linux_old1/drivers/net/wireless/strip.c

2805 lines
82 KiB
C
Raw Normal View History

/*
* Copyright 1996 The Board of Trustees of The Leland Stanford
* Junior University. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this
* software and its documentation for any purpose and without
* fee is hereby granted, provided that the above copyright
* notice appear in all copies. Stanford University
* makes no representations about the suitability of this
* software for any purpose. It is provided "as is" without
* express or implied warranty.
*
* strip.c This module implements Starmode Radio IP (STRIP)
* for kernel-based devices like TTY. It interfaces between a
* raw TTY, and the kernel's INET protocol layers (via DDI).
*
* Version: @(#)strip.c 1.3 July 1997
*
* Author: Stuart Cheshire <cheshire@cs.stanford.edu>
*
* Fixes: v0.9 12th Feb 1996 (SC)
* New byte stuffing (2+6 run-length encoding)
* New watchdog timer task
* New Protocol key (SIP0)
*
* v0.9.1 3rd March 1996 (SC)
* Changed to dynamic device allocation -- no more compile
* time (or boot time) limit on the number of STRIP devices.
*
* v0.9.2 13th March 1996 (SC)
* Uses arp cache lookups (but doesn't send arp packets yet)
*
* v0.9.3 17th April 1996 (SC)
* Fixed bug where STR_ERROR flag was getting set unneccessarily
* (causing otherwise good packets to be unneccessarily dropped)
*
* v0.9.4 27th April 1996 (SC)
* First attempt at using "&COMMAND" Starmode AT commands
*
* v0.9.5 29th May 1996 (SC)
* First attempt at sending (unicast) ARP packets
*
* v0.9.6 5th June 1996 (Elliot)
* Put "message level" tags in every "printk" statement
*
* v0.9.7 13th June 1996 (laik)
* Added support for the /proc fs
*
* v0.9.8 July 1996 (Mema)
* Added packet logging
*
* v1.0 November 1996 (SC)
* Fixed (severe) memory leaks in the /proc fs code
* Fixed race conditions in the logging code
*
* v1.1 January 1997 (SC)
* Deleted packet logging (use tcpdump instead)
* Added support for Metricom Firmware v204 features
* (like message checksums)
*
* v1.2 January 1997 (SC)
* Put portables list back in
*
* v1.3 July 1997 (SC)
* Made STRIP driver set the radio's baud rate automatically.
* It is no longer necessarily to manually set the radio's
* rate permanently to 115200 -- the driver handles setting
* the rate automatically.
*/
#ifdef MODULE
static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR";
#else
static const char StripVersion[] = "1.3A-STUART.CHESHIRE";
#endif
#define TICKLE_TIMERS 0
#define EXT_COUNTERS 1
/************************************************************************/
/* Header files */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/uaccess.h>
# include <linux/ctype.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/tty.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/if_strip.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/serial.h>
#include <linux/serialP.h>
#include <linux/rcupdate.h>
#include <net/arp.h>
#include <net/net_namespace.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/time.h>
#include <linux/jiffies.h>
/************************************************************************/
/* Useful structures and definitions */
/*
* A MetricomKey identifies the protocol being carried inside a Metricom
* Starmode packet.
*/
typedef union {
__u8 c[4];
__u32 l;
} MetricomKey;
/*
* An IP address can be viewed as four bytes in memory (which is what it is) or as
* a single 32-bit long (which is convenient for assignment, equality testing etc.)
*/
typedef union {
__u8 b[4];
__u32 l;
} IPaddr;
/*
* A MetricomAddressString is used to hold a printable representation of
* a Metricom address.
*/
typedef struct {
__u8 c[24];
} MetricomAddressString;
/* Encapsulation can expand packet of size x to 65/64x + 1
* Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
* 1 1 1-18 1 4 ? 1
* eg. <CR>*0000-1234*SIP0<encaps payload><CR>
* We allow 31 bytes for the stars, the key, the address and the <CR>s
*/
#define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
/*
* A STRIP_Header is never really sent over the radio, but making a dummy
* header for internal use within the kernel that looks like an Ethernet
* header makes certain other software happier. For example, tcpdump
* already understands Ethernet headers.
*/
typedef struct {
MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */
MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */
unsigned short protocol; /* The protocol type, using Ethernet codes */
} STRIP_Header;
typedef struct {
char c[60];
} MetricomNode;
#define NODE_TABLE_SIZE 32
typedef struct {
struct timeval timestamp;
int num_nodes;
MetricomNode node[NODE_TABLE_SIZE];
} MetricomNodeTable;
enum { FALSE = 0, TRUE = 1 };
/*
* Holds the radio's firmware version.
*/
typedef struct {
char c[50];
} FirmwareVersion;
/*
* Holds the radio's serial number.
*/
typedef struct {
char c[18];
} SerialNumber;
/*
* Holds the radio's battery voltage.
*/
typedef struct {
char c[11];
} BatteryVoltage;
typedef struct {
char c[8];
} char8;
enum {
NoStructure = 0, /* Really old firmware */
StructuredMessages = 1, /* Parsable AT response msgs */
ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
};
struct strip {
int magic;
/*
* These are pointers to the malloc()ed frame buffers.
*/
unsigned char *rx_buff; /* buffer for received IP packet */
unsigned char *sx_buff; /* buffer for received serial data */
int sx_count; /* received serial data counter */
int sx_size; /* Serial buffer size */
unsigned char *tx_buff; /* transmitter buffer */
unsigned char *tx_head; /* pointer to next byte to XMIT */
int tx_left; /* bytes left in XMIT queue */
int tx_size; /* Serial buffer size */
/*
* STRIP interface statistics.
*/
unsigned long rx_packets; /* inbound frames counter */
unsigned long tx_packets; /* outbound frames counter */
unsigned long rx_errors; /* Parity, etc. errors */
unsigned long tx_errors; /* Planned stuff */
unsigned long rx_dropped; /* No memory for skb */
unsigned long tx_dropped; /* When MTU change */
unsigned long rx_over_errors; /* Frame bigger then STRIP buf. */
unsigned long pps_timer; /* Timer to determine pps */
unsigned long rx_pps_count; /* Counter to determine pps */
unsigned long tx_pps_count; /* Counter to determine pps */
unsigned long sx_pps_count; /* Counter to determine pps */
unsigned long rx_average_pps; /* rx packets per second * 8 */
unsigned long tx_average_pps; /* tx packets per second * 8 */
unsigned long sx_average_pps; /* sent packets per second * 8 */
#ifdef EXT_COUNTERS
unsigned long rx_bytes; /* total received bytes */
unsigned long tx_bytes; /* total received bytes */
unsigned long rx_rbytes; /* bytes thru radio i/f */
unsigned long tx_rbytes; /* bytes thru radio i/f */
unsigned long rx_sbytes; /* tot bytes thru serial i/f */
unsigned long tx_sbytes; /* tot bytes thru serial i/f */
unsigned long rx_ebytes; /* tot stat/err bytes */
unsigned long tx_ebytes; /* tot stat/err bytes */
#endif
/*
* Internal variables.
*/
struct list_head list; /* Linked list of devices */
int discard; /* Set if serial error */
int working; /* Is radio working correctly? */
int firmware_level; /* Message structuring level */
int next_command; /* Next periodic command */
unsigned int user_baud; /* The user-selected baud rate */
int mtu; /* Our mtu (to spot changes!) */
long watchdog_doprobe; /* Next time to test the radio */
long watchdog_doreset; /* Time to do next reset */
long gratuitous_arp; /* Time to send next ARP refresh */
long arp_interval; /* Next ARP interval */
struct timer_list idle_timer; /* For periodic wakeup calls */
MetricomAddress true_dev_addr; /* True address of radio */
int manual_dev_addr; /* Hack: See note below */
FirmwareVersion firmware_version; /* The radio's firmware version */
SerialNumber serial_number; /* The radio's serial number */
BatteryVoltage battery_voltage; /* The radio's battery voltage */
/*
* Other useful structures.
*/
struct tty_struct *tty; /* ptr to TTY structure */
struct net_device *dev; /* Our device structure */
/*
* Neighbour radio records
*/
MetricomNodeTable portables;
MetricomNodeTable poletops;
};
/*
* Note: manual_dev_addr hack
*
* It is not possible to change the hardware address of a Metricom radio,
* or to send packets with a user-specified hardware source address, thus
* trying to manually set a hardware source address is a questionable
* thing to do. However, if the user *does* manually set the hardware
* source address of a STRIP interface, then the kernel will believe it,
* and use it in certain places. For example, the hardware address listed
* by ifconfig will be the manual address, not the true one.
* (Both addresses are listed in /proc/net/strip.)
* Also, ARP packets will be sent out giving the user-specified address as
* the source address, not the real address. This is dangerous, because
* it means you won't receive any replies -- the ARP replies will go to
* the specified address, which will be some other radio. The case where
* this is useful is when that other radio is also connected to the same
* machine. This allows you to connect a pair of radios to one machine,
* and to use one exclusively for inbound traffic, and the other
* exclusively for outbound traffic. Pretty neat, huh?
*
* Here's the full procedure to set this up:
*
* 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
* and st1 for incoming packets
*
* 2. "ifconfig" st0 (outbound radio) to have the hardware address
* which is the real hardware address of st1 (inbound radio).
* Now when it sends out packets, it will masquerade as st1, and
* replies will be sent to that radio, which is exactly what we want.
*
* 3. Set the route table entry ("route add default ..." or
* "route add -net ...", as appropriate) to send packets via the st0
* interface (outbound radio). Do not add any route which sends packets
* out via the st1 interface -- that radio is for inbound traffic only.
*
* 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
* This tells the STRIP driver to "shut down" that interface and not
* send any packets through it. In particular, it stops sending the
* periodic gratuitous ARP packets that a STRIP interface normally sends.
