linux_old1/drivers/gpu/drm/i915/intel_pm.c

2495 lines
71 KiB
C
Raw Normal View History

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include <linux/cpufreq.h>
#include "i915_drv.h"
#include "intel_drv.h"
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
* framebuffer contents in-memory, aiming at reducing the required bandwidth
* during in-memory transfers and, therefore, reduce the power packet.
*
* The benefits of FBC are mostly visible with solid backgrounds and
* variation-less patterns.
*
* FBC-related functionality can be enabled by the means of the
* i915.i915_enable_fbc parameter
*/
void i8xx_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 fbc_ctl;
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
if ((fbc_ctl & FBC_CTL_EN) == 0)
return;
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
DRM_DEBUG_KMS("FBC idle timed out\n");
return;
}
DRM_DEBUG_KMS("disabled FBC\n");
}
void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int cfb_pitch;
int plane, i;
u32 fbc_ctl, fbc_ctl2;
cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
if (fb->pitches[0] < cfb_pitch)
cfb_pitch = fb->pitches[0];
/* FBC_CTL wants 64B units */
cfb_pitch = (cfb_pitch / 64) - 1;
plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG + (i * 4), 0);
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
fbc_ctl2 |= plane;
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, crtc->y);
/* enable it... */
fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
fbc_ctl |= obj->fence_reg;
I915_WRITE(FBC_CONTROL, fbc_ctl);
DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
cfb_pitch, crtc->y, intel_crtc->plane);
}
bool i8xx_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
unsigned long stall_watermark = 200;
u32 dpfc_ctl;
dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
/* enable it... */
I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}
void g4x_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("disabled FBC\n");
}
}
bool g4x_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 blt_ecoskpd;
/* Make sure blitter notifies FBC of writes */
gen6_gt_force_wake_get(dev_priv);
blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT);
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
POSTING_READ(GEN6_BLITTER_ECOSKPD);
gen6_gt_force_wake_put(dev_priv);
}
void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
unsigned long stall_watermark = 200;
u32 dpfc_ctl;
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
dpfc_ctl &= DPFC_RESERVED;
dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
/* Set persistent mode for front-buffer rendering, ala X. */
dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
/* enable it... */
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
if (IS_GEN6(dev)) {
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
sandybridge_blit_fbc_update(dev);
}
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}
void ironlake_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("disabled FBC\n");
}
}
bool ironlake_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}
bool intel_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.fbc_enabled)
return false;
return dev_priv->display.fbc_enabled(dev);
}
static void intel_fbc_work_fn(struct work_struct *__work)
{
struct intel_fbc_work *work =
container_of(to_delayed_work(__work),
struct intel_fbc_work, work);
struct drm_device *dev = work->crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
if (work == dev_priv->fbc_work) {
/* Double check that we haven't switched fb without cancelling
* the prior work.
*/
if (work->crtc->fb == work->fb) {
dev_priv->display.enable_fbc(work->crtc,
work->interval);
dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
dev_priv->cfb_fb = work->crtc->fb->base.id;
dev_priv->cfb_y = work->crtc->y;
}
dev_priv->fbc_work = NULL;
}
mutex_unlock(&dev->struct_mutex);
kfree(work);
}
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
if (dev_priv->fbc_work == NULL)
return;
DRM_DEBUG_KMS("cancelling pending FBC enable\n");
/* Synchronisation is provided by struct_mutex and checking of
* dev_priv->fbc_work, so we can perform the cancellation
* entirely asynchronously.
*/
if (cancel_delayed_work(&dev_priv->fbc_work->work))
/* tasklet was killed before being run, clean up */
kfree(dev_priv->fbc_work);
/* Mark the work as no longer wanted so that if it does
* wake-up (because the work was already running and waiting
* for our mutex), it will discover that is no longer
* necessary to run.
*/
dev_priv->fbc_work = NULL;
}
void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct intel_fbc_work *work;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.enable_fbc)
return;
intel_cancel_fbc_work(dev_priv);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (work == NULL) {
dev_priv->display.enable_fbc(crtc, interval);
return;
}
work->crtc = crtc;
work->fb = crtc->fb;
work->interval = interval;
INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
dev_priv->fbc_work = work;
DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
/* Delay the actual enabling to let pageflipping cease and the
* display to settle before starting the compression. Note that
* this delay also serves a second purpose: it allows for a
* vblank to pass after disabling the FBC before we attempt
* to modify the control registers.
*
* A more complicated solution would involve tracking vblanks
* following the termination of the page-flipping sequence
* and indeed performing the enable as a co-routine and not
* waiting synchronously upon the vblank.
*/
schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}
void intel_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
intel_cancel_fbc_work(dev_priv);
if (!dev_priv->display.disable_fbc)
return;
dev_priv->display.disable_fbc(dev);
dev_priv->cfb_plane = -1;
}
/**
* intel_update_fbc - enable/disable FBC as needed
* @dev: the drm_device
*
* Set up the framebuffer compression hardware at mode set time. We
* enable it if possible:
* - plane A only (on pre-965)
* - no pixel mulitply/line duplication
* - no alpha buffer discard
* - no dual wide
* - framebuffer <= 2048 in width, 1536 in height
*
* We can't assume that any compression will take place (worst case),
* so the compressed buffer has to be the same size as the uncompressed
* one. It also must reside (along with the line length buffer) in
* stolen memory.
