linux_old1/drivers/spi/spi-sifive.c

449 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
//
// Copyright 2018 SiFive, Inc.
//
// SiFive SPI controller driver (master mode only)
//
// Author: SiFive, Inc.
// sifive@sifive.com
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/io.h>
#include <linux/log2.h>
#define SIFIVE_SPI_DRIVER_NAME "sifive_spi"
#define SIFIVE_SPI_MAX_CS 32
#define SIFIVE_SPI_DEFAULT_DEPTH 8
#define SIFIVE_SPI_DEFAULT_MAX_BITS 8
/* register offsets */
#define SIFIVE_SPI_REG_SCKDIV 0x00 /* Serial clock divisor */
#define SIFIVE_SPI_REG_SCKMODE 0x04 /* Serial clock mode */
#define SIFIVE_SPI_REG_CSID 0x10 /* Chip select ID */
#define SIFIVE_SPI_REG_CSDEF 0x14 /* Chip select default */
#define SIFIVE_SPI_REG_CSMODE 0x18 /* Chip select mode */
#define SIFIVE_SPI_REG_DELAY0 0x28 /* Delay control 0 */
#define SIFIVE_SPI_REG_DELAY1 0x2c /* Delay control 1 */
#define SIFIVE_SPI_REG_FMT 0x40 /* Frame format */
#define SIFIVE_SPI_REG_TXDATA 0x48 /* Tx FIFO data */
#define SIFIVE_SPI_REG_RXDATA 0x4c /* Rx FIFO data */
#define SIFIVE_SPI_REG_TXMARK 0x50 /* Tx FIFO watermark */
#define SIFIVE_SPI_REG_RXMARK 0x54 /* Rx FIFO watermark */
#define SIFIVE_SPI_REG_FCTRL 0x60 /* SPI flash interface control */
#define SIFIVE_SPI_REG_FFMT 0x64 /* SPI flash instruction format */
#define SIFIVE_SPI_REG_IE 0x70 /* Interrupt Enable Register */
#define SIFIVE_SPI_REG_IP 0x74 /* Interrupt Pendings Register */
/* sckdiv bits */
#define SIFIVE_SPI_SCKDIV_DIV_MASK 0xfffU
/* sckmode bits */
#define SIFIVE_SPI_SCKMODE_PHA BIT(0)
#define SIFIVE_SPI_SCKMODE_POL BIT(1)
#define SIFIVE_SPI_SCKMODE_MODE_MASK (SIFIVE_SPI_SCKMODE_PHA | \
SIFIVE_SPI_SCKMODE_POL)
/* csmode bits */
#define SIFIVE_SPI_CSMODE_MODE_AUTO 0U
#define SIFIVE_SPI_CSMODE_MODE_HOLD 2U
#define SIFIVE_SPI_CSMODE_MODE_OFF 3U
/* delay0 bits */
#define SIFIVE_SPI_DELAY0_CSSCK(x) ((u32)(x))
#define SIFIVE_SPI_DELAY0_CSSCK_MASK 0xffU
#define SIFIVE_SPI_DELAY0_SCKCS(x) ((u32)(x) << 16)
#define SIFIVE_SPI_DELAY0_SCKCS_MASK (0xffU << 16)
/* delay1 bits */
#define SIFIVE_SPI_DELAY1_INTERCS(x) ((u32)(x))
#define SIFIVE_SPI_DELAY1_INTERCS_MASK 0xffU
#define SIFIVE_SPI_DELAY1_INTERXFR(x) ((u32)(x) << 16)
#define SIFIVE_SPI_DELAY1_INTERXFR_MASK (0xffU << 16)
/* fmt bits */
#define SIFIVE_SPI_FMT_PROTO_SINGLE 0U
#define SIFIVE_SPI_FMT_PROTO_DUAL 1U
#define SIFIVE_SPI_FMT_PROTO_QUAD 2U
#define SIFIVE_SPI_FMT_PROTO_MASK 3U
#define SIFIVE_SPI_FMT_ENDIAN BIT(2)
#define SIFIVE_SPI_FMT_DIR BIT(3)
#define SIFIVE_SPI_FMT_LEN(x) ((u32)(x) << 16)
#define SIFIVE_SPI_FMT_LEN_MASK (0xfU << 16)
/* txdata bits */
#define SIFIVE_SPI_TXDATA_DATA_MASK 0xffU
#define SIFIVE_SPI_TXDATA_FULL BIT(31)
/* rxdata bits */
#define SIFIVE_SPI_RXDATA_DATA_MASK 0xffU
#define SIFIVE_SPI_RXDATA_EMPTY BIT(31)
/* ie and ip bits */
#define SIFIVE_SPI_IP_TXWM BIT(0)
#define SIFIVE_SPI_IP_RXWM BIT(1)
struct sifive_spi {
void __iomem *regs; /* virt. address of control registers */
struct clk *clk; /* bus clock */