* Also, when packets arrive on that interface, it will search the
* interface list to see if there is another interface who's manual
* hardware address matches its own real address (i.e. st0 in this
* example) and if so it will transfer ownership of the skbuff to
* that interface, so that it looks to the kernel as if the packet
* arrived on that interface. This is necessary because when the
* kernel sends an ARP packet on st0, it expects to get a reply on
* st0, and if it sees the reply come from st1 then it will ignore
* it (to be accurate, it puts the entry in the ARP table, but
* labelled in such a way that st0 can't use it).
*
* Thanks to Petros Maniatis for coming up with the idea of splitting
* inbound and outbound traffic between two interfaces, which turned
* out to be really easy to implement, even if it is a bit of a hack.
*
* Having set a manual address on an interface, you can restore it
* to automatic operation (where the address is automatically kept
* consistent with the real address of the radio) by setting a manual
* address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
* This 'turns off' manual override mode for the device address.
*
* Note: The IEEE 802 headers reported in tcpdump will show the *real*
* radio addresses the packets were sent and received from, so that you
* can see what is really going on with packets, and which interfaces
* they are really going through.
*/
/************************************************************************/
/* Constants */
/*
* CommandString1 works on all radios
* Other CommandStrings are only used with firmware that provides structured responses.
*
* ats319=1 Enables Info message for node additions and deletions
* ats319=2 Enables Info message for a new best node
* ats319=4 Enables checksums
* ats319=8 Enables ACK messages
*/
static const int MaxCommandStringLength = 32;
static const int CompatibilityCommand = 1;
static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */
static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */
static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */
static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */
typedef struct {
const char *string;
long length;
} StringDescriptor;
static const StringDescriptor CommandString[] = {
{CommandString0, sizeof(CommandString0) - 1},
{CommandString1, sizeof(CommandString1) - 1},
{CommandString2, sizeof(CommandString2) - 1},
{CommandString3, sizeof(CommandString3) - 1},
{CommandString4, sizeof(CommandString4) - 1},
{CommandString5, sizeof(CommandString5) - 1}
};
#define GOT_ALL_RADIO_INFO(S) \
((S)->firmware_version.c[0] && \
(S)->battery_voltage.c[0] && \
memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
static const char hextable[16] = "0123456789ABCDEF";
static const MetricomAddress zero_address;
static const MetricomAddress broadcast_address =
{ {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
static const MetricomKey SIP0Key = { "SIP0" };
static const MetricomKey ARP0Key = { "ARP0" };
static const MetricomKey ATR_Key = { "ATR " };
static const MetricomKey ACK_Key = { "ACK_" };
static const MetricomKey INF_Key = { "INF_" };
static const MetricomKey ERR_Key = { "ERR_" };
static const long MaxARPInterval = 60 * HZ; /* One minute */
/*
* Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
* protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
* for STRIP encoding, that translates to a maximum payload MTU of 1155.
* Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
* long, including IP header, UDP header, and NFS header. Setting the STRIP
* MTU to 1152 allows us to send default sized NFS packets without fragmentation.
*/
static const unsigned short MAX_SEND_MTU = 1152;
static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */
static const unsigned short DEFAULT_STRIP_MTU = 1152;
static const int STRIP_MAGIC = 0x5303;
static const long LongTime = 0x7FFFFFFF;
/************************************************************************/
/* Global variables */
static LIST_HEAD(strip_list);
static DEFINE_SPINLOCK(strip_lock);
/************************************************************************/
/* Macros */
/* Returns TRUE if text T begins with prefix P */
#define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
/* Returns TRUE if text T of length L is equal to string S */
#define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
#define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
(X)>='a' && (X)<='f' ? (X)-'a'+10 : \
(X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
#define READHEX16(X) ((__u16)(READHEX(X)))
#define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
#define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
#define JIFFIE_TO_SEC(X) ((X) / HZ)
/************************************************************************/
/* Utility routines */
static int arp_query(unsigned char *haddr, u32 paddr,
struct net_device *dev)
{
struct neighbour *neighbor_entry;
int ret = 0;
neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
if (neighbor_entry != NULL) {
neighbor_entry->used = jiffies;
if (neighbor_entry->nud_state & NUD_VALID) {
memcpy(haddr, neighbor_entry->ha, dev->addr_len);
ret = 1;
}
neigh_release(neighbor_entry);
}
return ret;
}
static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr,
__u8 * end)
{
static const int MAX_DumpData = 80;
__u8 pkt_text[MAX_DumpData], *p = pkt_text;
*p++ = '\"';
while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) {
if (*ptr == '\\') {
*p++ = '\\';
*p++ = '\\';
} else {
if (*ptr >= 32 && *ptr <= 126) {
*p++ = *ptr;
} else {
sprintf(p, "\\%02X", *ptr);
p += 3;
}
}
ptr++;
}
if (ptr == end)
*p++ = '\"';
*p++ = 0;
printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text);
}
/************************************************************************/
/* Byte stuffing/unstuffing routines */
/* Stuffing scheme:
* 00 Unused (reserved character)
* 01-3F Run of 2-64 different characters
* 40-7F Run of 1-64 different characters plus a single zero at the end
* 80-BF Run of 1-64 of the same character
* C0-FF Run of 1-64 zeroes (ASCII 0)
*/
typedef enum {
Stuff_Diff = 0x00,
Stuff_DiffZero = 0x40,
Stuff_Same = 0x80,
Stuff_Zero = 0xC0,
Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */
Stuff_CodeMask = 0xC0,
Stuff_CountMask = 0x3F,
Stuff_MaxCount = 0x3F,
Stuff_Magic = 0x0D /* The value we are eliminating */
} StuffingCode;
/* StuffData encodes the data starting at "src" for "length" bytes.
* It writes it to the buffer pointed to by "dst" (which must be at least
* as long as 1 + 65/64 of the input length). The output may be up to 1.6%
* larger than the input for pathological input, but will usually be smaller.
* StuffData returns the new value of the dst pointer as its result.
* "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
* between calls, allowing an encoded packet to be incrementally built up
* from small parts. On the first call, the "__u8 *" pointed to should be
* initialized to NULL; between subsequent calls the calling routine should
* leave the value alone and simply pass it back unchanged so that the
* encoder can recover its current state.
*/
#define StuffData_FinishBlock(X) \
(*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst,
__u8 ** code_ptr_ptr)
{
__u8 *end = src + length;
__u8 *code_ptr = *code_ptr_ptr;
__u8 code = Stuff_NoCode, count = 0;
if (!length)
return (dst);
if (code_ptr) {
/*
* Recover state from last call, if applicable
*/
code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
}
while (src < end) {
switch (code) {
/* Stuff_NoCode: If no current code, select one */
case Stuff_NoCode:
/* Record where we're going to put this code */
code_ptr = dst++;
count = 0; /* Reset the count (zero means one instance) */
/* Tentatively start a new block */
if (*src == 0) {
code = Stuff_Zero;
src++;
} else {
code = Stuff_Same;
*dst++ = *src++ ^ Stuff_Magic;
}
/* Note: We optimistically assume run of same -- */
/* which will be fixed later in Stuff_Same */
/* if it turns out not to be true. */
break;
/* Stuff_Zero: We already have at least one zero encoded */
case Stuff_Zero:
/* If another zero, count it, else finish this code block */
if (*src == 0) {
count++;
src++;
} else {
StuffData_FinishBlock(Stuff_Zero + count);
}
break;
/* Stuff_Same: We already have at least one byte encoded */
case Stuff_Same:
/* If another one the same, count it */
if ((*src ^ Stuff_Magic) == code_ptr[1]) {
count++;
src++;
break;
}
/* else, this byte does not match this block. */
/* If we already have two or more bytes encoded, finish this code block */
if (count) {
StuffData_FinishBlock(Stuff_Same + count);
break;
}
/* else, we only have one so far, so switch to Stuff_Diff code */
code = Stuff_Diff;
/* and fall through to Stuff_Diff case below
* Note cunning cleverness here: case Stuff_Diff compares
* the current character with the previous two to see if it
* has a run of three the same. Won't this be an error if
* there aren't two previous characters stored to compare with?
* No. Because we know the current character is *not* the same
* as the previous one, the first test below will necessarily
* fail and the send half of the "if" won't be executed.
*/
/* Stuff_Diff: We have at least two *different* bytes encoded */
case Stuff_Diff:
/* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
if (*src == 0) {
StuffData_FinishBlock(Stuff_DiffZero +
count);
}
/* else, if we have three in a row, it is worth starting a Stuff_Same block */
else if ((*src ^ Stuff_Magic) == dst[-1]
&& dst[-1] == dst[-2]) {
/* Back off the last two characters we encoded */
code += count - 2;
/* Note: "Stuff_Diff + 0" is an illegal code */
if (code == Stuff_Diff + 0) {
code = Stuff_Same + 0;
}
StuffData_FinishBlock(code);
code_ptr = dst - 2;
/* dst[-1] already holds the correct value */
count = 2; /* 2 means three bytes encoded */
code = Stuff_Same;
}
/* else, another different byte, so add it to the block */
else {
*dst++ = *src ^ Stuff_Magic;
count++;
}
src++; /* Consume the byte */
break;
}
if (count == Stuff_MaxCount) {
StuffData_FinishBlock(code + count);
}
}
if (code == Stuff_NoCode) {
*code_ptr_ptr = NULL;
} else {
*code_ptr_ptr = code_ptr;
StuffData_FinishBlock(code + count);
}
return (dst);
}
/*
* UnStuffData decodes the data at "src", up to (but not including) "end".
* It writes the decoded data into the buffer pointed to by "dst", up to a
* maximum of "dst_length", and returns the new value of "src" so that a
* follow-on call can read more data, continuing from where the first left off.