*
* We need to enable/disable FBC on a global basis.
*/
void intel_update_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = NULL, *tmp_crtc;
struct intel_crtc *intel_crtc;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int enable_fbc;
DRM_DEBUG_KMS("\n");
if (!i915_powersave)
return;
if (!I915_HAS_FBC(dev))
return;
/*
* If FBC is already on, we just have to verify that we can
* keep it that way...
* Need to disable if:
* - more than one pipe is active
* - changing FBC params (stride, fence, mode)
* - new fb is too large to fit in compressed buffer
* - going to an unsupported config (interlace, pixel multiply, etc.)
*/
list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
if (tmp_crtc->enabled && tmp_crtc->fb) {
if (crtc) {
DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
goto out_disable;
}
crtc = tmp_crtc;
}
}
if (!crtc || crtc->fb == NULL) {
DRM_DEBUG_KMS("no output, disabling\n");
dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
goto out_disable;
}
intel_crtc = to_intel_crtc(crtc);
fb = crtc->fb;
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
enable_fbc = i915_enable_fbc;
if (enable_fbc < 0) {
DRM_DEBUG_KMS("fbc set to per-chip default\n");
enable_fbc = 1;
if (INTEL_INFO(dev)->gen <= 6)
enable_fbc = 0;
}
if (!enable_fbc) {
DRM_DEBUG_KMS("fbc disabled per module param\n");
dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
goto out_disable;
}
if (intel_fb->obj->base.size > dev_priv->cfb_size) {
DRM_DEBUG_KMS("framebuffer too large, disabling "
"compression\n");
dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
goto out_disable;
}
if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
(crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
DRM_DEBUG_KMS("mode incompatible with compression, "
"disabling\n");
dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
goto out_disable;
}
if ((crtc->mode.hdisplay > 2048) ||
(crtc->mode.vdisplay > 1536)) {
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
goto out_disable;
}
if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
DRM_DEBUG_KMS("plane not 0, disabling compression\n");
dev_priv->no_fbc_reason = FBC_BAD_PLANE;
goto out_disable;
}
/* The use of a CPU fence is mandatory in order to detect writes
* by the CPU to the scanout and trigger updates to the FBC.
*/
if (obj->tiling_mode != I915_TILING_X ||
obj->fence_reg == I915_FENCE_REG_NONE) {
DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
dev_priv->no_fbc_reason = FBC_NOT_TILED;
goto out_disable;
}
/* If the kernel debugger is active, always disable compression */
if (in_dbg_master())
goto out_disable;
/* If the scanout has not changed, don't modify the FBC settings.
* Note that we make the fundamental assumption that the fb->obj
* cannot be unpinned (and have its GTT offset and fence revoked)
* without first being decoupled from the scanout and FBC disabled.
*/
if (dev_priv->cfb_plane == intel_crtc->plane &&
dev_priv->cfb_fb == fb->base.id &&
dev_priv->cfb_y == crtc->y)
return;
if (intel_fbc_enabled(dev)) {
/* We update FBC along two paths, after changing fb/crtc
* configuration (modeswitching) and after page-flipping
* finishes. For the latter, we know that not only did
* we disable the FBC at the start of the page-flip
* sequence, but also more than one vblank has passed.
*
* For the former case of modeswitching, it is possible
* to switch between two FBC valid configurations
* instantaneously so we do need to disable the FBC
* before we can modify its control registers. We also
* have to wait for the next vblank for that to take
* effect. However, since we delay enabling FBC we can
* assume that a vblank has passed since disabling and
* that we can safely alter the registers in the deferred
* callback.
*
* In the scenario that we go from a valid to invalid
* and then back to valid FBC configuration we have
* no strict enforcement that a vblank occurred since
* disabling the FBC. However, along all current pipe
* disabling paths we do need to wait for a vblank at
* some point. And we wait before enabling FBC anyway.
