;
clear_buffer_new(bh);
if (!buffer_uptodate(bh)) {
if (PageUptodate(page))
set_buffer_uptodate(bh);
else {
Pagecache zeroing: zero_user_segment, zero_user_segments and zero_user Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:29 +08:00
zero_user(page, bh_offset(bh),
blocksize);
set_buffer_uptodate(bh);
}
}
mark_buffer_dirty(bh);
} while ((bh = bh->b_this_page) != head);
} while (++u <= nr_pages);
ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
return err;
}
static inline void ntfs_flush_dcache_pages(struct page **pages,
unsigned nr_pages)
{
BUG_ON(!nr_pages);
/*
* Warning: Do not do the decrement at the same time as the call to
* flush_dcache_page() because it is a NULL macro on i386 and hence the
* decrement never happens so the loop never terminates.
*/
do {
--nr_pages;
flush_dcache_page(pages[nr_pages]);
} while (nr_pages > 0);
}
/**
* ntfs_commit_pages_after_non_resident_write - commit the received data
* @pages: array of destination pages
* @nr_pages: number of pages in @pages
* @pos: byte position in file at which the write begins
* @bytes: number of bytes to be written
*
* See description of ntfs_commit_pages_after_write(), below.
*/
static inline int ntfs_commit_pages_after_non_resident_write(
struct page **pages, const unsigned nr_pages,
s64 pos, size_t bytes)
{
s64 end, initialized_size;
struct inode *vi;
ntfs_inode *ni, *base_ni;
struct buffer_head *bh, *head;
ntfs_attr_search_ctx *ctx;
MFT_RECORD *m;
ATTR_RECORD *a;
unsigned long flags;
unsigned blocksize, u;
int err;
vi = pages[0]->mapping->host;
ni = NTFS_I(vi);
blocksize = vi->i_sb->s_blocksize;
end = pos + bytes;
u = 0;
do {
s64 bh_pos;
struct page *page;
bool partial;
page = pages[u];
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
bh_pos = (s64)page->index << PAGE_SHIFT;
bh = head = page_buffers(page);
partial = false;
do {
s64 bh_end;
bh_end = bh_pos + blocksize;
if (bh_end <= pos || bh_pos >= end) {
if (!buffer_uptodate(bh))
partial = true;
} else {
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
}
} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
/*
* If all buffers are now uptodate but the page is not, set the
* page uptodate.
*/
if (!partial && !PageUptodate(page))
SetPageUptodate(page);
} while (++u < nr_pages);
/*
* Finally, if we do not need to update initialized_size or i_size we
* are finished.
*/
read_lock_irqsave(&ni->size_lock, flags);
initialized_size = ni->initialized_size;
read_unlock_irqrestore(&ni->size_lock, flags);
if (end <= initialized_size) {
ntfs_debug("Done.");
return 0;
}
/*
* Update initialized_size/i_size as appropriate, both in the inode and
* the mft record.
*/
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
/* Map, pin, and lock the mft record. */
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
m = NULL;
ctx = NULL;
goto err_out;
}
BUG_ON(!NInoNonResident(ni));
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto err_out;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto err_out;
}
a = ctx->attr;
BUG_ON(!a->non_resident);
write_lock_irqsave(&ni->size_lock, flags);
BUG_ON(end > ni->allocated_size);
ni->initialized_size = end;
a->data.non_resident.initialized_size = cpu_to_sle64(end);
if (end > i_size_read(vi)) {
i_size_write(vi, end);
a->data.non_resident.data_size =
a->data.non_resident.initialized_size;
}
write_unlock_irqrestore(&ni->size_lock, flags);
/* Mark the mft record dirty, so it gets written back. */
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
ntfs_debug("Done.");
return 0;
err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(base_ni);
ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
"code %i).", err);
if (err != -ENOMEM)
NVolSetErrors(ni->vol);
return err;
}
/**
* ntfs_commit_pages_after_write - commit the received data
* @pages: array of destination pages
* @nr_pages: number of pages in @pages
* @pos: byte position in file at which the write begins
* @bytes: number of bytes to be written
*
* This is called from ntfs_file_buffered_write() with i_mutex held on the inode
* (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
* locked but not kmap()ped. The source data has already been copied into the
* @page. ntfs_prepare_pages_for_non_resident_write() has been called before
* the data was copied (for non-resident attributes only) and it returned
* success.
*
* Need to set uptodate and mark dirty all buffers within the boundary of the
* write. If all buffers in a page are uptodate we set the page uptodate, too.
*
* Setting the buffers dirty ensures that they get written out later when
* ntfs_writepage() is invoked by the VM.
*
* Finally, we need to update i_size and initialized_size as appropriate both
* in the inode and the mft record.