*
* There are three types of results:
* 1. The source data runs out before extracting "dst_length" bytes:
* UnStuffData returns NULL to indicate failure.
* 2. The source data produces exactly "dst_length" bytes:
* UnStuffData returns new_src = end to indicate that all bytes were consumed.
* 3. "dst_length" bytes are extracted, with more remaining.
* UnStuffData returns new_src < end to indicate that there are more bytes
* to be read.
*
* Note: The decoding may be destructive, in that it may alter the source
* data in the process of decoding it (this is necessary to allow a follow-on
* call to resume correctly).
*/
static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst,
__u32 dst_length)
{
__u8 *dst_end = dst + dst_length;
/* Sanity check */
if (!src || !end || !dst || !dst_length)
return (NULL);
while (src < end && dst < dst_end) {
int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) {
case Stuff_Diff:
if (src + 1 + count >= end)
return (NULL);
do {
*dst++ = *++src ^ Stuff_Magic;
}
while (--count >= 0 && dst < dst_end);
if (count < 0)
src += 1;
else {
if (count == 0)
*src = Stuff_Same ^ Stuff_Magic;
else
*src =
(Stuff_Diff +
count) ^ Stuff_Magic;
}
break;
case Stuff_DiffZero:
if (src + 1 + count >= end)
return (NULL);
do {
*dst++ = *++src ^ Stuff_Magic;
}
while (--count >= 0 && dst < dst_end);
if (count < 0)
*src = Stuff_Zero ^ Stuff_Magic;
else
*src =
(Stuff_DiffZero + count) ^ Stuff_Magic;
break;
case Stuff_Same:
if (src + 1 >= end)
return (NULL);
do {
*dst++ = src[1] ^ Stuff_Magic;
}
while (--count >= 0 && dst < dst_end);
if (count < 0)
src += 2;
else
*src = (Stuff_Same + count) ^ Stuff_Magic;
break;
case Stuff_Zero:
do {
*dst++ = 0;
}
while (--count >= 0 && dst < dst_end);
if (count < 0)
src += 1;
else
*src = (Stuff_Zero + count) ^ Stuff_Magic;
break;
}
}
if (dst < dst_end)
return (NULL);
else
return (src);
}
/************************************************************************/
/* General routines for STRIP */
/*
* set_baud sets the baud rate to the rate defined by baudcode
*/
static void set_baud(struct tty_struct *tty, speed_t baudrate)
{
struct ktermios old_termios;
mutex_lock(&tty->termios_mutex);
old_termios =*(tty->termios);
tty_encode_baud_rate(tty, baudrate, baudrate);
tty->ops->set_termios(tty, &old_termios);
mutex_unlock(&tty->termios_mutex);
}
/*
* Convert a string to a Metricom Address.
*/
#define IS_RADIO_ADDRESS(p) ( \
isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
(p)[4] == '-' && \
isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
static int string_to_radio_address(MetricomAddress * addr, __u8 * p)
{
if (!IS_RADIO_ADDRESS(p))
return (1);
addr->c[0] = 0;
addr->c[1] = 0;
addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
return (0);
}
/*
* Convert a Metricom Address to a string.
*/
static __u8 *radio_address_to_string(const MetricomAddress * addr,
MetricomAddressString * p)
{
sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3],
addr->c[4], addr->c[5]);
return (p->c);
}
/*
* Note: Must make sure sx_size is big enough to receive a stuffed
* MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
* big enough to receive a large radio neighbour list (currently 4K).
*/
static int allocate_buffers(struct strip *strip_info, int mtu)
{
struct net_device *dev = strip_info->dev;
int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength;
__u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
__u8 *s = kmalloc(sx_size, GFP_ATOMIC);
__u8 *t = kmalloc(tx_size, GFP_ATOMIC);
if (r && s && t) {
strip_info->rx_buff = r;
strip_info->sx_buff = s;
strip_info->tx_buff = t;
strip_info->sx_size = sx_size;
strip_info->tx_size = tx_size;
strip_info->mtu = dev->mtu = mtu;
return (1);
}
kfree(r);
kfree(s);
kfree(t);
return (0);
}
/*
* MTU has been changed by the IP layer.
* We could be in
* an upcall from the tty driver, or in an ip packet queue.
*/
static int strip_change_mtu(struct net_device *dev, int new_mtu)
{
struct strip *strip_info = netdev_priv(dev);
int old_mtu = strip_info->mtu;
unsigned char *orbuff = strip_info->rx_buff;
unsigned char *osbuff = strip_info->sx_buff;
unsigned char *otbuff = strip_info->tx_buff;
if (new_mtu > MAX_SEND_MTU) {
printk(KERN_ERR
"%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
strip_info->dev->name, MAX_SEND_MTU);
return -EINVAL;
}
spin_lock_bh(&strip_lock);
if (!allocate_buffers(strip_info, new_mtu)) {
printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
strip_info->dev->name);
spin_unlock_bh(&strip_lock);
return -ENOMEM;
}
if (strip_info->sx_count) {
if (strip_info->sx_count <= strip_info->sx_size)
memcpy(strip_info->sx_buff, osbuff,
strip_info->sx_count);
else {
strip_info->discard = strip_info->sx_count;
strip_info->rx_over_errors++;
}
}
if (strip_info->tx_left) {
if (strip_info->tx_left <= strip_info->tx_size)
memcpy(strip_info->tx_buff, strip_info->tx_head,
strip_info->tx_left);
else {
strip_info->tx_left = 0;
strip_info->tx_dropped++;
}
}
strip_info->tx_head = strip_info->tx_buff;
spin_unlock_bh(&strip_lock);
printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
strip_info->dev->name, old_mtu, strip_info->mtu);
kfree(orbuff);
kfree(osbuff);
kfree(otbuff);
return 0;
}
static void strip_unlock(struct strip *strip_info)
{
/*
* Set the timer to go off in one second.
*/
strip_info->idle_timer.expires = jiffies + 1 * HZ;
add_timer(&strip_info->idle_timer);
netif_wake_queue(strip_info->dev);
}
/*
* If the time is in the near future, time_delta prints the number of
* seconds to go into the buffer and returns the address of the buffer.
* If the time is not in the near future, it returns the address of the
* string "Not scheduled" The buffer must be long enough to contain the
* ascii representation of the number plus 9 charactes for the " seconds"
* and the null character.
*/
#ifdef CONFIG_PROC_FS
static char *time_delta(char buffer[], long time)
{
time -= jiffies;
if (time > LongTime / 2)
return ("Not scheduled");
if (time < 0)
time = 0; /* Don't print negative times */
sprintf(buffer, "%ld seconds", time / HZ);
return (buffer);
}
/* get Nth element of the linked list */
static struct strip *strip_get_idx(loff_t pos)
{
struct strip *str;
int i = 0;
list_for_each_entry_rcu(str, &strip_list, list) {
if (pos == i)
return str;
++i;
}
return NULL;
}
static void *strip_seq_start(struct seq_file *seq, loff_t *pos)
{
rcu_read_lock();
return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN;
}
static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct list_head *l;
struct strip *s;
++*pos;
if (v == SEQ_START_TOKEN)
return strip_get_idx(1);
s = v;
l = &s->list;
list_for_each_continue_rcu(l, &strip_list) {
return list_entry(l, struct strip, list);
}
return NULL;
}
static void strip_seq_stop(struct seq_file *seq, void *v)
{
rcu_read_unlock();
}
static void strip_seq_neighbours(struct seq_file *seq,
const MetricomNodeTable * table,
const char *title)
{
/* We wrap this in a do/while loop, so if the table changes */
/* while we're reading it, we just go around and try again. */
struct timeval t;
do {
int i;
t = table->timestamp;
if (table->num_nodes)
seq_printf(seq, "\n %s\n", title);
for (i = 0; i < table->num_nodes; i++) {
MetricomNode node;
spin_lock_bh(&strip_lock);
node = table->node[i];
spin_unlock_bh(&strip_lock);
seq_printf(seq, " %s\n", node.c);
}
} while (table->timestamp.tv_sec != t.tv_sec
|| table->timestamp.tv_usec != t.tv_usec);
}
/*
* This function prints radio status information via the seq_file
* interface. The interface takes care of buffer size and over
* run issues.
*
* The buffer in seq_file is PAGESIZE (4K)
* so this routine should never print more or it will get truncated.
* With the maximum of 32 portables and 32 poletops
* reported, the routine outputs 3107 bytes into the buffer.