*/
DRM_DEBUG_KMS("disabling active FBC for update\n");
intel_disable_fbc(dev);
}
intel_enable_fbc(crtc, 500);
return;
out_disable:
/* Multiple disables should be harmless */
if (intel_fbc_enabled(dev)) {
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
intel_disable_fbc(dev);
}
}
static const struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
int is_ddr3,
int fsb,
int mem)
{
const struct cxsr_latency *latency;
int i;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
void pineview_disable_cxsr(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* deactivate cxsr */
I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int latency_ns = 5000;
int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
if (plane)
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
int i85x_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x1ff;
if (plane)
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
int i845_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A",
size);
return size;
}
int i830_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_HPLLOFF_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
G4X_FIFO_SIZE,
G4X_MAX_WM,
G4X_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
I965_CURSOR_FIFO,
I965_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
VALLEYVIEW_FIFO_SIZE,
VALLEYVIEW_MAX_WM,
VALLEYVIEW_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
I965_CURSOR_FIFO,
VALLEYVIEW_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
I965_CURSOR_FIFO,
I965_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
I945_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
I915_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
I855GM_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
I830_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_wm_info = {
ILK_DISPLAY_FIFO,
ILK_DISPLAY_MAXWM,
ILK_DISPLAY_DFTWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
ILK_CURSOR_FIFO,
ILK_CURSOR_MAXWM,
ILK_CURSOR_DFTWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
ILK_DISPLAY_SR_FIFO,
ILK_DISPLAY_MAX_SRWM,
ILK_DISPLAY_DFT_SRWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
ILK_CURSOR_SR_FIFO,
ILK_CURSOR_MAX_SRWM,
ILK_CURSOR_DFT_SRWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_wm_info = {
SNB_DISPLAY_FIFO,
SNB_DISPLAY_MAXWM,
SNB_DISPLAY_DFTWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
SNB_CURSOR_FIFO,
SNB_CURSOR_MAXWM,
SNB_CURSOR_DFTWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
SNB_DISPLAY_SR_FIFO,
SNB_DISPLAY_MAX_SRWM,
SNB_DISPLAY_DFT_SRWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
SNB_CURSOR_SR_FIFO,
SNB_CURSOR_MAX_SRWM,
SNB_CURSOR_DFT_SRWM,
2,
SNB_FIFO_LINE_SIZE
};
/**
* intel_calculate_wm - calculate watermark level
* @clock_in_khz: pixel clock
* @wm: chip FIFO params
* @pixel_size: display pixel size
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
const struct intel_watermark_params *wm,
int fifo_size,
int pixel_size,
unsigned long latency_ns)
{
long entries_required, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1000;
entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
wm_size = fifo_size - (entries_required + wm->guard_size);
DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > (long)wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
return wm_size;
}
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
struct drm_crtc *crtc, *enabled = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (crtc->enabled && crtc->fb) {
if (enabled)
return NULL;
enabled = crtc;
}
}
return enabled;
}
void pineview_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
const struct cxsr_latency *latency;
u32 reg;
unsigned long wm;
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
dev_priv->fsb_freq, dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
pineview_disable_cxsr(dev);
return;
}
crtc = single_enabled_crtc(dev);
if (crtc) {
int clock = crtc->mode.clock;
int pixel_size = crtc->fb->bits_per_pixel / 8;
/* Display SR */
wm = intel_calculate_wm(clock, &pineview_display_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= wm << DSPFW_SR_SHIFT;
I915_WRITE(DSPFW1, reg);
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &pineview_cursor_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->display_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= wm & DSPFW_HPLL_SR_MASK;
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
/* activate cxsr */
I915_WRITE(DSPFW3,
I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
DRM_DEBUG_KMS("Self-refresh is enabled\n");
} else {
pineview_disable_cxsr(dev);
DRM_DEBUG_KMS("Self-refresh is disabled\n");
}
}
static bool g4x_compute_wm0(struct drm_device *dev,
int plane,
const struct intel_watermark_params *display,
int display_latency_ns,
const struct intel_watermark_params *cursor,
int cursor_latency_ns,
int *plane_wm,
int *cursor_wm)
{
struct drm_crtc *crtc;
int htotal, hdisplay, clock, pixel_size;
int line_time_us, line_count;
int entries, tlb_miss;
crtc = intel_get_crtc_for_plane(dev, plane);
if (crtc->fb == NULL || !crtc->enabled) {
*cursor_wm = cursor->guard_size;
*plane_wm = display->guard_size;
return false;
}
htotal = crtc->mode.htotal;
hdisplay = crtc->mode.hdisplay;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
/* Use the small buffer method to calculate plane watermark */
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*plane_wm = entries + display->guard_size;
if (*plane_wm > (int)display->max_wm)
*plane_wm = display->max_wm;
/* Use the large buffer method to calculate cursor watermark */
line_time_us = ((htotal * 1000) / clock);
line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
entries = line_count * 64 * pixel_size;
tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
if (*cursor_wm > (int)cursor->max_wm)
*cursor_wm = (int)cursor->max_wm;
return true;
}
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool g4x_check_srwm(struct drm_device *dev,
int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
display_wm, cursor_wm);
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
display_wm, display->max_wm);
return false;
}
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
cursor_wm, cursor->max_wm);
return false;
}
if (!(display_wm || cursor_wm)) {
DRM_DEBUG_KMS("SR latency is 0, disabling\n");
return false;
}
return true;
}
static bool g4x_compute_srwm(struct drm_device *dev,
int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
int hdisplay, htotal, pixel_size, clock;
unsigned long line_time_us;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*display_wm = *cursor_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
hdisplay = crtc->mode.hdisplay;
htotal = crtc->mode.htotal;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
line_time_us = (htotal * 1000) / clock;
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * pixel_size;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
/* calculate the self-refresh watermark for display cursor */
entries = line_count * pixel_size * 64;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
return g4x_check_srwm(dev,
*display_wm, *cursor_wm,
display, cursor);
}
static bool vlv_compute_drain_latency(struct drm_device *dev,
int plane,
int *plane_prec_mult,
int *plane_dl,
int *cursor_prec_mult,
int *cursor_dl)
{
struct drm_crtc *crtc;
int clock, pixel_size;
int entries;
crtc = intel_get_crtc_for_plane(dev, plane);
if (crtc->fb == NULL || !crtc->enabled)
return false;
clock = crtc->mode.clock; /* VESA DOT Clock */
pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
entries = (clock / 1000) * pixel_size;
*plane_prec_mult = (entries > 256) ?
DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
pixel_size);
entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
*cursor_prec_mult = (entries > 256) ?
DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
return true;
}
/*
* Update drain latency registers of memory arbiter
*
* Valleyview SoC has a new memory arbiter and needs drain latency registers
* to be programmed. Each plane has a drain latency multiplier and a drain
* latency value.
*/
static void vlv_update_drain_latency(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_prec, planea_dl, planeb_prec, planeb_dl;
int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
either 16 or 32 */
/* For plane A, Cursor A */
if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
&cursor_prec_mult, &cursora_dl)) {
cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
I915_WRITE(VLV_DDL1, cursora_prec |
(cursora_dl << DDL_CURSORA_SHIFT) |
planea_prec | planea_dl);
}
/* For plane B, Cursor B */
if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
&cursor_prec_mult, &cursorb_dl)) {
cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
I915_WRITE(VLV_DDL2, cursorb_prec |
(cursorb_dl << DDL_CURSORB_SHIFT) |
planeb_prec | planeb_dl);
}
}
#define single_plane_enabled(mask) is_power_of_2(mask)
void valleyview_update_wm(struct drm_device *dev)
{
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
unsigned int enabled = 0;
vlv_update_drain_latency(dev);
if (g4x_compute_wm0(dev, 0,
&valleyview_wm_info, latency_ns,
&valleyview_cursor_wm_info, latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1;
if (g4x_compute_wm0(dev, 1,
&valleyview_wm_info, latency_ns,
&valleyview_cursor_wm_info, latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 2;
plane_sr = cursor_sr = 0;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&valleyview_wm_info,
&valleyview_cursor_wm_info,
&plane_sr, &cursor_sr))
I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
else
I915_WRITE(FW_BLC_SELF_VLV,
I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
planea_wm);
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
}
void g4x_update_wm(struct drm_device *dev)
{
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
unsigned int enabled = 0;
if (g4x_compute_wm0(dev, 0,
&g4x_wm_info, latency_ns,
&g4x_cursor_wm_info, latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1;
if (g4x_compute_wm0(dev, 1,
&g4x_wm_info, latency_ns,
&g4x_cursor_wm_info, latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 2;
plane_sr = cursor_sr = 0;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&g4x_wm_info,
&g4x_cursor_wm_info,
&plane_sr, &cursor_sr))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
else
I915_WRITE(FW_BLC_SELF,
I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
planea_wm);
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
/* HPLL off in SR has some issues on G4x... disable it */
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
void i965_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
int srwm = 1;
int cursor_sr = 16;
/* Calc sr entries for one plane configs */
crtc = single_enabled_crtc(dev);
if (crtc) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
int clock = crtc->mode.clock;
int htotal = crtc->mode.htotal;
int hdisplay = crtc->mode.hdisplay;
int pixel_size = crtc->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
line_time_us = ((htotal * 1000) / clock);
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
srwm = I965_FIFO_SIZE - entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x1ff;
DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
entries, srwm);
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * 64;
entries = DIV_ROUND_UP(entries,
i965_cursor_wm_info.cacheline_size);
cursor_sr = i965_cursor_wm_info.fifo_size -
(entries + i965_cursor_wm_info.guard_size);
if (cursor_sr > i965_cursor_wm_info.max_wm)
cursor_sr = i965_cursor_wm_info.max_wm;
DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
"cursor %d\n", srwm, cursor_sr);
if (IS_CRESTLINE(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
} else {
/* Turn off self refresh if both pipes are enabled */
if (IS_CRESTLINE(dev))
I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
& ~FW_BLC_SELF_EN);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
/* 965 has limitations... */
I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
(8 << 16) | (8 << 8) | (8 << 0));
I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
/* update cursor SR watermark */
I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
void i9xx_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
const struct intel_watermark_params *wm_info;
uint32_t fwater_lo;
uint32_t fwater_hi;
int cwm, srwm = 1;
int fifo_size;
int planea_wm, planeb_wm;
struct drm_crtc *crtc, *enabled = NULL;
if (IS_I945GM(dev))
wm_info = &i945_wm_info;
else if (!IS_GEN2(dev))
wm_info = &i915_wm_info;
else
wm_info = &i855_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev, 0);
crtc = intel_get_crtc_for_plane(dev, 0);
if (crtc->enabled && crtc->fb) {
planea_wm = intel_calculate_wm(crtc->mode.clock,
wm_info, fifo_size,
crtc->fb->bits_per_pixel / 8,
latency_ns);
enabled = crtc;
} else
planea_wm = fifo_size - wm_info->guard_size;
fifo_size = dev_priv->display.get_fifo_size(dev, 1);
crtc = intel_get_crtc_for_plane(dev, 1);
if (crtc->enabled && crtc->fb) {
planeb_wm = intel_calculate_wm(crtc->mode.clock,
wm_info, fifo_size,
crtc->fb->bits_per_pixel / 8,
latency_ns);
if (enabled == NULL)
enabled = crtc;
else
enabled = NULL;
} else
planeb_wm = fifo_size - wm_info->guard_size;
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Play safe and disable self-refresh before adjusting watermarks. */
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
else if (IS_I915GM(dev))
I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev) && enabled) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
int clock = enabled->mode.clock;
