linux_old1/drivers/gpu/drm/i915/selftests/i915_gem_coherency.c

380 lines
9.2 KiB
C
Raw Normal View History

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/prime_numbers.h>
#include "../i915_selftest.h"
#include "i915_random.h"
static int cpu_set(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 v)
{
unsigned int needs_clflush;
struct page *page;
typeof(v) *map;
int err;
err = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
if (err)
return err;
page = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT);
map = kmap_atomic(page);
if (needs_clflush & CLFLUSH_BEFORE)
clflush(map+offset_in_page(offset) / sizeof(*map));
map[offset_in_page(offset) / sizeof(*map)] = v;
if (needs_clflush & CLFLUSH_AFTER)
clflush(map+offset_in_page(offset) / sizeof(*map));
kunmap_atomic(map);
i915_gem_obj_finish_shmem_access(obj);
return 0;
}
static int cpu_get(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 *v)
{
unsigned int needs_clflush;
struct page *page;
typeof(v) map;
int err;
err = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
if (err)
return err;
page = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT);
map = kmap_atomic(page);
if (needs_clflush & CLFLUSH_BEFORE)
clflush(map+offset_in_page(offset) / sizeof(*map));
*v = map[offset_in_page(offset) / sizeof(*map)];
kunmap_atomic(map);
i915_gem_obj_finish_shmem_access(obj);
return 0;
}
static int gtt_set(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 v)
{
struct i915_vma *vma;
typeof(v) *map;
int err;
err = i915_gem_object_set_to_gtt_domain(obj, true);
if (err)
return err;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma))
return PTR_ERR(vma);
map = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(map))
return PTR_ERR(map);
map[offset / sizeof(*map)] = v;
i915_vma_unpin_iomap(vma);
return 0;
}
static int gtt_get(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 *v)
{
struct i915_vma *vma;
typeof(v) map;
int err;
err = i915_gem_object_set_to_gtt_domain(obj, false);
if (err)
return err;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma))
return PTR_ERR(vma);
map = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(map))
return PTR_ERR(map);
*v = map[offset / sizeof(*map)];
i915_vma_unpin_iomap(vma);
return 0;
}
static int wc_set(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 v)
{
typeof(v) *map;
int err;
err = i915_gem_object_set_to_wc_domain(obj, true);
if (err)
return err;
map = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(map))
return PTR_ERR(map);
map[offset / sizeof(*map)] = v;
i915_gem_object_unpin_map(obj);
return 0;
}
static int wc_get(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 *v)
{
typeof(v) map;
int err;
err = i915_gem_object_set_to_wc_domain(obj, false);
if (err)
return err;
map = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(map))
return PTR_ERR(map);
*v = map[offset / sizeof(*map)];
i915_gem_object_unpin_map(obj);
return 0;
}
static int gpu_set(struct drm_i915_gem_object *obj,
unsigned long offset,
u32 v)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct drm_i915_gem_request *rq;
struct i915_vma *vma;
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 19:32:42 +08:00
u32 *cs;
int err;
err = i915_gem_object_set_to_gtt_domain(obj, true);
if (err)
return err;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
if (IS_ERR(vma))
return PTR_ERR(vma);
rq = i915_gem_request_alloc(i915->engine[RCS], i915->kernel_context);
if (IS_ERR(rq)) {
i915_vma_unpin(vma);
return PTR_ERR(rq);
}
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 19:32:42 +08:00
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
__i915_add_request(rq, false);
i915_vma_unpin(vma);
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 19:32:42 +08:00
return PTR_ERR(cs);
}
if (INTEL_GEN(i915) >= 8) {
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 19:32:42 +08:00
*cs++ = MI_STORE_DWORD_IMM_GEN4 | 1 << 22;
*cs++ = lower_32_bits(i915_ggtt_offset(vma) + offset);
*cs++ = upper_32_bits(i915_ggtt_offset(vma) + offset);