*/
static void strip_seq_status_info(struct seq_file *seq,
const struct strip *strip_info)
{
char temp[32];
MetricomAddressString addr_string;
/* First, we must copy all of our data to a safe place, */
/* in case a serial interrupt comes in and changes it. */
int tx_left = strip_info->tx_left;
unsigned long rx_average_pps = strip_info->rx_average_pps;
unsigned long tx_average_pps = strip_info->tx_average_pps;
unsigned long sx_average_pps = strip_info->sx_average_pps;
int working = strip_info->working;
int firmware_level = strip_info->firmware_level;
long watchdog_doprobe = strip_info->watchdog_doprobe;
long watchdog_doreset = strip_info->watchdog_doreset;
long gratuitous_arp = strip_info->gratuitous_arp;
long arp_interval = strip_info->arp_interval;
FirmwareVersion firmware_version = strip_info->firmware_version;
SerialNumber serial_number = strip_info->serial_number;
BatteryVoltage battery_voltage = strip_info->battery_voltage;
char *if_name = strip_info->dev->name;
MetricomAddress true_dev_addr = strip_info->true_dev_addr;
MetricomAddress dev_dev_addr =
*(MetricomAddress *) strip_info->dev->dev_addr;
int manual_dev_addr = strip_info->manual_dev_addr;
#ifdef EXT_COUNTERS
unsigned long rx_bytes = strip_info->rx_bytes;
unsigned long tx_bytes = strip_info->tx_bytes;
unsigned long rx_rbytes = strip_info->rx_rbytes;
unsigned long tx_rbytes = strip_info->tx_rbytes;
unsigned long rx_sbytes = strip_info->rx_sbytes;
unsigned long tx_sbytes = strip_info->tx_sbytes;
unsigned long rx_ebytes = strip_info->rx_ebytes;
unsigned long tx_ebytes = strip_info->tx_ebytes;
#endif
seq_printf(seq, "\nInterface name\t\t%s\n", if_name);
seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No");
radio_address_to_string(&true_dev_addr, &addr_string);
seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c);
if (manual_dev_addr) {
radio_address_to_string(&dev_dev_addr, &addr_string);
seq_printf(seq, " Device address:\t%s\n", addr_string.c);
}
seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" :
!firmware_level ? "Should be upgraded" :
firmware_version.c);
if (firmware_level >= ChecksummedMessages)
seq_printf(seq, " (Checksums Enabled)");
seq_printf(seq, "\n");
seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c);
seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c);
seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left);
seq_printf(seq, " Receive packet rate: %ld packets per second\n",
rx_average_pps / 8);
seq_printf(seq, " Transmit packet rate: %ld packets per second\n",
tx_average_pps / 8);
seq_printf(seq, " Sent packet rate: %ld packets per second\n",
sx_average_pps / 8);
seq_printf(seq, " Next watchdog probe:\t%s\n",
time_delta(temp, watchdog_doprobe));
seq_printf(seq, " Next watchdog reset:\t%s\n",
time_delta(temp, watchdog_doreset));
seq_printf(seq, " Next gratuitous ARP:\t");
if (!memcmp
(strip_info->dev->dev_addr, zero_address.c,
sizeof(zero_address)))
seq_printf(seq, "Disabled\n");
else {
seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp));
seq_printf(seq, " Next ARP interval:\t%ld seconds\n",
JIFFIE_TO_SEC(arp_interval));
}
if (working) {
#ifdef EXT_COUNTERS
seq_printf(seq, "\n");
seq_printf(seq,
" Total bytes: \trx:\t%lu\ttx:\t%lu\n",
rx_bytes, tx_bytes);
seq_printf(seq,
" thru radio: \trx:\t%lu\ttx:\t%lu\n",
rx_rbytes, tx_rbytes);
seq_printf(seq,
" thru serial port: \trx:\t%lu\ttx:\t%lu\n",
rx_sbytes, tx_sbytes);
seq_printf(seq,
" Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
rx_ebytes, tx_ebytes);
#endif
strip_seq_neighbours(seq, &strip_info->poletops,
"Poletops:");
strip_seq_neighbours(seq, &strip_info->portables,
"Portables:");
}
}
/*
* This function is exports status information from the STRIP driver through
* the /proc file system.
*/
static int strip_seq_show(struct seq_file *seq, void *v)
{
if (v == SEQ_START_TOKEN)
seq_printf(seq, "strip_version: %s\n", StripVersion);
else
strip_seq_status_info(seq, (const struct strip *)v);
return 0;
}
static struct seq_operations strip_seq_ops = {
.start = strip_seq_start,
.next = strip_seq_next,
.stop = strip_seq_stop,
.show = strip_seq_show,
};
static int strip_seq_open(struct inode *inode, struct file *file)
{
return seq_open(file, &strip_seq_ops);
}
static const struct file_operations strip_seq_fops = {
.owner = THIS_MODULE,
.open = strip_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif
/************************************************************************/
/* Sending routines */
static void ResetRadio(struct strip *strip_info)
{
struct tty_struct *tty = strip_info->tty;
static const char init[] = "ate0q1dt**starmode\r**";
StringDescriptor s = { init, sizeof(init) - 1 };
/*
* If the radio isn't working anymore,
* we should clear the old status information.
*/
if (strip_info->working) {
printk(KERN_INFO "%s: No response: Resetting radio.\n",
strip_info->dev->name);
strip_info->firmware_version.c[0] = '\0';
strip_info->serial_number.c[0] = '\0';
strip_info->battery_voltage.c[0] = '\0';
strip_info->portables.num_nodes = 0;
do_gettimeofday(&strip_info->portables.timestamp);
strip_info->poletops.num_nodes = 0;
do_gettimeofday(&strip_info->poletops.timestamp);
}
strip_info->pps_timer = jiffies;
strip_info->rx_pps_count = 0;
strip_info->tx_pps_count = 0;
strip_info->sx_pps_count = 0;
strip_info->rx_average_pps = 0;
strip_info->tx_average_pps = 0;
strip_info->sx_average_pps = 0;
/* Mark radio address as unknown */
*(MetricomAddress *) & strip_info->true_dev_addr = zero_address;
if (!strip_info->manual_dev_addr)
*(MetricomAddress *) strip_info->dev->dev_addr =
zero_address;
strip_info->working = FALSE;
strip_info->firmware_level = NoStructure;
strip_info->next_command = CompatibilityCommand;
strip_info->watchdog_doprobe = jiffies + 10 * HZ;
strip_info->watchdog_doreset = jiffies + 1 * HZ;
/* If the user has selected a baud rate above 38.4 see what magic we have to do */
if (strip_info->user_baud > 38400) {
/*
* Subtle stuff: Pay attention :-)
* If the serial port is currently at the user's selected (>38.4) rate,
* then we temporarily switch to 19.2 and issue the ATS304 command
* to tell the radio to switch to the user's selected rate.
* If the serial port is not currently at that rate, that means we just
* issued the ATS304 command last time through, so this time we restore
* the user's selected rate and issue the normal starmode reset string.
*/
if (strip_info->user_baud == tty_get_baud_rate(tty)) {
static const char b0[] = "ate0q1s304=57600\r";
static const char b1[] = "ate0q1s304=115200\r";
static const StringDescriptor baudstring[2] =
{ {b0, sizeof(b0) - 1}
, {b1, sizeof(b1) - 1}
};
set_baud(tty, 19200);
if (strip_info->user_baud == 57600)
s = baudstring[0];
else if (strip_info->user_baud == 115200)
s = baudstring[1];
else
s = baudstring[1]; /* For now */
} else
set_baud(tty, strip_info->user_baud);
}
tty->ops->write(tty, s.string, s.length);
#ifdef EXT_COUNTERS
strip_info->tx_ebytes += s.length;
#endif
}
/*
* Called by the driver when there's room for more data. If we have
* more packets to send, we send them here.
*/
static void strip_write_some_more(struct tty_struct *tty)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
/* First make sure we're connected. */
if (!strip_info || strip_info->magic != STRIP_MAGIC ||
!netif_running(strip_info->dev))
return;
if (strip_info->tx_left > 0) {
int num_written =
tty->ops->write(tty, strip_info->tx_head,
strip_info->tx_left);
strip_info->tx_left -= num_written;
strip_info->tx_head += num_written;
#ifdef EXT_COUNTERS
strip_info->tx_sbytes += num_written;
#endif
} else { /* Else start transmission of another packet */
tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
strip_unlock(strip_info);
}
}
static __u8 *add_checksum(__u8 * buffer, __u8 * end)
{
__u16 sum = 0;
__u8 *p = buffer;
while (p < end)
sum += *p++;
end[3] = hextable[sum & 0xF];
sum >>= 4;
end[2] = hextable[sum & 0xF];
sum >>= 4;
end[1] = hextable[sum & 0xF];
sum >>= 4;
end[0] = hextable[sum & 0xF];
return (end + 4);
}
static unsigned char *strip_make_packet(unsigned char *buffer,
struct strip *strip_info,
struct sk_buff *skb)
{
__u8 *ptr = buffer;
__u8 *stuffstate = NULL;
STRIP_Header *header = (STRIP_Header *) skb->data;
MetricomAddress haddr = header->dst_addr;
int len = skb->len - sizeof(STRIP_Header);
MetricomKey key;
/*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
if (header->protocol == htons(ETH_P_IP))
key = SIP0Key;
else if (header->protocol == htons(ETH_P_ARP))
key = ARP0Key;
else {
printk(KERN_ERR
"%s: strip_make_packet: Unknown packet type 0x%04X\n",
strip_info->dev->name, ntohs(header->protocol));
return (NULL);
}
if (len > strip_info->mtu) {
printk(KERN_ERR
"%s: Dropping oversized transmit packet: %d bytes\n",
strip_info->dev->name, len);
return (NULL);
}
/*
* If we're sending to ourselves, discard the packet.
* (Metricom radios choke if they try to send a packet to their own address.)
*/
if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) {
printk(KERN_ERR "%s: Dropping packet addressed to self\n",
strip_info->dev->name);
return (NULL);
}
/*
* If this is a broadcast packet, send it to our designated Metricom
* 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
*/
if (haddr.c[0] == 0xFF) {
__be32 brd = 0;
struct in_device *in_dev;
rcu_read_lock();
in_dev = __in_dev_get_rcu(strip_info->dev);
if (in_dev == NULL) {
rcu_read_unlock();
return NULL;
}
if (in_dev->ifa_list)
brd = in_dev->ifa_list->ifa_broadcast;
rcu_read_unlock();
/* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
if (!arp_query(haddr.c, brd, strip_info->dev)) {
printk(KERN_ERR
"%s: Unable to send packet (no broadcast hub configured)\n",
strip_info->dev->name);
return (NULL);
}
/*
* If we are the broadcast hub, don't bother sending to ourselves.
* (Metricom radios choke if they try to send a packet to their own address.)