int htotal = enabled->mode.htotal;
int hdisplay = enabled->mode.hdisplay;
int pixel_size = enabled->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
line_time_us = (htotal * 1000) / clock;
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
srwm = wm_info->fifo_size - entries;
if (srwm < 0)
srwm = 1;
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
else if (IS_I915GM(dev))
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
if (HAS_FW_BLC(dev)) {
if (enabled) {
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
else if (IS_I915GM(dev))
I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
DRM_DEBUG_KMS("memory self refresh enabled\n");
} else
DRM_DEBUG_KMS("memory self refresh disabled\n");
}
}
void i830_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
uint32_t fwater_lo;
int planea_wm;
crtc = single_enabled_crtc(dev);
if (crtc == NULL)
return;
planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
dev_priv->display.get_fifo_size(dev, 0),
crtc->fb->bits_per_pixel / 8,
latency_ns);
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
fwater_lo |= (3<<8) | planea_wm;
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
I915_WRITE(FW_BLC, fwater_lo);
}
#define ILK_LP0_PLANE_LATENCY 700
#define ILK_LP0_CURSOR_LATENCY 1300
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool ironlake_check_srwm(struct drm_device *dev, int level,
int fbc_wm, int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
struct drm_i915_private *dev_priv = dev->dev_private;
DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
" cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
if (fbc_wm > SNB_FBC_MAX_SRWM) {
DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
fbc_wm, SNB_FBC_MAX_SRWM, level);
/* fbc has it's own way to disable FBC WM */
I915_WRITE(DISP_ARB_CTL,
I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
return false;
}
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
display_wm, SNB_DISPLAY_MAX_SRWM, level);
return false;
}
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
cursor_wm, SNB_CURSOR_MAX_SRWM, level);
return false;
}
if (!(fbc_wm || display_wm || cursor_wm)) {
DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
return false;
}
return true;
}
/*
* Compute watermark values of WM[1-3],
*/
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *fbc_wm, int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
unsigned long line_time_us;
int hdisplay, htotal, pixel_size, clock;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*fbc_wm = *display_wm = *cursor_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
hdisplay = crtc->mode.hdisplay;
htotal = crtc->mode.htotal;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
line_time_us = (htotal * 1000) / clock;
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * pixel_size;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
/*
* Spec says:
* FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
*/
*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
/* calculate the self-refresh watermark for display cursor */
entries = line_count * pixel_size * 64;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
return ironlake_check_srwm(dev, level,
*fbc_wm, *display_wm, *cursor_wm,
display, cursor);
}
void ironlake_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int fbc_wm, plane_wm, cursor_wm;
unsigned int enabled;
enabled = 0;
if (g4x_compute_wm0(dev, 0,
&ironlake_display_wm_info,
ILK_LP0_PLANE_LATENCY,
&ironlake_cursor_wm_info,
ILK_LP0_CURSOR_LATENCY,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEA_ILK,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
" plane %d, " "cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 1;
}
if (g4x_compute_wm0(dev, 1,
&ironlake_display_wm_info,
ILK_LP0_PLANE_LATENCY,
&ironlake_cursor_wm_info,
ILK_LP0_CURSOR_LATENCY,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEB_ILK,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 2;
}
/*
* Calculate and update the self-refresh watermark only when one
* display plane is used.
*/
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
if (!single_plane_enabled(enabled))
return;
enabled = ffs(enabled) - 1;
/* WM1 */
if (!ironlake_compute_srwm(dev, 1, enabled,
ILK_READ_WM1_LATENCY() * 500,
&ironlake_display_srwm_info,
&ironlake_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM1_LP_ILK,
WM1_LP_SR_EN |
(ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
/* WM2 */
if (!ironlake_compute_srwm(dev, 2, enabled,
ILK_READ_WM2_LATENCY() * 500,
&ironlake_display_srwm_info,
&ironlake_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM2_LP_ILK,
WM2_LP_EN |
(ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
/*
* WM3 is unsupported on ILK, probably because we don't have latency
* data for that power state
*/
}
void sandybridge_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
u32 val;
int fbc_wm, plane_wm, cursor_wm;
unsigned int enabled;
enabled = 0;
if (g4x_compute_wm0(dev, 0,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
val = I915_READ(WM0_PIPEA_ILK);
val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
I915_WRITE(WM0_PIPEA_ILK, val |
((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
" plane %d, " "cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 1;
}
if (g4x_compute_wm0(dev, 1,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
val = I915_READ(WM0_PIPEB_ILK);
val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
I915_WRITE(WM0_PIPEB_ILK, val |
((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 2;
}
/* IVB has 3 pipes */
if (IS_IVYBRIDGE(dev) &&
g4x_compute_wm0(dev, 2,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
val = I915_READ(WM0_PIPEC_IVB);
val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
I915_WRITE(WM0_PIPEC_IVB, val |
((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 3;
}
/*
* Calculate and update the self-refresh watermark only when one
* display plane is used.
