linux_old1/include/net/act_api.h

199 lines
6.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __NET_ACT_API_H
#define __NET_ACT_API_H
/*
* Public action API for classifiers/qdiscs
*/
#include <linux/refcount.h>
#include <net/sch_generic.h>
#include <net/pkt_sched.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
struct tcf_idrinfo {
struct mutex lock;
struct idr action_idr;
};
struct tc_action_ops;
struct tc_action {
const struct tc_action_ops *ops;
__u32 type; /* for backward compat(TCA_OLD_COMPAT) */
__u32 order;
struct tcf_idrinfo *idrinfo;
u32 tcfa_index;
refcount_t tcfa_refcnt;
atomic_t tcfa_bindcnt;
int tcfa_action;
struct tcf_t tcfa_tm;
struct gnet_stats_basic_packed tcfa_bstats;
struct gnet_stats_basic_packed tcfa_bstats_hw;
struct gnet_stats_queue tcfa_qstats;
struct net_rate_estimator __rcu *tcfa_rate_est;
spinlock_t tcfa_lock;
struct gnet_stats_basic_cpu __percpu *cpu_bstats;
struct gnet_stats_basic_cpu __percpu *cpu_bstats_hw;
struct gnet_stats_queue __percpu *cpu_qstats;
struct tc_cookie __rcu *act_cookie;
struct tcf_chain *goto_chain;
};
#define tcf_index common.tcfa_index
#define tcf_refcnt common.tcfa_refcnt
#define tcf_bindcnt common.tcfa_bindcnt
#define tcf_action common.tcfa_action
#define tcf_tm common.tcfa_tm
#define tcf_bstats common.tcfa_bstats
#define tcf_qstats common.tcfa_qstats
#define tcf_rate_est common.tcfa_rate_est
#define tcf_lock common.tcfa_lock
/* Update lastuse only if needed, to avoid dirtying a cache line.
* We use a temp variable to avoid fetching jiffies twice.
*/
static inline void tcf_lastuse_update(struct tcf_t *tm)
{
unsigned long now = jiffies;
if (tm->lastuse != now)
tm->lastuse = now;
if (unlikely(!tm->firstuse))
tm->firstuse = now;
}
static inline void tcf_tm_dump(struct tcf_t *dtm, const struct tcf_t *stm)
{
dtm->install = jiffies_to_clock_t(jiffies - stm->install);
dtm->lastuse = jiffies_to_clock_t(jiffies - stm->lastuse);
dtm->firstuse = jiffies_to_clock_t(jiffies - stm->firstuse);
dtm->expires = jiffies_to_clock_t(stm->expires);
}
#ifdef CONFIG_NET_CLS_ACT
#define ACT_P_CREATED 1
#define ACT_P_DELETED 1
struct tc_action_ops {
struct list_head head;
char kind[IFNAMSIZ];
enum tca_id id; /* identifier should match kind */
size_t size;
struct module *owner;
int (*act)(struct sk_buff *, const struct tc_action *,
struct tcf_result *); /* called under RCU BH lock*/
int (*dump)(struct sk_buff *, struct tc_action *, int, int);
void (*cleanup)(struct tc_action *);
int (*lookup)(struct net *net, struct tc_action **a, u32 index);
int (*init)(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **act, int ovr,
int bind, bool rtnl_held,
struct netlink_ext_ack *extack);
int (*walk)(struct net *, struct sk_buff *,
struct netlink_callback *, int,
const struct tc_action_ops *,
struct netlink_ext_ack *);
void (*stats_update)(struct tc_action *, u64, u32, u64, bool);
size_t (*get_fill_size)(const struct tc_action *act);
struct net_device *(*get_dev)(const struct tc_action *a);
void (*put_dev)(struct net_device *dev);
};
struct tc_action_net {
struct tcf_idrinfo *idrinfo;
const struct tc_action_ops *ops;
};
static inline
int tc_action_net_init(struct tc_action_net *tn,
const struct tc_action_ops *ops)
{
int err = 0;
tn->idrinfo = kmalloc(sizeof(*tn->idrinfo), GFP_KERNEL);
if (!tn->idrinfo)
return -ENOMEM;
tn->ops = ops;
mutex_init(&tn->idrinfo->lock);
idr_init(&tn->idrinfo->action_idr);
return err;
}
void tcf_idrinfo_destroy(const struct tc_action_ops *ops,
struct tcf_idrinfo *idrinfo);
static inline void tc_action_net_exit(struct list_head *net_list,
unsigned int id)
{
struct net *net;
rtnl_lock();
list_for_each_entry(net, net_list, exit_list) {
struct tc_action_net *tn = net_generic(net, id);
tcf_idrinfo_destroy(tn->ops, tn->idrinfo);
kfree(tn->idrinfo);
}
rtnl_unlock();
}
int tcf_generic_walker(struct tc_action_net *tn, struct sk_buff *skb,
struct netlink_callback *cb, int type,
const struct tc_action_ops *ops,
struct netlink_ext_ack *extack);
int tcf_idr_search(struct tc_action_net *tn, struct tc_action **a, u32 index);
int tcf_idr_create(struct tc_action_net *tn, u32 index, struct nlattr *est,
struct tc_action **a, const struct tc_action_ops *ops,
int bind, bool cpustats);
void tcf_idr_insert(struct tc_action_net *tn, struct tc_action *a);
void tcf_idr_cleanup(struct tc_action_net *tn, u32 index);
int tcf_idr_check_alloc(struct tc_action_net *tn, u32 *index,
struct tc_action **a, int bind);
int __tcf_idr_release(struct tc_action *a, bool bind, bool strict);