*/
if (!memcmp
(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
return (NULL);
}
*ptr++ = 0x0D;
*ptr++ = '*';
*ptr++ = hextable[haddr.c[2] >> 4];
*ptr++ = hextable[haddr.c[2] & 0xF];
*ptr++ = hextable[haddr.c[3] >> 4];
*ptr++ = hextable[haddr.c[3] & 0xF];
*ptr++ = '-';
*ptr++ = hextable[haddr.c[4] >> 4];
*ptr++ = hextable[haddr.c[4] & 0xF];
*ptr++ = hextable[haddr.c[5] >> 4];
*ptr++ = hextable[haddr.c[5] & 0xF];
*ptr++ = '*';
*ptr++ = key.c[0];
*ptr++ = key.c[1];
*ptr++ = key.c[2];
*ptr++ = key.c[3];
ptr =
StuffData(skb->data + sizeof(STRIP_Header), len, ptr,
&stuffstate);
if (strip_info->firmware_level >= ChecksummedMessages)
ptr = add_checksum(buffer + 1, ptr);
*ptr++ = 0x0D;
return (ptr);
}
static void strip_send(struct strip *strip_info, struct sk_buff *skb)
{
MetricomAddress haddr;
unsigned char *ptr = strip_info->tx_buff;
int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0;
int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0
&& !doreset;
__be32 addr, brd;
/*
* 1. If we have a packet, encapsulate it and put it in the buffer
*/
if (skb) {
char *newptr = strip_make_packet(ptr, strip_info, skb);
strip_info->tx_pps_count++;
if (!newptr)
strip_info->tx_dropped++;
else {
ptr = newptr;
strip_info->sx_pps_count++;
strip_info->tx_packets++; /* Count another successful packet */
#ifdef EXT_COUNTERS
strip_info->tx_bytes += skb->len;
strip_info->tx_rbytes += ptr - strip_info->tx_buff;
#endif
/*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
/*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
}
}
/*
* 2. If it is time for another tickle, tack it on, after the packet
*/
if (doprobe) {
StringDescriptor ts = CommandString[strip_info->next_command];
#if TICKLE_TIMERS
{
struct timeval tv;
do_gettimeofday(&tv);
printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n",
strip_info->next_command, tv.tv_sec % 100,
tv.tv_usec);
}
#endif
if (ptr == strip_info->tx_buff)
*ptr++ = 0x0D;
*ptr++ = '*'; /* First send "**" to provoke an error message */
*ptr++ = '*';
/* Then add the command */
memcpy(ptr, ts.string, ts.length);
/* Add a checksum ? */
if (strip_info->firmware_level < ChecksummedMessages)
ptr += ts.length;
else
ptr = add_checksum(ptr, ptr + ts.length);
*ptr++ = 0x0D; /* Terminate the command with a <CR> */
/* Cycle to next periodic command? */
if (strip_info->firmware_level >= StructuredMessages)
if (++strip_info->next_command >=
ARRAY_SIZE(CommandString))
strip_info->next_command = 0;
#ifdef EXT_COUNTERS
strip_info->tx_ebytes += ts.length;
#endif
strip_info->watchdog_doprobe = jiffies + 10 * HZ;
strip_info->watchdog_doreset = jiffies + 1 * HZ;
/*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
}
/*
* 3. Set up the strip_info ready to send the data (if any).
*/
strip_info->tx_head = strip_info->tx_buff;
strip_info->tx_left = ptr - strip_info->tx_buff;
strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP);
/*
* 4. Debugging check to make sure we're not overflowing the buffer.
*/
if (strip_info->tx_size - strip_info->tx_left < 20)
printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n",
strip_info->dev->name, strip_info->tx_left,
strip_info->tx_size - strip_info->tx_left);
/*
* 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
* the buffer, strip_write_some_more will send it after the reset has finished
*/
if (doreset) {
ResetRadio(strip_info);
return;
}
if (1) {
struct in_device *in_dev;
brd = addr = 0;
rcu_read_lock();
in_dev = __in_dev_get_rcu(strip_info->dev);
if (in_dev) {
if (in_dev->ifa_list) {
brd = in_dev->ifa_list->ifa_broadcast;
addr = in_dev->ifa_list->ifa_local;
}
}
rcu_read_unlock();
}
/*
* 6. If it is time for a periodic ARP, queue one up to be sent.
* We only do this if:
* 1. The radio is working
* 2. It's time to send another periodic ARP
* 3. We really know what our address is (and it is not manually set to zero)
* 4. We have a designated broadcast address configured
* If we queue up an ARP packet when we don't have a designated broadcast
* address configured, then the packet will just have to be discarded in
* strip_make_packet. This is not fatal, but it causes misleading information
* to be displayed in tcpdump. tcpdump will report that periodic APRs are
* being sent, when in fact they are not, because they are all being dropped
* in the strip_make_packet routine.
*/
if (strip_info->working
&& (long) jiffies - strip_info->gratuitous_arp >= 0
&& memcmp(strip_info->dev->dev_addr, zero_address.c,
sizeof(zero_address))
&& arp_query(haddr.c, brd, strip_info->dev)) {
/*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
strip_info->dev->name, strip_info->arp_interval / HZ); */
strip_info->gratuitous_arp =
jiffies + strip_info->arp_interval;
strip_info->arp_interval *= 2;
if (strip_info->arp_interval > MaxARPInterval)
strip_info->arp_interval = MaxARPInterval;
if (addr)
arp_send(ARPOP_REPLY, ETH_P_ARP, addr, /* Target address of ARP packet is our address */
strip_info->dev, /* Device to send packet on */
addr, /* Source IP address this ARP packet comes from */
NULL, /* Destination HW address is NULL (broadcast it) */
strip_info->dev->dev_addr, /* Source HW address is our HW address */
strip_info->dev->dev_addr); /* Target HW address is our HW address (redundant) */
}
/*
* 7. All ready. Start the transmission
*/
strip_write_some_more(strip_info->tty);
}
/* Encapsulate a datagram and kick it into a TTY queue. */
static int strip_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct strip *strip_info = netdev_priv(dev);
if (!netif_running(dev)) {
printk(KERN_ERR "%s: xmit call when iface is down\n",
dev->name);
return (1);
}
netif_stop_queue(dev);
del_timer(&strip_info->idle_timer);
if (time_after(jiffies, strip_info->pps_timer + HZ)) {
unsigned long t = jiffies - strip_info->pps_timer;
unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t / 2) / t;
unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t / 2) / t;
unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t / 2) / t;
strip_info->pps_timer = jiffies;
strip_info->rx_pps_count = 0;
strip_info->tx_pps_count = 0;
strip_info->sx_pps_count = 0;
strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
if (rx_pps_count / 8 >= 10)
printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
strip_info->dev->name, rx_pps_count / 8);
if (tx_pps_count / 8 >= 10)
printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n",
strip_info->dev->name, tx_pps_count / 8);
if (sx_pps_count / 8 >= 10)
printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n",
strip_info->dev->name, sx_pps_count / 8);
}
spin_lock_bh(&strip_lock);
strip_send(strip_info, skb);
spin_unlock_bh(&strip_lock);
if (skb)
dev_kfree_skb(skb);
return 0;
}
/*
* IdleTask periodically calls strip_xmit, so even when we have no IP packets
* to send for an extended period of time, the watchdog processing still gets
* done to ensure that the radio stays in Starmode
*/
static void strip_IdleTask(unsigned long parameter)
{
strip_xmit(NULL, (struct net_device *) parameter);
}
/*
* Create the MAC header for an arbitrary protocol layer
*
* saddr!=NULL means use this specific address (n/a for Metricom)
* saddr==NULL means use default device source address
* daddr!=NULL means use this destination address
* daddr==NULL means leave destination address alone
* (e.g. unresolved arp -- kernel will call
* rebuild_header later to fill in the address)
*/
static int strip_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned len)
{
struct strip *strip_info = netdev_priv(dev);
STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header));
/*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
header->src_addr = strip_info->true_dev_addr;
header->protocol = htons(type);
/*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
if (!daddr)
return (-dev->hard_header_len);
header->dst_addr = *(MetricomAddress *) daddr;
return (dev->hard_header_len);
}
/*
* Rebuild the MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
* I think this should return zero if packet is ready to send,
* or non-zero if it needs more time to do an address lookup
*/
static int strip_rebuild_header(struct sk_buff *skb)
{
#ifdef CONFIG_INET
STRIP_Header *header = (STRIP_Header *) skb->data;
/* Arp find returns zero if if knows the address, */
/* or if it doesn't know the address it sends an ARP packet and returns non-zero */
return arp_find(header->dst_addr.c, skb) ? 1 : 0;
#else
return 0;
#endif
}
/************************************************************************/
/* Receiving routines */
/*
* This function parses the response to the ATS300? command,
* extracting the radio version and serial number.
*/
static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end)
{
__u8 *p, *value_begin, *value_end;
int len;
/* Determine the beginning of the second line of the payload */
p = ptr;
while (p < end && *p != 10)
p++;
if (p >= end)
return;
p++;
value_begin = p;
/* Determine the end of line */
while (p < end && *p != 10)
p++;
if (p >= end)
return;
value_end = p;
p++;
len = value_end - value_begin;
len = min_t(int, len, sizeof(FirmwareVersion) - 1);
if (strip_info->firmware_version.c[0] == 0)
printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
strip_info->dev->name, len, value_begin);
sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
/* Look for the first colon */
while (p < end && *p != ':')
p++;
if (p >= end)
return;
/* Skip over the space */
p += 2;
len = sizeof(SerialNumber) - 1;
if (p + len <= end) {
sprintf(strip_info->serial_number.c, "%.*s", len, p);
} else {
printk(KERN_DEBUG
"STRIP: radio serial number shorter (%zd) than expected (%d)\n",
end - p, len);
}
}
/*
* This function parses the response to the ATS325? command,
* extracting the radio battery voltage.
*/
static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end)
{
int len;
len = sizeof(BatteryVoltage) - 1;
if (ptr + len <= end) {
sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
} else {
printk(KERN_DEBUG
"STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
end - ptr, len);
}
}
/*
* This function parses the responses to the AT~LA and ATS311 commands,
* which list the radio's neighbours.