unsigned int fifo_depth; /* fifo depth in words */
u32 cs_inactive; /* level of the CS pins when inactive */
struct completion done; /* wake-up from interrupt */
};
static void sifive_spi_write(struct sifive_spi *spi, int offset, u32 value)
{
iowrite32(value, spi->regs + offset);
}
static u32 sifive_spi_read(struct sifive_spi *spi, int offset)
{
return ioread32(spi->regs + offset);
}
static void sifive_spi_init(struct sifive_spi *spi)
{
/* Watermark interrupts are disabled by default */
sifive_spi_write(spi, SIFIVE_SPI_REG_IE, 0);
/* Default watermark FIFO threshold values */
sifive_spi_write(spi, SIFIVE_SPI_REG_TXMARK, 1);
sifive_spi_write(spi, SIFIVE_SPI_REG_RXMARK, 0);
/* Set CS/SCK Delays and Inactive Time to defaults */
sifive_spi_write(spi, SIFIVE_SPI_REG_DELAY0,
SIFIVE_SPI_DELAY0_CSSCK(1) |
SIFIVE_SPI_DELAY0_SCKCS(1));
sifive_spi_write(spi, SIFIVE_SPI_REG_DELAY1,
SIFIVE_SPI_DELAY1_INTERCS(1) |
SIFIVE_SPI_DELAY1_INTERXFR(0));
/* Exit specialized memory-mapped SPI flash mode */
sifive_spi_write(spi, SIFIVE_SPI_REG_FCTRL, 0);
}
static int
sifive_spi_prepare_message(struct spi_master *master, struct spi_message *msg)
{
struct sifive_spi *spi = spi_master_get_devdata(master);
struct spi_device *device = msg->spi;
/* Update the chip select polarity */
if (device->mode & SPI_CS_HIGH)
spi->cs_inactive &= ~BIT(device->chip_select);
else
spi->cs_inactive |= BIT(device->chip_select);
sifive_spi_write(spi, SIFIVE_SPI_REG_CSDEF, spi->cs_inactive);
/* Select the correct device */
sifive_spi_write(spi, SIFIVE_SPI_REG_CSID, device->chip_select);
/* Set clock mode */
sifive_spi_write(spi, SIFIVE_SPI_REG_SCKMODE,
device->mode & SIFIVE_SPI_SCKMODE_MODE_MASK);
return 0;
}
static void sifive_spi_set_cs(struct spi_device *device, bool is_high)
{
struct sifive_spi *spi = spi_master_get_devdata(device->master);
/* Reverse polarity is handled by SCMR/CPOL. Not inverted CS. */
if (device->mode & SPI_CS_HIGH)
is_high = !is_high;
sifive_spi_write(spi, SIFIVE_SPI_REG_CSMODE, is_high ?
SIFIVE_SPI_CSMODE_MODE_AUTO :
SIFIVE_SPI_CSMODE_MODE_HOLD);
}
static int
sifive_spi_prep_transfer(struct sifive_spi *spi, struct spi_device *device,
struct spi_transfer *t)
{
u32 cr;
unsigned int mode;
/* Calculate and program the clock rate */
cr = DIV_ROUND_UP(clk_get_rate(spi->clk) >> 1, t->speed_hz) - 1;
cr &= SIFIVE_SPI_SCKDIV_DIV_MASK;
sifive_spi_write(spi, SIFIVE_SPI_REG_SCKDIV, cr);
mode = max_t(unsigned int, t->rx_nbits, t->tx_nbits);
/* Set frame format */
cr = SIFIVE_SPI_FMT_LEN(t->bits_per_word);
switch (mode) {
case SPI_NBITS_QUAD:
cr |= SIFIVE_SPI_FMT_PROTO_QUAD;
break;
case SPI_NBITS_DUAL:
cr |= SIFIVE_SPI_FMT_PROTO_DUAL;
break;
default:
cr |= SIFIVE_SPI_FMT_PROTO_SINGLE;
break;
}
if (device->mode & SPI_LSB_FIRST)
cr |= SIFIVE_SPI_FMT_ENDIAN;
if (!t->rx_buf)
cr |= SIFIVE_SPI_FMT_DIR;
sifive_spi_write(spi, SIFIVE_SPI_REG_FMT, cr);
/* We will want to poll if the time we need to wait is
* less than the context switching time.