*
* SNB support 3 levels of watermark.
*
* WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
* and disabled in the descending order
*
*/
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
if (!single_plane_enabled(enabled) ||
dev_priv->sprite_scaling_enabled)
return;
enabled = ffs(enabled) - 1;
/* WM1 */
if (!ironlake_compute_srwm(dev, 1, enabled,
SNB_READ_WM1_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM1_LP_ILK,
WM1_LP_SR_EN |
(SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
/* WM2 */
if (!ironlake_compute_srwm(dev, 2, enabled,
SNB_READ_WM2_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM2_LP_ILK,
WM2_LP_EN |
(SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
/* WM3 */
if (!ironlake_compute_srwm(dev, 3, enabled,
SNB_READ_WM3_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM3_LP_ILK,
WM3_LP_EN |
(SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
}
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
uint32_t sprite_width, int pixel_size,
const struct intel_watermark_params *display,
int display_latency_ns, int *sprite_wm)
{
struct drm_crtc *crtc;
int clock;
int entries, tlb_miss;
crtc = intel_get_crtc_for_plane(dev, plane);
if (crtc->fb == NULL || !crtc->enabled) {
*sprite_wm = display->guard_size;
return false;
}
clock = crtc->mode.clock;
/* Use the small buffer method to calculate the sprite watermark */
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size -
sprite_width * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*sprite_wm = entries + display->guard_size;
if (*sprite_wm > (int)display->max_wm)
*sprite_wm = display->max_wm;
return true;
}
static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
uint32_t sprite_width, int pixel_size,
const struct intel_watermark_params *display,
int latency_ns, int *sprite_wm)
{
struct drm_crtc *crtc;
unsigned long line_time_us;
int clock;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*sprite_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
clock = crtc->mode.clock;
if (!clock) {
*sprite_wm = 0;
return false;
}
line_time_us = (sprite_width * 1000) / clock;
if (!line_time_us) {
*sprite_wm = 0;
return false;
}
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = sprite_width * pixel_size;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*sprite_wm = entries + display->guard_size;
return *sprite_wm > 0x3ff ? false : true;
}
void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
uint32_t sprite_width, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
u32 val;
int sprite_wm, reg;
int ret;
switch (pipe) {
case 0:
reg = WM0_PIPEA_ILK;
break;
case 1:
reg = WM0_PIPEB_ILK;
break;
case 2:
reg = WM0_PIPEC_IVB;
break;
default:
return; /* bad pipe */
}
ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
&sandybridge_display_wm_info,
latency, &sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
pipe);
return;
}
val = I915_READ(reg);
val &= ~WM0_PIPE_SPRITE_MASK;
I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM1_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM1S_LP_ILK, sprite_wm);
/* Only IVB has two more LP watermarks for sprite */
if (!IS_IVYBRIDGE(dev))
return;
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM2_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM2S_LP_IVB, sprite_wm);
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM3_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM3S_LP_IVB, sprite_wm);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
void intel_update_watermarks(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.update_wm)
dev_priv->display.update_wm(dev);
}
void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
uint32_t sprite_width, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.update_sprite_wm)
dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
pixel_size);
}
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
struct drm_i915_gem_object *ctx;
int ret;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
ctx = i915_gem_alloc_object(dev, 4096);
if (!ctx) {
DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
return NULL;
}
ret = i915_gem_object_pin(ctx, 4096, true);
if (ret) {
DRM_ERROR("failed to pin power context: %d\n", ret);
goto err_unref;
}
ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
if (ret) {
DRM_ERROR("failed to set-domain on power context: %d\n", ret);
goto err_unpin;
}
return ctx;
err_unpin:
i915_gem_object_unpin(ctx);
err_unref:
drm_gem_object_unreference(&ctx->base);
mutex_unlock(&dev->struct_mutex);
return NULL;
}
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl;
rgvswctl = I915_READ16(MEMSWCTL);
if (rgvswctl & MEMCTL_CMD_STS) {
DRM_DEBUG("gpu busy, RCS change rejected\n");
return false; /* still busy with another command */
}
rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
I915_WRITE16(MEMSWCTL, rgvswctl);