*/
static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end)
{
table->num_nodes = 0;
while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) {
MetricomNode *node = &table->node[table->num_nodes++];
char *dst = node->c, *limit = dst + sizeof(*node) - 1;
while (ptr < end && *ptr <= 32)
ptr++;
while (ptr < end && dst < limit && *ptr != 10)
*dst++ = *ptr++;
*dst++ = 0;
while (ptr < end && ptr[-1] != 10)
ptr++;
}
do_gettimeofday(&table->timestamp);
}
static int get_radio_address(struct strip *strip_info, __u8 * p)
{
MetricomAddress addr;
if (string_to_radio_address(&addr, p))
return (1);
/* See if our radio address has changed */
if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) {
MetricomAddressString addr_string;
radio_address_to_string(&addr, &addr_string);
printk(KERN_INFO "%s: Radio address = %s\n",
strip_info->dev->name, addr_string.c);
strip_info->true_dev_addr = addr;
if (!strip_info->manual_dev_addr)
*(MetricomAddress *) strip_info->dev->dev_addr =
addr;
/* Give the radio a few seconds to get its head straight, then send an arp */
strip_info->gratuitous_arp = jiffies + 15 * HZ;
strip_info->arp_interval = 1 * HZ;
}
return (0);
}
static int verify_checksum(struct strip *strip_info)
{
__u8 *p = strip_info->sx_buff;
__u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
u_short sum =
(READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
(READHEX16(end[2]) << 4) | (READHEX16(end[3]));
while (p < end)
sum -= *p++;
if (sum == 0 && strip_info->firmware_level == StructuredMessages) {
strip_info->firmware_level = ChecksummedMessages;
printk(KERN_INFO "%s: Radio provides message checksums\n",
strip_info->dev->name);
}
return (sum == 0);
}
static void RecvErr(char *msg, struct strip *strip_info)
{
__u8 *ptr = strip_info->sx_buff;
__u8 *end = strip_info->sx_buff + strip_info->sx_count;
DumpData(msg, strip_info, ptr, end);
strip_info->rx_errors++;
}
static void RecvErr_Message(struct strip *strip_info, __u8 * sendername,
const __u8 * msg, u_long len)
{
if (has_prefix(msg, len, "001")) { /* Not in StarMode! */
RecvErr("Error Msg:", strip_info);
printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
strip_info->dev->name, sendername);
}
else if (has_prefix(msg, len, "002")) { /* Remap handle */
/* We ignore "Remap handle" messages for now */
}
else if (has_prefix(msg, len, "003")) { /* Can't resolve name */
RecvErr("Error Msg:", strip_info);
printk(KERN_INFO "%s: Destination radio name is unknown\n",
strip_info->dev->name);
}
else if (has_prefix(msg, len, "004")) { /* Name too small or missing */
strip_info->watchdog_doreset = jiffies + LongTime;
#if TICKLE_TIMERS
{
struct timeval tv;
do_gettimeofday(&tv);
printk(KERN_INFO
"**** Got ERR_004 response at %02d.%06d\n",
tv.tv_sec % 100, tv.tv_usec);
}
#endif
if (!strip_info->working) {
strip_info->working = TRUE;
printk(KERN_INFO "%s: Radio now in starmode\n",
strip_info->dev->name);
/*
* If the radio has just entered a working state, we should do our first
* probe ASAP, so that we find out our radio address etc. without delay.
*/
strip_info->watchdog_doprobe = jiffies;
}
if (strip_info->firmware_level == NoStructure && sendername) {
strip_info->firmware_level = StructuredMessages;
strip_info->next_command = 0; /* Try to enable checksums ASAP */
printk(KERN_INFO
"%s: Radio provides structured messages\n",
strip_info->dev->name);
}
if (strip_info->firmware_level >= StructuredMessages) {
/*
* If this message has a valid checksum on the end, then the call to verify_checksum
* will elevate the firmware_level to ChecksummedMessages for us. (The actual return
* code from verify_checksum is ignored here.)
*/
verify_checksum(strip_info);
/*
* If the radio has structured messages but we don't yet have all our information about it,
* we should do probes without delay, until we have gathered all the information
*/
if (!GOT_ALL_RADIO_INFO(strip_info))
strip_info->watchdog_doprobe = jiffies;
}
}
else if (has_prefix(msg, len, "005")) /* Bad count specification */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "006")) /* Header too big */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "007")) { /* Body too big */
RecvErr("Error Msg:", strip_info);
printk(KERN_ERR
"%s: Error! Packet size too big for radio.\n",
strip_info->dev->name);
}
else if (has_prefix(msg, len, "008")) { /* Bad character in name */
RecvErr("Error Msg:", strip_info);
printk(KERN_ERR
"%s: Radio name contains illegal character\n",
strip_info->dev->name);
}
else if (has_prefix(msg, len, "009")) /* No count or line terminator */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "010")) /* Invalid checksum */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "011")) /* Checksum didn't match */
RecvErr("Error Msg:", strip_info);
else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */
RecvErr("Error Msg:", strip_info);
else
RecvErr("Error Msg:", strip_info);
}
static void process_AT_response(struct strip *strip_info, __u8 * ptr,
__u8 * end)
{
u_long len;
__u8 *p = ptr;
while (p < end && p[-1] != 10)
p++; /* Skip past first newline character */
/* Now ptr points to the AT command, and p points to the text of the response. */
len = p - ptr;
#if TICKLE_TIMERS
{
struct timeval tv;
do_gettimeofday(&tv);
printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n",
ptr, tv.tv_sec % 100, tv.tv_usec);
}
#endif
if (has_prefix(ptr, len, "ATS300?"))
get_radio_version(strip_info, p, end);
else if (has_prefix(ptr, len, "ATS305?"))
get_radio_address(strip_info, p);
else if (has_prefix(ptr, len, "ATS311?"))
get_radio_neighbours(&strip_info->poletops, p, end);
else if (has_prefix(ptr, len, "ATS319=7"))
verify_checksum(strip_info);
else if (has_prefix(ptr, len, "ATS325?"))
get_radio_voltage(strip_info, p, end);
else if (has_prefix(ptr, len, "AT~LA"))
get_radio_neighbours(&strip_info->portables, p, end);
else
RecvErr("Unknown AT Response:", strip_info);
}
static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end)
{
/* Currently we don't do anything with ACKs from the radio */
}
static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end)
{
if (ptr + 16 > end)
RecvErr("Bad Info Msg:", strip_info);
}
static struct net_device *get_strip_dev(struct strip *strip_info)
{
/* If our hardware address is *manually set* to zero, and we know our */
/* real radio hardware address, try to find another strip device that has been */
/* manually set to that address that we can 'transfer ownership' of this packet to */
if (strip_info->manual_dev_addr &&
!memcmp(strip_info->dev->dev_addr, zero_address.c,
sizeof(zero_address))
&& memcmp(&strip_info->true_dev_addr, zero_address.c,
sizeof(zero_address))) {
struct net_device *dev;
read_lock_bh(&dev_base_lock);
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
for_each_netdev(&init_net, dev) {
if (dev->type == strip_info->dev->type &&
!memcmp(dev->dev_addr,
&strip_info->true_dev_addr,
sizeof(MetricomAddress))) {
printk(KERN_INFO
"%s: Transferred packet ownership to %s.\n",
strip_info->dev->name, dev->name);
read_unlock_bh(&dev_base_lock);
return (dev);
}
}
read_unlock_bh(&dev_base_lock);
}
return (strip_info->dev);
}
/*
* Send one completely decapsulated datagram to the next layer.
*/
static void deliver_packet(struct strip *strip_info, STRIP_Header * header,
__u16 packetlen)
{
struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
if (!skb) {
printk(KERN_ERR "%s: memory squeeze, dropping packet.\n",
strip_info->dev->name);
strip_info->rx_dropped++;
} else {
memcpy(skb_put(skb, sizeof(STRIP_Header)), header,
sizeof(STRIP_Header));
memcpy(skb_put(skb, packetlen), strip_info->rx_buff,
packetlen);
skb->dev = get_strip_dev(strip_info);
skb->protocol = header->protocol;
skb_reset_mac_header(skb);
/* Having put a fake header on the front of the sk_buff for the */
/* benefit of tools like tcpdump, skb_pull now 'consumes' that */
/* fake header before we hand the packet up to the next layer. */
skb_pull(skb, sizeof(STRIP_Header));
/* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
strip_info->rx_packets++;
strip_info->rx_pps_count++;
#ifdef EXT_COUNTERS
strip_info->rx_bytes += packetlen;
#endif
skb->dev->last_rx = jiffies;
netif_rx(skb);
}
}
static void process_IP_packet(struct strip *strip_info,
STRIP_Header * header, __u8 * ptr,
__u8 * end)
{
__u16 packetlen;
/* Decode start of the IP packet header */
ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
if (!ptr) {
RecvErr("IP Packet too short", strip_info);
return;
}
packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
if (packetlen > MAX_RECV_MTU) {
printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
strip_info->dev->name, packetlen);
strip_info->rx_dropped++;
return;
}
/*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
/* Decode remainder of the IP packet */
ptr =
UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4);
if (!ptr) {
RecvErr("IP Packet too short", strip_info);
return;
}
if (ptr < end) {
RecvErr("IP Packet too long", strip_info);
return;
}
header->protocol = htons(ETH_P_IP);
deliver_packet(strip_info, header, packetlen);
}
static void process_ARP_packet(struct strip *strip_info,
STRIP_Header * header, __u8 * ptr,
__u8 * end)
{
__u16 packetlen;
struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff;
/* Decode start of the ARP packet */
ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
if (!ptr) {
RecvErr("ARP Packet too short", strip_info);
return;
}
packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
if (packetlen > MAX_RECV_MTU) {
printk(KERN_INFO
"%s: Dropping oversized received ARP packet: %d bytes\n",
strip_info->dev->name, packetlen);
strip_info->rx_dropped++;
return;
}
/*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
strip_info->dev->name, packetlen,
ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
/* Decode remainder of the ARP packet */
ptr =
UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8);
if (!ptr) {
RecvErr("ARP Packet too short", strip_info);
return;
}
if (ptr < end) {
RecvErr("ARP Packet too long", strip_info);
return;
}
header->protocol = htons(ETH_P_ARP);
deliver_packet(strip_info, header, packetlen);
}
/*
* process_text_message processes a <CR>-terminated block of data received
* from the radio that doesn't begin with a '*' character. All normal
* Starmode communication messages with the radio begin with a '*',
* so any text that does not indicates a serial port error, a radio that
* is in Hayes command mode instead of Starmode, or a radio with really
* old firmware that doesn't frame its Starmode responses properly.