* Let's call that threshold 5us. The operation will take:
* (8/mode) * fifo_depth / hz <= 5 * 10^-6
* 1600000 * fifo_depth <= hz * mode
*/
return 1600000 * spi->fifo_depth <= t->speed_hz * mode;
}
static irqreturn_t sifive_spi_irq(int irq, void *dev_id)
{
struct sifive_spi *spi = dev_id;
u32 ip = sifive_spi_read(spi, SIFIVE_SPI_REG_IP);
if (ip & (SIFIVE_SPI_IP_TXWM | SIFIVE_SPI_IP_RXWM)) {
/* Disable interrupts until next transfer */
sifive_spi_write(spi, SIFIVE_SPI_REG_IE, 0);
complete(&spi->done);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static void sifive_spi_wait(struct sifive_spi *spi, u32 bit, int poll)
{
if (poll) {
u32 cr;
do {
cr = sifive_spi_read(spi, SIFIVE_SPI_REG_IP);
} while (!(cr & bit));
} else {
reinit_completion(&spi->done);
sifive_spi_write(spi, SIFIVE_SPI_REG_IE, bit);
wait_for_completion(&spi->done);
}
}
static void sifive_spi_tx(struct sifive_spi *spi, const u8 *tx_ptr)
{
WARN_ON_ONCE((sifive_spi_read(spi, SIFIVE_SPI_REG_TXDATA)
& SIFIVE_SPI_TXDATA_FULL) != 0);
sifive_spi_write(spi, SIFIVE_SPI_REG_TXDATA,
*tx_ptr & SIFIVE_SPI_TXDATA_DATA_MASK);
}
static void sifive_spi_rx(struct sifive_spi *spi, u8 *rx_ptr)
{
u32 data = sifive_spi_read(spi, SIFIVE_SPI_REG_RXDATA);
WARN_ON_ONCE((data & SIFIVE_SPI_RXDATA_EMPTY) != 0);
*rx_ptr = data & SIFIVE_SPI_RXDATA_DATA_MASK;
}
static int
sifive_spi_transfer_one(struct spi_master *master, struct spi_device *device,
struct spi_transfer *t)
{
struct sifive_spi *spi = spi_master_get_devdata(master);
int poll = sifive_spi_prep_transfer(spi, device, t);
const u8 *tx_ptr = t->tx_buf;
u8 *rx_ptr = t->rx_buf;
unsigned int remaining_words = t->len;
while (remaining_words) {
unsigned int n_words = min(remaining_words, spi->fifo_depth);
unsigned int i;
/* Enqueue n_words for transmission */
for (i = 0; i < n_words; i++)
sifive_spi_tx(spi, tx_ptr++);
if (rx_ptr) {
/* Wait for transmission + reception to complete */
sifive_spi_write(spi, SIFIVE_SPI_REG_RXMARK,
n_words - 1);
sifive_spi_wait(spi, SIFIVE_SPI_IP_RXWM, poll);
/* Read out all the data from the RX FIFO */
for (i = 0; i < n_words; i++)
sifive_spi_rx(spi, rx_ptr++);
} else {
/* Wait for transmission to complete */
sifive_spi_wait(spi, SIFIVE_SPI_IP_TXWM, poll);
}
remaining_words -= n_words;
}
return 0;
}
static int sifive_spi_probe(struct platform_device *pdev)
{
struct sifive_spi *spi;
int ret, irq, num_cs;
u32 cs_bits, max_bits_per_word;
struct spi_master *master;
master = spi_alloc_master(&pdev->dev, sizeof(struct sifive_spi));
if (!master) {
dev_err(&pdev->dev, "out of memory\n");
return -ENOMEM;
}
spi = spi_master_get_devdata(master);
init_completion(&spi->done);
platform_set_drvdata(pdev, master);
spi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spi->regs)) {
ret = PTR_ERR(spi->regs);
goto put_master;
}
spi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(spi->clk)) {
dev_err(&pdev->dev, "Unable to find bus clock\n");
ret = PTR_ERR(spi->clk);
goto put_master;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto put_master;
}
/* Optional parameters */
ret =