*
* This is modelled after fs/buffer.c::generic_commit_write(), which marks
* buffers uptodate and dirty, sets the page uptodate if all buffers in the
* page are uptodate, and updates i_size if the end of io is beyond i_size. In
* that case, it also marks the inode dirty.
*
* If things have gone as outlined in
* ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
* content modifications here for non-resident attributes. For resident
* attributes we need to do the uptodate bringing here which we combine with
* the copying into the mft record which means we save one atomic kmap.
*
* Return 0 on success or -errno on error.
*/
static int ntfs_commit_pages_after_write(struct page **pages,
const unsigned nr_pages, s64 pos, size_t bytes)
{
s64 end, initialized_size;
loff_t i_size;
struct inode *vi;
ntfs_inode *ni, *base_ni;
struct page *page;
ntfs_attr_search_ctx *ctx;
MFT_RECORD *m;
ATTR_RECORD *a;
char *kattr, *kaddr;
unsigned long flags;
u32 attr_len;
int err;
BUG_ON(!nr_pages);
BUG_ON(!pages);
page = pages[0];
BUG_ON(!page);
vi = page->mapping->host;
ni = NTFS_I(vi);
ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
vi->i_ino, ni->type, page->index, nr_pages,
(long long)pos, bytes);
if (NInoNonResident(ni))
return ntfs_commit_pages_after_non_resident_write(pages,
nr_pages, pos, bytes);
BUG_ON(nr_pages > 1);
/*
* Attribute is resident, implying it is not compressed, encrypted, or
* sparse.
*/
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
BUG_ON(NInoNonResident(ni));
/* Map, pin, and lock the mft record. */
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
m = NULL;
ctx = NULL;
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto err_out;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto err_out;
}
a = ctx->attr;
BUG_ON(a->non_resident);
/* The total length of the attribute value. */
attr_len = le32_to_cpu(a->data.resident.value_length);
i_size = i_size_read(vi);
BUG_ON(attr_len != i_size);
BUG_ON(pos > attr_len);
end = pos + bytes;
BUG_ON(end > le32_to_cpu(a->length) -
le16_to_cpu(a->data.resident.value_offset));
kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
kaddr = kmap_atomic(page);
/* Copy the received data from the page to the mft record. */
memcpy(kattr + pos, kaddr + pos, bytes);
/* Update the attribute length if necessary. */
if (end > attr_len) {
attr_len = end;
a->data.resident.value_length = cpu_to_le32(attr_len);
}
/*
* If the page is not uptodate, bring the out of bounds area(s)
* uptodate by copying data from the mft record to the page.
*/
if (!PageUptodate(page)) {
if (pos > 0)
memcpy(kaddr, kattr, pos);
if (end < attr_len)
memcpy(kaddr + end, kattr + end, attr_len - end);
/* Zero the region outside the end of the attribute value. */
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
flush_dcache_page(page);
SetPageUptodate(page);
}
kunmap_atomic(kaddr);
/* Update initialized_size/i_size if necessary. */
read_lock_irqsave(&ni->size_lock, flags);
initialized_size = ni->initialized_size;
BUG_ON(end > ni->allocated_size);
read_unlock_irqrestore(&ni->size_lock, flags);
BUG_ON(initialized_size != i_size);
if (end > initialized_size) {
write_lock_irqsave(&ni->size_lock, flags);
ni->initialized_size = end;
i_size_write(vi, end);
write_unlock_irqrestore(&ni->size_lock, flags);
}
/* Mark the mft record dirty, so it gets written back. */
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
ntfs_debug("Done.");
return 0;
err_out:
if (err == -ENOMEM) {
ntfs_warning(vi->i_sb, "Error allocating memory required to "
"commit the write.");
if (PageUptodate(page)) {
ntfs_warning(vi->i_sb, "Page is uptodate, setting "
"dirty so the write will be retried "
"later on by the VM.");
/*
* Put the page on mapping->dirty_pages, but leave its
* buffers' dirty state as-is.
*/
__set_page_dirty_nobuffers(page);
err = 0;
} else
ntfs_error(vi->i_sb, "Page is not uptodate. Written "
"data has been lost.");
} else {
ntfs_error(vi->i_sb, "Resident attribute commit write failed "
"with error %i.", err);
NVolSetErrors(ni->vol);
}
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(base_ni);
return err;
}
/*
* Copy as much as we can into the pages and return the number of bytes which
* were successfully copied. If a fault is encountered then clear the pages
* out to (ofs + bytes) and return the number of bytes which were copied.