*/
static void process_text_message(struct strip *strip_info)
{
__u8 *msg = strip_info->sx_buff;
int len = strip_info->sx_count;
/* Check for anything that looks like it might be our radio name */
/* (This is here for backwards compatibility with old firmware) */
if (len == 9 && get_radio_address(strip_info, msg) == 0)
return;
if (text_equal(msg, len, "OK"))
return; /* Ignore 'OK' responses from prior commands */
if (text_equal(msg, len, "ERROR"))
return; /* Ignore 'ERROR' messages */
if (has_prefix(msg, len, "ate0q1"))
return; /* Ignore character echo back from the radio */
/* Catch other error messages */
/* (This is here for backwards compatibility with old firmware) */
if (has_prefix(msg, len, "ERR_")) {
RecvErr_Message(strip_info, NULL, &msg[4], len - 4);
return;
}
RecvErr("No initial *", strip_info);
}
/*
* process_message processes a <CR>-terminated block of data received
* from the radio. If the radio is not in Starmode or has old firmware,
* it may be a line of text in response to an AT command. Ideally, with
* a current radio that's properly in Starmode, all data received should
* be properly framed and checksummed radio message blocks, containing
* either a starmode packet, or a other communication from the radio
* firmware, like "INF_" Info messages and &COMMAND responses.
*/
static void process_message(struct strip *strip_info)
{
STRIP_Header header = { zero_address, zero_address, 0 };
__u8 *ptr = strip_info->sx_buff;
__u8 *end = strip_info->sx_buff + strip_info->sx_count;
__u8 sendername[32], *sptr = sendername;
MetricomKey key;
/*HexDump("Receiving", strip_info, ptr, end); */
/* Check for start of address marker, and then skip over it */
if (*ptr == '*')
ptr++;
else {
process_text_message(strip_info);
return;
}
/* Copy out the return address */
while (ptr < end && *ptr != '*'
&& sptr < ARRAY_END(sendername) - 1)
*sptr++ = *ptr++;
*sptr = 0; /* Null terminate the sender name */
/* Check for end of address marker, and skip over it */
if (ptr >= end || *ptr != '*') {
RecvErr("No second *", strip_info);
return;
}
ptr++; /* Skip the second '*' */
/* If the sender name is "&COMMAND", ignore this 'packet' */
/* (This is here for backwards compatibility with old firmware) */
if (!strcmp(sendername, "&COMMAND")) {
strip_info->firmware_level = NoStructure;
strip_info->next_command = CompatibilityCommand;
return;
}
if (ptr + 4 > end) {
RecvErr("No proto key", strip_info);
return;
}
/* Get the protocol key out of the buffer */
key.c[0] = *ptr++;
key.c[1] = *ptr++;
key.c[2] = *ptr++;
key.c[3] = *ptr++;
/* If we're using checksums, verify the checksum at the end of the packet */
if (strip_info->firmware_level >= ChecksummedMessages) {
end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */
if (ptr > end) {
RecvErr("Missing Checksum", strip_info);
return;
}
if (!verify_checksum(strip_info)) {
RecvErr("Bad Checksum", strip_info);
return;
}
}
/*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
/*
* Fill in (pseudo) source and destination addresses in the packet.
* We assume that the destination address was our address (the radio does not
* tell us this). If the radio supplies a source address, then we use it.
*/
header.dst_addr = strip_info->true_dev_addr;
string_to_radio_address(&header.src_addr, sendername);
#ifdef EXT_COUNTERS
if (key.l == SIP0Key.l) {
strip_info->rx_rbytes += (end - ptr);
process_IP_packet(strip_info, &header, ptr, end);
} else if (key.l == ARP0Key.l) {
strip_info->rx_rbytes += (end - ptr);
process_ARP_packet(strip_info, &header, ptr, end);
} else if (key.l == ATR_Key.l) {
strip_info->rx_ebytes += (end - ptr);
process_AT_response(strip_info, ptr, end);
} else if (key.l == ACK_Key.l) {
strip_info->rx_ebytes += (end - ptr);
process_ACK(strip_info, ptr, end);
} else if (key.l == INF_Key.l) {
strip_info->rx_ebytes += (end - ptr);
process_Info(strip_info, ptr, end);
} else if (key.l == ERR_Key.l) {
strip_info->rx_ebytes += (end - ptr);
RecvErr_Message(strip_info, sendername, ptr, end - ptr);
} else
RecvErr("Unrecognized protocol key", strip_info);
#else
if (key.l == SIP0Key.l)
process_IP_packet(strip_info, &header, ptr, end);
else if (key.l == ARP0Key.l)
process_ARP_packet(strip_info, &header, ptr, end);
else if (key.l == ATR_Key.l)
process_AT_response(strip_info, ptr, end);
else if (key.l == ACK_Key.l)
process_ACK(strip_info, ptr, end);
else if (key.l == INF_Key.l)
process_Info(strip_info, ptr, end);
else if (key.l == ERR_Key.l)
RecvErr_Message(strip_info, sendername, ptr, end - ptr);
else
RecvErr("Unrecognized protocol key", strip_info);
#endif
}
#define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
(X) == TTY_FRAME ? "Framing Error" : \
(X) == TTY_PARITY ? "Parity Error" : \
(X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
/*
* Handle the 'receiver data ready' interrupt.
* This function is called by the 'tty_io' module in the kernel when
* a block of STRIP data has been received, which can now be decapsulated
* and sent on to some IP layer for further processing.
*/
static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp,
char *fp, int count)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
const unsigned char *end = cp + count;
if (!strip_info || strip_info->magic != STRIP_MAGIC
|| !netif_running(strip_info->dev))
return;
spin_lock_bh(&strip_lock);
#if 0
{
struct timeval tv;
do_gettimeofday(&tv);
printk(KERN_INFO
"**** strip_receive_buf: %3d bytes at %02d.%06d\n",
count, tv.tv_sec % 100, tv.tv_usec);
}
#endif
#ifdef EXT_COUNTERS
strip_info->rx_sbytes += count;
#endif
/* Read the characters out of the buffer */
while (cp < end) {
if (fp && *fp)
printk(KERN_INFO "%s: %s on serial port\n",
strip_info->dev->name, TTYERROR(*fp));
if (fp && *fp++ && !strip_info->discard) { /* If there's a serial error, record it */
/* If we have some characters in the buffer, discard them */
strip_info->discard = strip_info->sx_count;
strip_info->rx_errors++;
}
/* Leading control characters (CR, NL, Tab, etc.) are ignored */
if (strip_info->sx_count > 0 || *cp >= ' ') {
if (*cp == 0x0D) { /* If end of packet, decide what to do with it */
if (strip_info->sx_count > 3000)
printk(KERN_INFO
"%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
strip_info->dev->name,
strip_info->sx_count,
end - cp - 1,
strip_info->
discard ? " (discarded)" :
"");
if (strip_info->sx_count >
strip_info->sx_size) {
strip_info->rx_over_errors++;
printk(KERN_INFO
"%s: sx_buff overflow (%d bytes total)\n",
strip_info->dev->name,
strip_info->sx_count);
} else if (strip_info->discard)
printk(KERN_INFO
"%s: Discarding bad packet (%d/%d)\n",
strip_info->dev->name,
strip_info->discard,
strip_info->sx_count);
else
process_message(strip_info);
strip_info->discard = 0;
strip_info->sx_count = 0;
} else {
/* Make sure we have space in the buffer */
if (strip_info->sx_count <
strip_info->sx_size)
strip_info->sx_buff[strip_info->
sx_count] =
*cp;
strip_info->sx_count++;
}
}
cp++;
}
spin_unlock_bh(&strip_lock);
}
/************************************************************************/
/* General control routines */
static int set_mac_address(struct strip *strip_info,
MetricomAddress * addr)
{
/*
* We're using a manually specified address if the address is set
* to anything other than all ones. Setting the address to all ones
* disables manual mode and goes back to automatic address determination
* (tracking the true address that the radio has).
*/
strip_info->manual_dev_addr =
memcmp(addr->c, broadcast_address.c,
sizeof(broadcast_address));
if (strip_info->manual_dev_addr)
*(MetricomAddress *) strip_info->dev->dev_addr = *addr;
else
*(MetricomAddress *) strip_info->dev->dev_addr =
strip_info->true_dev_addr;
return 0;
}
static int strip_set_mac_address(struct net_device *dev, void *addr)
{
struct strip *strip_info = netdev_priv(dev);
struct sockaddr *sa = addr;
printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
set_mac_address(strip_info, (MetricomAddress *) sa->sa_data);
return 0;
}
static struct net_device_stats *strip_get_stats(struct net_device *dev)
{
struct strip *strip_info = netdev_priv(dev);
static struct net_device_stats stats;
memset(&stats, 0, sizeof(struct net_device_stats));
stats.rx_packets = strip_info->rx_packets;
stats.tx_packets = strip_info->tx_packets;
stats.rx_dropped = strip_info->rx_dropped;
stats.tx_dropped = strip_info->tx_dropped;
stats.tx_errors = strip_info->tx_errors;
stats.rx_errors = strip_info->rx_errors;
stats.rx_over_errors = strip_info->rx_over_errors;
return (&stats);
}
/************************************************************************/
/* Opening and closing */
/*
* Here's the order things happen:
* When the user runs "slattach -p strip ..."