of_property_read_u32(pdev->dev.of_node, "sifive,fifo-depth",
&spi->fifo_depth);
if (ret < 0)
spi->fifo_depth = SIFIVE_SPI_DEFAULT_DEPTH;
ret =
of_property_read_u32(pdev->dev.of_node, "sifive,max-bits-per-word",
&max_bits_per_word);
if (!ret && max_bits_per_word < 8) {
dev_err(&pdev->dev, "Only 8bit SPI words supported by the driver\n");
ret = -EINVAL;
goto put_master;
}
/* Spin up the bus clock before hitting registers */
ret = clk_prepare_enable(spi->clk);
if (ret) {
dev_err(&pdev->dev, "Unable to enable bus clock\n");
goto put_master;
}
/* probe the number of CS lines */
spi->cs_inactive = sifive_spi_read(spi, SIFIVE_SPI_REG_CSDEF);
sifive_spi_write(spi, SIFIVE_SPI_REG_CSDEF, 0xffffffffU);
cs_bits = sifive_spi_read(spi, SIFIVE_SPI_REG_CSDEF);
sifive_spi_write(spi, SIFIVE_SPI_REG_CSDEF, spi->cs_inactive);
if (!cs_bits) {
dev_err(&pdev->dev, "Could not auto probe CS lines\n");
ret = -EINVAL;
goto disable_clk;
}
num_cs = ilog2(cs_bits) + 1;
if (num_cs > SIFIVE_SPI_MAX_CS) {
dev_err(&pdev->dev, "Invalid number of spi slaves\n");
ret = -EINVAL;
goto disable_clk;
}
/* Define our master */
master->dev.of_node = pdev->dev.of_node;
master->bus_num = pdev->id;
master->num_chipselect = num_cs;
master->mode_bits = SPI_CPHA | SPI_CPOL
| SPI_CS_HIGH | SPI_LSB_FIRST
| SPI_TX_DUAL | SPI_TX_QUAD
| SPI_RX_DUAL | SPI_RX_QUAD;
/* TODO: add driver support for bits_per_word < 8
* we need to "left-align" the bits (unless SPI_LSB_FIRST)
*/
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->flags = SPI_CONTROLLER_MUST_TX | SPI_MASTER_GPIO_SS;
master->prepare_message = sifive_spi_prepare_message;
master->set_cs = sifive_spi_set_cs;
master->transfer_one = sifive_spi_transfer_one;
pdev->dev.dma_mask = NULL;
/* Configure the SPI master hardware */
sifive_spi_init(spi);
/* Register for SPI Interrupt */
ret = devm_request_irq(&pdev->dev, irq, sifive_spi_irq, 0,
dev_name(&pdev->dev), spi);
if (ret) {
dev_err(&pdev->dev, "Unable to bind to interrupt\n");
goto disable_clk;
}
dev_info(&pdev->dev, "mapped; irq=%d, cs=%d\n",
irq, master->num_chipselect);
ret = devm_spi_register_master(&pdev->dev, master);
if (ret < 0) {
dev_err(&pdev->dev, "spi_register_master failed\n");
goto disable_clk;
}
return 0;
disable_clk:
clk_disable_unprepare(spi->clk);
put_master:
spi_master_put(master);
return ret;
}
static int sifive_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct sifive_spi *spi = spi_master_get_devdata(master);
/* Disable all the interrupts just in case */
sifive_spi_write(spi, SIFIVE_SPI_REG_IE, 0);
clk_disable_unprepare(spi->clk);
return 0;
}
static const struct of_device_id sifive_spi_of_match[] = {
{ .compatible = "sifive,spi0", },
{}
};
MODULE_DEVICE_TABLE(of, sifive_spi_of_match);
static struct platform_driver sifive_spi_driver = {
.probe = sifive_spi_probe,
.remove = sifive_spi_remove,
.driver = {
.name = SIFIVE_SPI_DRIVER_NAME,
.of_match_table = sifive_spi_of_match,
},
};
module_platform_driver(sifive_spi_driver);
MODULE_AUTHOR("SiFive, Inc. <sifive@sifive.com>");
MODULE_DESCRIPTION("SiFive SPI driver");
MODULE_LICENSE("GPL");