linux_old1/include/linux/init_task.h

155 lines
4.2 KiB
C
Raw Normal View History

#ifndef _LINUX__INIT_TASK_H
#define _LINUX__INIT_TASK_H
#include <linux/file.h>
#include <linux/rcupdate.h>
#include <linux/irqflags.h>
#include <linux/utsname.h>
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
#include <linux/lockdep.h>
#include <linux/ipc.h>
#define INIT_FDTABLE \
{ \
.max_fds = NR_OPEN_DEFAULT, \
.max_fdset = EMBEDDED_FD_SET_SIZE, \
.fd = &init_files.fd_array[0], \
.close_on_exec = (fd_set *)&init_files.close_on_exec_init, \
.open_fds = (fd_set *)&init_files.open_fds_init, \
.rcu = RCU_HEAD_INIT, \
.free_files = NULL, \
.next = NULL, \
}
#define INIT_FILES \
{ \
.count = ATOMIC_INIT(1), \
.fdt = &init_files.fdtab, \
.fdtab = INIT_FDTABLE, \
.file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock), \
.next_fd = 0, \
.close_on_exec_init = { { 0, } }, \
.open_fds_init = { { 0, } }, \
.fd_array = { NULL, } \
}
#define INIT_KIOCTX(name, which_mm) \
{ \
.users = ATOMIC_INIT(1), \
.dead = 0, \
.mm = &which_mm, \
.user_id = 0, \
.next = NULL, \
.wait = __WAIT_QUEUE_HEAD_INITIALIZER(name.wait), \
.ctx_lock = __SPIN_LOCK_UNLOCKED(name.ctx_lock), \
.reqs_active = 0U, \
.max_reqs = ~0U, \
}
#define INIT_MM(name) \
{ \
.mm_rb = RB_ROOT, \
.pgd = swapper_pg_dir, \
.mm_users = ATOMIC_INIT(2), \
.mm_count = ATOMIC_INIT(1), \
.mmap_sem = __RWSEM_INITIALIZER(name.mmap_sem), \
.page_table_lock = __SPIN_LOCK_UNLOCKED(name.page_table_lock), \
.mmlist = LIST_HEAD_INIT(name.mmlist), \
.cpu_vm_mask = CPU_MASK_ALL, \
}
#define INIT_SIGNALS(sig) { \
.count = ATOMIC_INIT(1), \
.wait_chldexit = __WAIT_QUEUE_HEAD_INITIALIZER(sig.wait_chldexit),\
.shared_pending = { \
.list = LIST_HEAD_INIT(sig.shared_pending.list), \
.signal = {{0}}}, \
.posix_timers = LIST_HEAD_INIT(sig.posix_timers), \
.cpu_timers = INIT_CPU_TIMERS(sig.cpu_timers), \
.rlim = INIT_RLIMITS, \
[PATCH] pidhash: don't use zero pids daemonize() calls set_special_pids(1,1), while init and kernel threads spawned from init/main.c:init() run with 0,0 special pids. This patch changes INIT_SIGNALS() so that that they run with ->pgrp == ->session == 1 also. This patch relies on fact that swapper's pid == 1. Now we have no hashed zero pids in pid_hash[]. User-space visibible change is that now /sbin/init runs with (1,1) special pids and becomes a session leader. Quoting Eric W. Biederman: > > daemonize consuming pids (1,1) then consumes pgrp 1. So that when > /sbin/init calls setsid() it thinks /sbin/init is a process group > leader and setsid() fails. So /sbin/init wants pgrp 1 session 1 > but doesn't get it. I am pretty certain daemonize did not exist so > /sbin/init got pgrp 1 session 1 in 2.4. > > That is the bug that is being fixed. > > This patch takes things one step farther and essentially calls > setsid() for pid == 1 before init is execed. That is new behavior > but it cleans up the kernel as we now do not need to support the > case of a process without a process group or a session. > > The only process that could have possibly cared was /sbin/init > and it already calls setsid() because it doesn't want that. > > If this was going to break anything noticeable the change in behavior > from 2.4 to 2.6 would have already done that. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-29 08:11:09 +08:00
.pgrp = 1, \
.session = 1, \
}
extern struct nsproxy init_nsproxy;
#define INIT_NSPROXY(nsproxy) { \
.count = ATOMIC_INIT(1), \
.nslock = SPIN_LOCK_UNLOCKED, \
.uts_ns = &init_uts_ns, \
.namespace = NULL, \
INIT_IPC_NS(ipc_ns) \
}
#define INIT_SIGHAND(sighand) { \
.count = ATOMIC_INIT(1), \
.action = { { { .sa_handler = NULL, } }, }, \
.siglock = __SPIN_LOCK_UNLOCKED(sighand.siglock), \
}
extern struct group_info init_groups;
/*
* INIT_TASK is used to set up the first task table, touch at
* your own risk!. Base=0, limit=0x1fffff (=2MB)
*/
#define INIT_TASK(tsk) \
{ \
.state = 0, \
.thread_info = &init_thread_info, \
.usage = ATOMIC_INIT(2), \
.flags = 0, \
.lock_depth = -1, \
.prio = MAX_PRIO-20, \
.static_prio = MAX_PRIO-20, \
.normal_prio = MAX_PRIO-20, \
.policy = SCHED_NORMAL, \
.cpus_allowed = CPU_MASK_ALL, \
.mm = NULL, \
.active_mm = &init_mm, \
.run_list = LIST_HEAD_INIT(tsk.run_list), \
.ioprio = 0, \
.time_slice = HZ, \
.tasks = LIST_HEAD_INIT(tsk.tasks), \
.ptrace_children= LIST_HEAD_INIT(tsk.ptrace_children), \
.ptrace_list = LIST_HEAD_INIT(tsk.ptrace_list), \
.real_parent = &tsk, \
.parent = &tsk, \
.children = LIST_HEAD_INIT(tsk.children), \
.sibling = LIST_HEAD_INIT(tsk.sibling), \
.group_leader = &tsk, \
.group_info = &init_groups, \
.cap_effective = CAP_INIT_EFF_SET, \
.cap_inheritable = CAP_INIT_INH_SET, \
.cap_permitted = CAP_FULL_SET, \
.keep_capabilities = 0, \
.user = INIT_USER, \
.comm = "swapper", \
.thread = INIT_THREAD, \
.fs = &init_fs, \
.files = &init_files, \
.signal = &init_signals, \
.sighand = &init_sighand, \
.nsproxy = &init_nsproxy, \
.pending = { \
.list = LIST_HEAD_INIT(tsk.pending.list), \
.signal = {{0}}}, \
.blocked = {{0}}, \
.alloc_lock = __SPIN_LOCK_UNLOCKED(tsk.alloc_lock), \
.journal_info = NULL, \
.cpu_timers = INIT_CPU_TIMERS(tsk.cpu_timers), \
.fs_excl = ATOMIC_INIT(0), \
.pi_lock = SPIN_LOCK_UNLOCKED, \
INIT_TRACE_IRQFLAGS \
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
INIT_LOCKDEP \
}
#define INIT_CPU_TIMERS(cpu_timers) \
{ \
LIST_HEAD_INIT(cpu_timers[0]), \
LIST_HEAD_INIT(cpu_timers[1]), \
LIST_HEAD_INIT(cpu_timers[2]), \
}
#endif