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
* 1. The TTY module calls strip_open;;
* 2. strip_open calls strip_alloc
* 3. strip_alloc calls register_netdev
* 4. register_netdev calls strip_dev_init
* 5. then strip_open finishes setting up the strip_info
*
* When the user runs "ifconfig st<x> up address netmask ..."
* 6. strip_open_low gets called
*
* When the user runs "ifconfig st<x> down"
* 7. strip_close_low gets called
*
* When the user kills the slattach process
* 8. strip_close gets called
* 9. strip_close calls dev_close
* 10. if the device is still up, then dev_close calls strip_close_low
* 11. strip_close calls strip_free
*/
/* Open the low-level part of the STRIP channel. Easy! */
static int strip_open_low(struct net_device *dev)
{
struct strip *strip_info = netdev_priv(dev);
if (strip_info->tty == NULL)
return (-ENODEV);
if (!allocate_buffers(strip_info, dev->mtu))
return (-ENOMEM);
strip_info->sx_count = 0;
strip_info->tx_left = 0;
strip_info->discard = 0;
strip_info->working = FALSE;
strip_info->firmware_level = NoStructure;
strip_info->next_command = CompatibilityCommand;
strip_info->user_baud = tty_get_baud_rate(strip_info->tty);
printk(KERN_INFO "%s: Initializing Radio.\n",
strip_info->dev->name);
ResetRadio(strip_info);
strip_info->idle_timer.expires = jiffies + 1 * HZ;
add_timer(&strip_info->idle_timer);
netif_wake_queue(dev);
return (0);
}
/*
* Close the low-level part of the STRIP channel. Easy!
*/
static int strip_close_low(struct net_device *dev)
{
struct strip *strip_info = netdev_priv(dev);
if (strip_info->tty == NULL)
return -EBUSY;
strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
netif_stop_queue(dev);
/*
* Free all STRIP frame buffers.
*/
kfree(strip_info->rx_buff);
strip_info->rx_buff = NULL;
kfree(strip_info->sx_buff);
strip_info->sx_buff = NULL;
kfree(strip_info->tx_buff);
strip_info->tx_buff = NULL;
del_timer(&strip_info->idle_timer);
return 0;
}
static const struct header_ops strip_header_ops = {
.create = strip_header,
.rebuild = strip_rebuild_header,
};
/*
* This routine is called by DDI when the
* (dynamically assigned) device is registered
*/
static void strip_dev_setup(struct net_device *dev)
{
/*
* Finish setting up the DEVICE info.
*/
dev->trans_start = 0;
dev->last_rx = 0;
dev->tx_queue_len = 30; /* Drop after 30 frames queued */
dev->flags = 0;
dev->mtu = DEFAULT_STRIP_MTU;
dev->type = ARPHRD_METRICOM; /* dtang */
dev->hard_header_len = sizeof(STRIP_Header);
/*
* dev->priv Already holds a pointer to our struct strip
*/
*(MetricomAddress *) & dev->broadcast = broadcast_address;
dev->dev_addr[0] = 0;
dev->addr_len = sizeof(MetricomAddress);
/*
* Pointers to interface service routines.
*/
dev->open = strip_open_low;
dev->stop = strip_close_low;
dev->hard_start_xmit = strip_xmit;
dev->header_ops = &strip_header_ops;
dev->set_mac_address = strip_set_mac_address;
dev->get_stats = strip_get_stats;
dev->change_mtu = strip_change_mtu;
}
/*
* Free a STRIP channel.
*/
static void strip_free(struct strip *strip_info)
{
spin_lock_bh(&strip_lock);
list_del_rcu(&strip_info->list);
spin_unlock_bh(&strip_lock);
strip_info->magic = 0;
free_netdev(strip_info->dev);
}
/*
* Allocate a new free STRIP channel
*/
static struct strip *strip_alloc(void)
{
struct list_head *n;
struct net_device *dev;
struct strip *strip_info;
dev = alloc_netdev(sizeof(struct strip), "st%d",
strip_dev_setup);
if (!dev)
return NULL; /* If no more memory, return */
strip_info = netdev_priv(dev);
strip_info->dev = dev;
strip_info->magic = STRIP_MAGIC;
strip_info->tty = NULL;
strip_info->gratuitous_arp = jiffies + LongTime;
strip_info->arp_interval = 0;
init_timer(&strip_info->idle_timer);
strip_info->idle_timer.data = (long) dev;
strip_info->idle_timer.function = strip_IdleTask;
spin_lock_bh(&strip_lock);
rescan:
/*
* Search the list to find where to put our new entry
* (and in the process decide what channel number it is
* going to be)
*/
list_for_each(n, &strip_list) {
struct strip *s = hlist_entry(n, struct strip, list);
if (s->dev->base_addr == dev->base_addr) {
++dev->base_addr;
goto rescan;
}
}
sprintf(dev->name, "st%ld", dev->base_addr);
list_add_tail_rcu(&strip_info->list, &strip_list);
spin_unlock_bh(&strip_lock);
return strip_info;
}
/*
* Open the high-level part of the STRIP channel.
* This function is called by the TTY module when the
* STRIP line discipline is called for. Because we are
* sure the tty line exists, we only have to link it to
* a free STRIP channel...
*/
static int strip_open(struct tty_struct *tty)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
/*
* First make sure we're not already connected.
*/
if (strip_info && strip_info->magic == STRIP_MAGIC)
return -EEXIST;
/*
* We need a write method.
*/
if (tty->ops->write == NULL)
return -EOPNOTSUPP;
/*
* OK. Find a free STRIP channel to use.
*/
if ((strip_info = strip_alloc()) == NULL)
return -ENFILE;
/*
* Register our newly created device so it can be ifconfig'd
* strip_dev_init() will be called as a side-effect
*/
if (register_netdev(strip_info->dev) != 0) {
printk(KERN_ERR "strip: register_netdev() failed.\n");
strip_free(strip_info);
return -ENFILE;
}
strip_info->tty = tty;
tty->disc_data = strip_info;
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
tty->receive_room = 65536;
tty_driver_flush_buffer(tty);
/*
* Restore default settings
*/
strip_info->dev->type = ARPHRD_METRICOM; /* dtang */
/*
* Set tty options
*/
tty->termios->c_iflag |= IGNBRK | IGNPAR; /* Ignore breaks and parity errors. */
tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */
tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */
printk(KERN_INFO "STRIP: device \"%s\" activated\n",
strip_info->dev->name);
/*
* Done. We have linked the TTY line to a channel.
*/
return (strip_info->dev->base_addr);
}
/*
* Close down a STRIP channel.
* This means flushing out any pending queues, and then restoring the
* TTY line discipline to what it was before it got hooked to STRIP
* (which usually is TTY again).
*/
static void strip_close(struct tty_struct *tty)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
/*
* First make sure we're connected.
*/
if (!strip_info || strip_info->magic != STRIP_MAGIC)
return;
unregister_netdev(strip_info->dev);
tty->disc_data = NULL;
strip_info->tty = NULL;
printk(KERN_INFO "STRIP: device \"%s\" closed down\n",
strip_info->dev->name);
strip_free(strip_info);
tty->disc_data = NULL;
}
/************************************************************************/
/* Perform I/O control calls on an active STRIP channel. */
static int strip_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct strip *strip_info = (struct strip *) tty->disc_data;
/*
* First make sure we're connected.
*/
if (!strip_info || strip_info->magic != STRIP_MAGIC)
return -EINVAL;
switch (cmd) {
case SIOCGIFNAME:
if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1))
return -EFAULT;
break;
case SIOCSIFHWADDR:
{
MetricomAddress addr;
//printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress)))
return -EFAULT;
return set_mac_address(strip_info, &addr);
}
default:
return tty_mode_ioctl(tty, file, cmd, arg);
break;
}
return 0;
}
/************************************************************************/
/* Initialization */
static struct tty_ldisc strip_ldisc = {
.magic = TTY_LDISC_MAGIC,
.name = "strip",
.owner = THIS_MODULE,
.open = strip_open,
.close = strip_close,
.ioctl = strip_ioctl,
.receive_buf = strip_receive_buf,
.write_wakeup = strip_write_some_more,
};
/*
* Initialize the STRIP driver.
* This routine is called at boot time, to bootstrap the multi-channel
* STRIP driver
*/
static char signon[] __initdata =
KERN_INFO "STRIP: Version %s (unlimited channels)\n";
static int __init strip_init_driver(void)
{
int status;
printk(signon, StripVersion);
/*
* Fill in our line protocol discipline, and register it
*/
if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n",
status);
/*
* Register the status file with /proc
*/
proc_net_fops_create(&init_net, "strip", S_IFREG | S_IRUGO, &strip_seq_fops);
return status;
}
module_init(strip_init_driver);
static const char signoff[] __exitdata =
KERN_INFO "STRIP: Module Unloaded\n";
static void __exit strip_exit_driver(void)
{
int i;
struct list_head *p,*n;
/* module ref count rules assure that all entries are unregistered */
list_for_each_safe(p, n, &strip_list) {
struct strip *s = list_entry(p, struct strip, list);
strip_free(s);
}
/* Unregister with the /proc/net file here. */
proc_net_remove(&init_net, "strip");
if ((i = tty_unregister_ldisc(N_STRIP)))
printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
printk(signoff);
}
module_exit(strip_exit_driver);
MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");