net: sched: fix refcount imbalance in actions Since commit 55334a5db5cd ("net_sched: act: refuse to remove bound action outside"), we end up with a wrong reference count for a tc action. Test case 1: FOO="1,6 0 0 4294967295," BAR="1,6 0 0 4294967294," tc filter add dev foo parent 1: bpf bytecode "$FOO" flowid 1:1 \ action bpf bytecode "$FOO" tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967295' default-action pipe index 1 ref 1 bind 1 tc actions replace action bpf bytecode "$BAR" index 1 tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967294' default-action pipe index 1 ref 2 bind 1 tc actions replace action bpf bytecode "$FOO" index 1 tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967295' default-action pipe index 1 ref 3 bind 1 Test case 2: FOO="1,6 0 0 4294967295," tc filter add dev foo parent 1: bpf bytecode "$FOO" flowid 1:1 action ok tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 1 bind 1 tc actions add action drop index 1 RTNETLINK answers: File exists [...] tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 2 bind 1 tc actions add action drop index 1 RTNETLINK answers: File exists [...] tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 3 bind 1 What happens is that in tcf_hash_check(), we check tcf_common for a given index and increase tcfc_refcnt and conditionally tcfc_bindcnt when we've found an existing action. Now there are the following cases: 1) We do a late binding of an action. In that case, we leave the tcfc_refcnt/tcfc_bindcnt increased and are done with the ->init() handler. This is correctly handeled. 2) We replace the given action, or we try to add one without replacing and find out that the action at a specific index already exists (thus, we go out with error in that case). In case of 2), we have to undo the reference count increase from tcf_hash_check() in the tcf_hash_check() function. Currently, we fail to do so because of the 'tcfc_bindcnt > 0' check which bails out early with an -EPERM error. Now, while commit 55334a5db5cd prevents 'tc actions del action ...' on an already classifier-bound action to drop the reference count (which could then become negative, wrap around etc), this restriction only accounts for invocations outside a specific action's ->init() handler. One possible solution would be to add a flag thus we possibly trigger the -EPERM ony in situations where it is indeed relevant. After the patch, above test cases have correct reference count again. Fixes: 55334a5db5cd ("net_sched: act: refuse to remove bound action outside") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Cong Wang <cwang@twopensource.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-30 05:35:25 +08:00
static inline int tcf_idr_release(struct tc_action *a, bool bind)
net: sched: fix refcount imbalance in actions Since commit 55334a5db5cd ("net_sched: act: refuse to remove bound action outside"), we end up with a wrong reference count for a tc action. Test case 1: FOO="1,6 0 0 4294967295," BAR="1,6 0 0 4294967294," tc filter add dev foo parent 1: bpf bytecode "$FOO" flowid 1:1 \ action bpf bytecode "$FOO" tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967295' default-action pipe index 1 ref 1 bind 1 tc actions replace action bpf bytecode "$BAR" index 1 tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967294' default-action pipe index 1 ref 2 bind 1 tc actions replace action bpf bytecode "$FOO" index 1 tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967295' default-action pipe index 1 ref 3 bind 1 Test case 2: FOO="1,6 0 0 4294967295," tc filter add dev foo parent 1: bpf bytecode "$FOO" flowid 1:1 action ok tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 1 bind 1 tc actions add action drop index 1 RTNETLINK answers: File exists [...] tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 2 bind 1 tc actions add action drop index 1 RTNETLINK answers: File exists [...] tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 3 bind 1 What happens is that in tcf_hash_check(), we check tcf_common for a given index and increase tcfc_refcnt and conditionally tcfc_bindcnt when we've found an existing action. Now there are the following cases: 1) We do a late binding of an action. In that case, we leave the tcfc_refcnt/tcfc_bindcnt increased and are done with the ->init() handler. This is correctly handeled. 2) We replace the given action, or we try to add one without replacing and find out that the action at a specific index already exists (thus, we go out with error in that case). In case of 2), we have to undo the reference count increase from tcf_hash_check() in the tcf_hash_check() function. Currently, we fail to do so because of the 'tcfc_bindcnt > 0' check which bails out early with an -EPERM error. Now, while commit 55334a5db5cd prevents 'tc actions del action ...' on an already classifier-bound action to drop the reference count (which could then become negative, wrap around etc), this restriction only accounts for invocations outside a specific action's ->init() handler. One possible solution would be to add a flag thus we possibly trigger the -EPERM ony in situations where it is indeed relevant. After the patch, above test cases have correct reference count again. Fixes: 55334a5db5cd ("net_sched: act: refuse to remove bound action outside") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Cong Wang <cwang@twopensource.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-30 05:35:25 +08:00