POSTING_READ16(MEMSWCTL);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE16(MEMSWCTL, rgvswctl);
return true;
}
void ironlake_enable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rgvmodectl = I915_READ(MEMMODECTL);
u8 fmax, fmin, fstart, vstart;
/* Enable temp reporting */
I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
/* 100ms RC evaluation intervals */
I915_WRITE(RCUPEI, 100000);
I915_WRITE(RCDNEI, 100000);
/* Set max/min thresholds to 90ms and 80ms respectively */
I915_WRITE(RCBMAXAVG, 90000);
I915_WRITE(RCBMINAVG, 80000);
I915_WRITE(MEMIHYST, 1);
/* Set up min, max, and cur for interrupt handling */
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
MEMMODE_FSTART_SHIFT;
vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
dev_priv->fmax = fmax; /* IPS callback will increase this */
dev_priv->fstart = fstart;
dev_priv->max_delay = fstart;
dev_priv->min_delay = fmin;
dev_priv->cur_delay = fstart;
DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
fmax, fmin, fstart);
I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
/*
* Interrupts will be enabled in ironlake_irq_postinstall
*/
I915_WRITE(VIDSTART, vstart);
POSTING_READ(VIDSTART);
rgvmodectl |= MEMMODE_SWMODE_EN;
I915_WRITE(MEMMODECTL, rgvmodectl);
if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
DRM_ERROR("stuck trying to change perf mode\n");
msleep(1);
ironlake_set_drps(dev, fstart);
dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
I915_READ(0x112e0);
dev_priv->last_time1 = jiffies_to_msecs(jiffies);
dev_priv->last_count2 = I915_READ(0x112f4);
getrawmonotonic(&dev_priv->last_time2);
}
void ironlake_disable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl = I915_READ16(MEMSWCTL);
/* Ack interrupts, disable EFC interrupt */
I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
I915_WRITE(DEIIR, DE_PCU_EVENT);
I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
/* Go back to the starting frequency */
ironlake_set_drps(dev, dev_priv->fstart);
msleep(1);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE(MEMSWCTL, rgvswctl);
msleep(1);
}
void gen6_set_rps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 swreq;
swreq = (val & 0x3ff) << 25;
I915_WRITE(GEN6_RPNSWREQ, swreq);
}
void gen6_disable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
I915_WRITE(GEN6_PMIER, 0);
/* Complete PM interrupt masking here doesn't race with the rps work
* item again unmasking PM interrupts because that is using a different
* register (PMIMR) to mask PM interrupts. The only risk is in leaving
* stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
spin_lock_irq(&dev_priv->rps_lock);
dev_priv->pm_iir = 0;
spin_unlock_irq(&dev_priv->rps_lock);
I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
}
int intel_enable_rc6(const struct drm_device *dev)
{
/*
* Respect the kernel parameter if it is set
*/
if (i915_enable_rc6 >= 0)
return i915_enable_rc6;
/*
* Disable RC6 on Ironlake
*/
if (INTEL_INFO(dev)->gen == 5)
return 0;
/* Sorry Haswell, no RC6 for you for now. */
if (IS_HASWELL(dev))
return 0;
/*
* Disable rc6 on Sandybridge
*/
if (INTEL_INFO(dev)->gen == 6) {
DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
return INTEL_RC6_ENABLE;
}
DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
}
void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
u32 pcu_mbox, rc6_mask = 0;
u32 gtfifodbg;
int cur_freq, min_freq, max_freq;
int rc6_mode;
int i;
/* Here begins a magic sequence of register writes to enable
* auto-downclocking.
*
* Perhaps there might be some value in exposing these to
* userspace...
*/
I915_WRITE(GEN6_RC_STATE, 0);
mutex_lock(&dev_priv->dev->struct_mutex);
/* Clear the DBG now so we don't confuse earlier errors */
if ((gtfifodbg = I915_READ(GTFIFODBG))) {
DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
gen6_gt_force_wake_get(dev_priv);
/* disable the counters and set deterministic thresholds */
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for (i = 0; i < I915_NUM_RINGS; i++)
I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
rc6_mode = intel_enable_rc6(dev_priv->dev);
if (rc6_mode & INTEL_RC6_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
if (rc6_mode & INTEL_RC6p_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
if (rc6_mode & INTEL_RC6pp_ENABLE)
rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
(rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
(rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
(rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
I915_WRITE(GEN6_RC_CONTROL,
rc6_mask |
GEN6_RC_CTL_EI_MODE(1) |
GEN6_RC_CTL_HW_ENABLE);
I915_WRITE(GEN6_RPNSWREQ,
GEN6_FREQUENCY(10) |
GEN6_OFFSET(0) |
GEN6_AGGRESSIVE_TURBO);
I915_WRITE(GEN6_RC_VIDEO_FREQ,
GEN6_FREQUENCY(12));
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
18 << 24 |
6 << 16);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
I915_WRITE(GEN6_RP_UP_EI, 100000);