*/
static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
unsigned ofs, struct iov_iter *i, size_t bytes)
{
struct page **last_page = pages + nr_pages;
size_t total = 0;
struct iov_iter data = *i;
unsigned len, copied;
do {
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
len = PAGE_SIZE - ofs;
if (len > bytes)
len = bytes;
copied = iov_iter_copy_from_user_atomic(*pages, &data, ofs,
len);
total += copied;
bytes -= copied;
if (!bytes)
break;
iov_iter_advance(&data, copied);
if (copied < len)
goto err;
ofs = 0;
} while (++pages < last_page);
out:
return total;
err:
/* Zero the rest of the target like __copy_from_user(). */
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
len = PAGE_SIZE - copied;
do {
if (len > bytes)
len = bytes;
zero_user(*pages, copied, len);
bytes -= len;
copied = 0;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
len = PAGE_SIZE;
} while (++pages < last_page);
goto out;
}
/**
* ntfs_perform_write - perform buffered write to a file
* @file: file to write to
* @i: iov_iter with data to write
* @pos: byte offset in file at which to begin writing to
*/
static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
loff_t pos)
{
struct address_space *mapping = file->f_mapping;
struct inode *vi = mapping->host;
ntfs_inode *ni = NTFS_I(vi);
ntfs_volume *vol = ni->vol;
struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
struct page *cached_page = NULL;
VCN last_vcn;
LCN lcn;
size_t bytes;
ssize_t status, written = 0;
unsigned nr_pages;
ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
"0x%llx, count 0x%lx.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type),
(unsigned long long)pos,
(unsigned long)iov_iter_count(i));
/*
* If a previous ntfs_truncate() failed, repeat it and abort if it
* fails again.
*/
if (unlikely(NInoTruncateFailed(ni))) {
int err;
inode_dio_wait(vi);
err = ntfs_truncate(vi);
if (err || NInoTruncateFailed(ni)) {
if (!err)
err = -EIO;
ntfs_error(vol->sb, "Cannot perform write to inode "
"0x%lx, attribute type 0x%x, because "
"ntfs_truncate() failed (error code "
"%i).", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
return err;
}
}
/*
* Determine the number of pages per cluster for non-resident
* attributes.
*/
nr_pages = 1;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
nr_pages = vol->cluster_size >> PAGE_SHIFT;
last_vcn = -1;
do {
VCN vcn;
pgoff_t idx, start_idx;
unsigned ofs, do_pages, u;
size_t copied;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
start_idx = idx = pos >> PAGE_SHIFT;
ofs = pos & ~PAGE_MASK;
bytes = PAGE_SIZE - ofs;
do_pages = 1;
if (nr_pages > 1) {
vcn = pos >> vol->cluster_size_bits;
if (vcn != last_vcn) {
last_vcn = vcn;
/*
* Get the lcn of the vcn the write is in. If
* it is a hole, need to lock down all pages in
* the cluster.
*/
down_read(&ni->runlist.lock);
lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
vol->cluster_size_bits, false);
up_read(&ni->runlist.lock);
if (unlikely(lcn < LCN_HOLE)) {
if (lcn == LCN_ENOMEM)
status = -ENOMEM;
else {
status = -EIO;
ntfs_error(vol->sb, "Cannot "
"perform write to "
"inode 0x%lx, "
"attribute type 0x%x, "
"because the attribute "
"is corrupt.",
vi->i_ino, (unsigned)
le32_to_cpu(ni->type));
}
break;
}
if (lcn == LCN_HOLE) {
start_idx = (pos & ~(s64)
vol->cluster_size_mask)
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
>> PAGE_SHIFT;
bytes = vol->cluster_size - (pos &
vol->cluster_size_mask);
do_pages = nr_pages;
}
}
}
if (bytes > iov_iter_count(i))
bytes = iov_iter_count(i);
again:
/*
* Bring in the user page(s) that we will copy from _first_.
* Otherwise there is a nasty deadlock on copying from the same
* page(s) as we are writing to, without it/them being marked
* up-to-date. Note, at present there is nothing to stop the
* pages being swapped out between us bringing them into memory
* and doing the actual copying.
*/
if (unlikely(iov_iter_fault_in_multipages_readable(i, bytes))) {
status = -EFAULT;
break;
}
/* Get and lock @do_pages starting at index @start_idx. */
status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
pages, &cached_page);
if (unlikely(status))
break;
/*
* For non-resident attributes, we need to fill any holes with
* actual clusters and ensure all bufferes are mapped. We also
* need to bring uptodate any buffers that are only partially
* being written to.