{
return __tcf_idr_release(a, bind, false);
net: sched: fix refcount imbalance in actions Since commit 55334a5db5cd ("net_sched: act: refuse to remove bound action outside"), we end up with a wrong reference count for a tc action. Test case 1: FOO="1,6 0 0 4294967295," BAR="1,6 0 0 4294967294," tc filter add dev foo parent 1: bpf bytecode "$FOO" flowid 1:1 \ action bpf bytecode "$FOO" tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967295' default-action pipe index 1 ref 1 bind 1 tc actions replace action bpf bytecode "$BAR" index 1 tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967294' default-action pipe index 1 ref 2 bind 1 tc actions replace action bpf bytecode "$FOO" index 1 tc actions show action bpf action order 0: bpf bytecode '1,6 0 0 4294967295' default-action pipe index 1 ref 3 bind 1 Test case 2: FOO="1,6 0 0 4294967295," tc filter add dev foo parent 1: bpf bytecode "$FOO" flowid 1:1 action ok tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 1 bind 1 tc actions add action drop index 1 RTNETLINK answers: File exists [...] tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 2 bind 1 tc actions add action drop index 1 RTNETLINK answers: File exists [...] tc actions show action gact action order 0: gact action pass random type none pass val 0 index 1 ref 3 bind 1 What happens is that in tcf_hash_check(), we check tcf_common for a given index and increase tcfc_refcnt and conditionally tcfc_bindcnt when we've found an existing action. Now there are the following cases: 1) We do a late binding of an action. In that case, we leave the tcfc_refcnt/tcfc_bindcnt increased and are done with the ->init() handler. This is correctly handeled. 2) We replace the given action, or we try to add one without replacing and find out that the action at a specific index already exists (thus, we go out with error in that case). In case of 2), we have to undo the reference count increase from tcf_hash_check() in the tcf_hash_check() function. Currently, we fail to do so because of the 'tcfc_bindcnt > 0' check which bails out early with an -EPERM error. Now, while commit 55334a5db5cd prevents 'tc actions del action ...' on an already classifier-bound action to drop the reference count (which could then become negative, wrap around etc), this restriction only accounts for invocations outside a specific action's ->init() handler. One possible solution would be to add a flag thus we possibly trigger the -EPERM ony in situations where it is indeed relevant. After the patch, above test cases have correct reference count again. Fixes: 55334a5db5cd ("net_sched: act: refuse to remove bound action outside") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Cong Wang <cwang@twopensource.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-30 05:35:25 +08:00
}
int tcf_register_action(struct tc_action_ops *a, struct pernet_operations *ops);
int tcf_unregister_action(struct tc_action_ops *a,
struct pernet_operations *ops);
int tcf_action_destroy(struct tc_action *actions[], int bind);
int tcf_action_exec(struct sk_buff *skb, struct tc_action **actions,
int nr_actions, struct tcf_result *res);
int tcf_action_init(struct net *net, struct tcf_proto *tp, struct nlattr *nla,
struct nlattr *est, char *name, int ovr, int bind,
struct tc_action *actions[], size_t *attr_size,
bool rtnl_held, struct netlink_ext_ack *extack);
struct tc_action *tcf_action_init_1(struct net *net, struct tcf_proto *tp,
struct nlattr *nla, struct nlattr *est,
char *name, int ovr, int bind,
bool rtnl_held,
struct netlink_ext_ack *extack);
int tcf_action_dump(struct sk_buff *skb, struct tc_action *actions[], int bind,
int ref);
int tcf_action_dump_old(struct sk_buff *skb, struct tc_action *a, int, int);
int tcf_action_dump_1(struct sk_buff *skb, struct tc_action *a, int, int);
int tcf_action_copy_stats(struct sk_buff *, struct tc_action *, int);
#endif /* CONFIG_NET_CLS_ACT */
static inline void tcf_action_stats_update(struct tc_action *a, u64 bytes,
u64 packets, u64 lastuse, bool hw)
{
#ifdef CONFIG_NET_CLS_ACT
if (!a->ops->stats_update)
return;
a->ops->stats_update(a, bytes, packets, lastuse, hw);
#endif
}
#endif