I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_CONT);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
I915_WRITE(GEN6_PCODE_DATA, 0);
I915_WRITE(GEN6_PCODE_MAILBOX,
GEN6_PCODE_READY |
GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
min_freq = (rp_state_cap & 0xff0000) >> 16;
max_freq = rp_state_cap & 0xff;
cur_freq = (gt_perf_status & 0xff00) >> 8;
/* Check for overclock support */
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
pcu_mbox = I915_READ(GEN6_PCODE_DATA);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
if (pcu_mbox & (1<<31)) { /* OC supported */
max_freq = pcu_mbox & 0xff;
DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
}
/* In units of 100MHz */
dev_priv->max_delay = max_freq;
dev_priv->min_delay = min_freq;
dev_priv->cur_delay = cur_freq;
/* requires MSI enabled */
I915_WRITE(GEN6_PMIER,
GEN6_PM_MBOX_EVENT |
GEN6_PM_THERMAL_EVENT |
GEN6_PM_RP_DOWN_TIMEOUT |
GEN6_PM_RP_UP_THRESHOLD |
GEN6_PM_RP_DOWN_THRESHOLD |
GEN6_PM_RP_UP_EI_EXPIRED |
GEN6_PM_RP_DOWN_EI_EXPIRED);
spin_lock_irq(&dev_priv->rps_lock);
WARN_ON(dev_priv->pm_iir != 0);
I915_WRITE(GEN6_PMIMR, 0);
spin_unlock_irq(&dev_priv->rps_lock);
/* enable all PM interrupts */
I915_WRITE(GEN6_PMINTRMSK, 0);
gen6_gt_force_wake_put(dev_priv);
mutex_unlock(&dev_priv->dev->struct_mutex);
}
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
{
int min_freq = 15;
int gpu_freq, ia_freq, max_ia_freq;
int scaling_factor = 180;
max_ia_freq = cpufreq_quick_get_max(0);
/*
* Default to measured freq if none found, PCU will ensure we don't go
* over
*/
if (!max_ia_freq)
max_ia_freq = tsc_khz;
/* Convert from kHz to MHz */
max_ia_freq /= 1000;
mutex_lock(&dev_priv->dev->struct_mutex);
/*
* For each potential GPU frequency, load a ring frequency we'd like
* to use for memory access. We do this by specifying the IA frequency
* the PCU should use as a reference to determine the ring frequency.
*/
for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
gpu_freq--) {
int diff = dev_priv->max_delay - gpu_freq;
/*
* For GPU frequencies less than 750MHz, just use the lowest
* ring freq.
*/
if (gpu_freq < min_freq)
ia_freq = 800;
else
ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
I915_WRITE(GEN6_PCODE_DATA,
(ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
gpu_freq);
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
GEN6_PCODE_READY) == 0, 10)) {
DRM_ERROR("pcode write of freq table timed out\n");
continue;
}
}
mutex_unlock(&dev_priv->dev->struct_mutex);
}
static void ironlake_teardown_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->renderctx) {
i915_gem_object_unpin(dev_priv->renderctx);
drm_gem_object_unreference(&dev_priv->renderctx->base);
dev_priv->renderctx = NULL;
}
if (dev_priv->pwrctx) {
i915_gem_object_unpin(dev_priv->pwrctx);
drm_gem_object_unreference(&dev_priv->pwrctx->base);
dev_priv->pwrctx = NULL;
}
}
void ironlake_disable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (I915_READ(PWRCTXA)) {
/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
50);
I915_WRITE(PWRCTXA, 0);
POSTING_READ(PWRCTXA);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
POSTING_READ(RSTDBYCTL);
}
ironlake_teardown_rc6(dev);
}
static int ironlake_setup_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->renderctx == NULL)
dev_priv->renderctx = intel_alloc_context_page(dev);
if (!dev_priv->renderctx)
return -ENOMEM;
if (dev_priv->pwrctx == NULL)
dev_priv->pwrctx = intel_alloc_context_page(dev);
if (!dev_priv->pwrctx) {
ironlake_teardown_rc6(dev);
return -ENOMEM;
}
return 0;
}
void ironlake_enable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
/* rc6 disabled by default due to repeated reports of hanging during
* boot and resume.
*/
if (!intel_enable_rc6(dev))
return;
mutex_lock(&dev->struct_mutex);
ret = ironlake_setup_rc6(dev);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return;
}
/*
* GPU can automatically power down the render unit if given a page
* to save state.
*/
ret = BEGIN_LP_RING(6);
if (ret) {
ironlake_teardown_rc6(dev);
mutex_unlock(&dev->struct_mutex);
return;
}
OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
OUT_RING(MI_SET_CONTEXT);
OUT_RING(dev_priv->renderctx->gtt_offset |
MI_MM_SPACE_GTT |
MI_SAVE_EXT_STATE_EN |
MI_RESTORE_EXT_STATE_EN |
MI_RESTORE_INHIBIT);
OUT_RING(MI_SUSPEND_FLUSH);
OUT_RING(MI_NOOP);
OUT_RING(MI_FLUSH);
ADVANCE_LP_RING();
/*
* Wait for the command parser to advance past MI_SET_CONTEXT. The HW
* does an implicit flush, combined with MI_FLUSH above, it should be
* safe to assume that renderctx is valid
*/
ret = intel_wait_ring_idle(LP_RING(dev_priv));
if (ret) {
DRM_ERROR("failed to enable ironlake power power savings\n");
ironlake_teardown_rc6(dev);
mutex_unlock(&dev->struct_mutex);
return;
}
I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
mutex_unlock(&dev->struct_mutex);
}