*/
if (NInoNonResident(ni)) {
status = ntfs_prepare_pages_for_non_resident_write(
pages, do_pages, pos, bytes);
if (unlikely(status)) {
do {
unlock_page(pages[--do_pages]);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
put_page(pages[do_pages]);
} while (do_pages);
break;
}
}
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
u = (pos >> PAGE_SHIFT) - pages[0]->index;
copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
i, bytes);
ntfs_flush_dcache_pages(pages + u, do_pages - u);
status = 0;
if (likely(copied == bytes)) {
status = ntfs_commit_pages_after_write(pages, do_pages,
pos, bytes);
if (!status)
status = bytes;
}
do {
unlock_page(pages[--do_pages]);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
put_page(pages[do_pages]);
} while (do_pages);
if (unlikely(status < 0))
break;
copied = status;
cond_resched();
if (unlikely(!copied)) {
size_t sc;
/*
* We failed to copy anything. Fall back to single
* segment length write.
*
* This is needed to avoid possible livelock in the
* case that all segments in the iov cannot be copied
* at once without a pagefault.
*/
sc = iov_iter_single_seg_count(i);
if (bytes > sc)
bytes = sc;
goto again;
}
iov_iter_advance(i, copied);
pos += copied;
written += copied;
balance_dirty_pages_ratelimited(mapping);
if (fatal_signal_pending(current)) {
status = -EINTR;
break;
}
} while (iov_iter_count(i));
if (cached_page)
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
put_page(cached_page);
ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
written ? "written" : "status", (unsigned long)written,
(long)status);
return written ? written : status;
}
/**
* ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
* @iocb: IO state structure
* @from: iov_iter with data to write
*
* Basically the same as generic_file_write_iter() except that it ends up
* up calling ntfs_perform_write() instead of generic_perform_write() and that
* O_DIRECT is not implemented.
*/
static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *vi = file_inode(file);
ssize_t written = 0;
ssize_t err;
inode_lock(vi);
/* We can write back this queue in page reclaim. */
current->backing_dev_info = inode_to_bdi(vi);
err = ntfs_prepare_file_for_write(iocb, from);
if (iov_iter_count(from) && !err)
written = ntfs_perform_write(file, from, iocb->ki_pos);
current->backing_dev_info = NULL;
inode_unlock(vi);
iocb->ki_pos += written;
if (likely(written > 0))
written = generic_write_sync(iocb, written);
return written ? written : err;
}
/**
* ntfs_file_fsync - sync a file to disk
* @filp: file to be synced
* @datasync: if non-zero only flush user data and not metadata
*
* Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
* system calls. This function is inspired by fs/buffer.c::file_fsync().
*
* If @datasync is false, write the mft record and all associated extent mft
* records as well as the $DATA attribute and then sync the block device.
*
* If @datasync is true and the attribute is non-resident, we skip the writing
* of the mft record and all associated extent mft records (this might still
* happen due to the write_inode_now() call).
*
* Also, if @datasync is true, we do not wait on the inode to be written out
* but we always wait on the page cache pages to be written out.
*
* Locking: Caller must hold i_mutex on the inode.
*
* TODO: We should probably also write all attribute/index inodes associated
* with this inode but since we have no simple way of getting to them we ignore
* this problem for now.
*/
static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
int datasync)
{
struct inode *vi = filp->f_mapping->host;
int err, ret = 0;
ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
err = filemap_write_and_wait_range(vi->i_mapping, start, end);
if (err)
return err;
inode_lock(vi);
BUG_ON(S_ISDIR(vi->i_mode));
if (!datasync || !NInoNonResident(NTFS_I(vi)))
ret = __ntfs_write_inode(vi, 1);
write_inode_now(vi, !datasync);
/*
* NOTE: If we were to use mapping->private_list (see ext2 and
* fs/buffer.c) for dirty blocks then we could optimize the below to be
* sync_mapping_buffers(vi->i_mapping).
*/
err = sync_blockdev(vi->i_sb->s_bdev);
if (unlikely(err && !ret))
ret = err;
if (likely(!ret))
ntfs_debug("Done.");
else
ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
"%u.", datasync ? "data" : "", vi->i_ino, -ret);
inode_unlock(vi);
return ret;
}
#endif /* NTFS_RW */
const struct file_operations ntfs_file_ops = {
.llseek = generic_file_llseek,
.read_iter = generic_file_read_iter,
#ifdef NTFS_RW
.write_iter = ntfs_file_write_iter,
.fsync = ntfs_file_fsync,
#endif /* NTFS_RW */
.mmap = generic_file_mmap,
.open = ntfs_file_open,
.splice_read = generic_file_splice_read,
};
const struct inode_operations ntfs_file_inode_ops = {
#ifdef NTFS_RW
.setattr = ntfs_setattr,
#endif /* NTFS_RW */
};
const struct file_operations ntfs_empty_file_ops = {};
const struct inode_operations ntfs_empty_inode_ops = {};