*cs++ = v;
} else if (INTEL_GEN(i915) >= 4) {
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 19:32:42 +08:00
*cs++ = MI_STORE_DWORD_IMM_GEN4 | 1 << 22;
*cs++ = 0;
*cs++ = i915_ggtt_offset(vma) + offset;
*cs++ = v;
} else {
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 19:32:42 +08:00
*cs++ = MI_STORE_DWORD_IMM | 1 << 22;
*cs++ = i915_ggtt_offset(vma) + offset;
*cs++ = v;
*cs++ = MI_NOOP;
}
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 19:32:42 +08:00
intel_ring_advance(rq, cs);
i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
i915_vma_unpin(vma);
reservation_object_lock(obj->resv, NULL);
reservation_object_add_excl_fence(obj->resv, &rq->fence);
reservation_object_unlock(obj->resv);
__i915_add_request(rq, true);
return 0;
}
static bool always_valid(struct drm_i915_private *i915)
{
return true;
}
static bool needs_mi_store_dword(struct drm_i915_private *i915)
{
return igt_can_mi_store_dword_imm(i915);
}
static const struct igt_coherency_mode {
const char *name;
int (*set)(struct drm_i915_gem_object *, unsigned long offset, u32 v);
int (*get)(struct drm_i915_gem_object *, unsigned long offset, u32 *v);
bool (*valid)(struct drm_i915_private *i915);
} igt_coherency_mode[] = {
{ "cpu", cpu_set, cpu_get, always_valid },
{ "gtt", gtt_set, gtt_get, always_valid },
{ "wc", wc_set, wc_get, always_valid },
{ "gpu", gpu_set, NULL, needs_mi_store_dword },
{ },
};
static int igt_gem_coherency(void *arg)
{
const unsigned int ncachelines = PAGE_SIZE/64;
I915_RND_STATE(prng);
struct drm_i915_private *i915 = arg;
const struct igt_coherency_mode *read, *write, *over;
struct drm_i915_gem_object *obj;
unsigned long count, n;
u32 *offsets, *values;
int err = 0;
/* We repeatedly write, overwrite and read from a sequence of
* cachelines in order to try and detect incoherency (unflushed writes
* from either the CPU or GPU). Each setter/getter uses our cache
* domain API which should prevent incoherency.
*/
offsets = kmalloc_array(ncachelines, 2*sizeof(u32), GFP_KERNEL);
if (!offsets)
return -ENOMEM;
for (count = 0; count < ncachelines; count++)
offsets[count] = count * 64 + 4 * (count % 16);
values = offsets + ncachelines;
mutex_lock(&i915->drm.struct_mutex);
for (over = igt_coherency_mode; over->name; over++) {
if (!over->set)
continue;
if (!over->valid(i915))
continue;
for (write = igt_coherency_mode; write->name; write++) {
if (!write->set)
continue;
if (!write->valid(i915))
continue;
for (read = igt_coherency_mode; read->name; read++) {
if (!read->get)
continue;
if (!read->valid(i915))
continue;
for_each_prime_number_from(count, 1, ncachelines) {
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto unlock;
}
i915_random_reorder(offsets, ncachelines, &prng);
for (n = 0; n < count; n++)
values[n] = prandom_u32_state(&prng);
for (n = 0; n < count; n++) {
err = over->set(obj, offsets[n], ~values[n]);
if (err) {
pr_err("Failed to set stale value[%ld/%ld] in object using %s, err=%d\n",
n, count, over->name, err);
goto put_object;
}
}
for (n = 0; n < count; n++) {
err = write->set(obj, offsets[n], values[n]);
if (err) {
pr_err("Failed to set value[%ld/%ld] in object using %s, err=%d\n",
n, count, write->name, err);
goto put_object;
}
}
for (n = 0; n < count; n++) {
u32 found;
err = read->get(obj, offsets[n], &found);
if (err) {
pr_err("Failed to get value[%ld/%ld] in object using %s, err=%d\n",
n, count, read->name, err);
goto put_object;
}
if (found != values[n]) {
pr_err("Value[%ld/%ld] mismatch, (overwrite with %s) wrote [%s] %x read [%s] %x (inverse %x), at offset %x\n",
n, count, over->name,
write->name, values[n],
read->name, found,
~values[n], offsets[n]);
err = -EINVAL;
goto put_object;
}
}
__i915_gem_object_release_unless_active(obj);
}
}
}
}
unlock:
mutex_unlock(&i915->drm.struct_mutex);
kfree(offsets);
return err;
put_object:
__i915_gem_object_release_unless_active(obj);
goto unlock;
}
int i915_gem_coherency_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_gem_coherency),
};
return i915_subtests(tests, i915);
}