linux_old1/arch/x86/include/asm/cmpxchg_32.h

284 lines
7.7 KiB
C
Raw Normal View History

#ifndef _ASM_X86_CMPXCHG_32_H
#define _ASM_X86_CMPXCHG_32_H
#include <linux/bitops.h> /* for LOCK_PREFIX */
/*
* Note: if you use set64_bit(), __cmpxchg64(), or their variants, you
* you need to test for the feature in boot_cpu_data.
*/
extern void __xchg_wrong_size(void);
/*
* Note: no "lock" prefix even on SMP: xchg always implies lock anyway.
* Since this is generally used to protect other memory information, we
* use "asm volatile" and "memory" clobbers to prevent gcc from moving
* information around.
*/
#define __xchg(x, ptr, size) \
({ \
__typeof(*(ptr)) __x = (x); \
switch (size) { \
case 1: \
{ \
volatile u8 *__ptr = (volatile u8 *)(ptr); \
asm volatile("xchgb %0,%1" \
: "=q" (__x), "+m" (*__ptr) \
: "0" (__x) \
: "memory"); \
break; \
} \
case 2: \
{ \
volatile u16 *__ptr = (volatile u16 *)(ptr); \
asm volatile("xchgw %0,%1" \
: "=r" (__x), "+m" (*__ptr) \
: "0" (__x) \
: "memory"); \
break; \
} \
case 4: \
{ \
volatile u32 *__ptr = (volatile u32 *)(ptr); \
asm volatile("xchgl %0,%1" \
: "=r" (__x), "+m" (*__ptr) \
: "0" (__x) \
: "memory"); \
break; \
} \
default: \
__xchg_wrong_size(); \
} \
__x; \
})
#define xchg(ptr, v) \
__xchg((v), (ptr), sizeof(*ptr))
/*
* CMPXCHG8B only writes to the target if we had the previous
* value in registers, otherwise it acts as a read and gives us the
* "new previous" value. That is why there is a loop. Preloading
* EDX:EAX is a performance optimization: in the common case it means
* we need only one locked operation.
*
* A SIMD/3DNOW!/MMX/FPU 64-bit store here would require at the very
* least an FPU save and/or %cr0.ts manipulation.
*
* cmpxchg8b must be used with the lock prefix here to allow the
* instruction to be executed atomically. We need to have the reader
* side to see the coherent 64bit value.
*/
static inline void set_64bit(volatile u64 *ptr, u64 value)
{
u32 low = value;
u32 high = value >> 32;
u64 prev = *ptr;
asm volatile("\n1:\t"
LOCK_PREFIX "cmpxchg8b %0\n\t"
"jnz 1b"
: "=m" (*ptr), "+A" (prev)
: "b" (low), "c" (high)
: "memory");
}
extern void __cmpxchg_wrong_size(void);
/*
* Atomic compare and exchange. Compare OLD with MEM, if identical,
* store NEW in MEM. Return the initial value in MEM. Success is
* indicated by comparing RETURN with OLD.
*/
#define __raw_cmpxchg(ptr, old, new, size, lock) \
({ \
__typeof__(*(ptr)) __ret; \
__typeof__(*(ptr)) __old = (old); \
__typeof__(*(ptr)) __new = (new); \
switch (size) { \
case 1: \
{ \
volatile u8 *__ptr = (volatile u8 *)(ptr); \
asm volatile(lock "cmpxchgb %2,%1" \
: "=a" (__ret), "+m" (*__ptr) \
: "q" (__new), "0" (__old) \
: "memory"); \
break; \
} \
case 2: \
{ \
volatile u16 *__ptr = (volatile u16 *)(ptr); \
asm volatile(lock "cmpxchgw %2,%1" \
: "=a" (__ret), "+m" (*__ptr) \
: "r" (__new), "0" (__old) \
: "memory"); \
break; \
} \
case 4: \
{ \
volatile u32 *__ptr = (volatile u32 *)(ptr); \
asm volatile(lock "cmpxchgl %2,%1" \
: "=a" (__ret), "+m" (*__ptr) \
: "r" (__new), "0" (__old) \
: "memory"); \
break; \
} \
default: \
__cmpxchg_wrong_size(); \
} \
__ret; \
})
#define __cmpxchg(ptr, old, new, size) \
__raw_cmpxchg((ptr), (old), (new), (size), LOCK_PREFIX)
#define __sync_cmpxchg(ptr, old, new, size) \
__raw_cmpxchg((ptr), (old), (new), (size), "lock; ")
#define __cmpxchg_local(ptr, old, new, size) \
__raw_cmpxchg((ptr), (old), (new), (size), "")
#ifdef CONFIG_X86_CMPXCHG
#define __HAVE_ARCH_CMPXCHG 1
#define cmpxchg(ptr, old, new) \
__cmpxchg((ptr), (old), (new), sizeof(*ptr))
#define sync_cmpxchg(ptr, old, new) \
__sync_cmpxchg((ptr), (old), (new), sizeof(*ptr))
#define cmpxchg_local(ptr, old, new) \
__cmpxchg_local((ptr), (old), (new), sizeof(*ptr))
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
#endif
#ifdef CONFIG_X86_CMPXCHG64
#define cmpxchg64(ptr, o, n) \
((__typeof__(*(ptr)))__cmpxchg64((ptr), (unsigned long long)(o), \
(unsigned long long)(n)))
#define cmpxchg64_local(ptr, o, n) \
((__typeof__(*(ptr)))__cmpxchg64_local((ptr), (unsigned long long)(o), \
(unsigned long long)(n)))
#endif
static inline u64 __cmpxchg64(volatile u64 *ptr, u64 old, u64 new)
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
{
u64 prev;
asm volatile(LOCK_PREFIX "cmpxchg8b %1"
: "=A" (prev),
"+m" (*ptr)
: "b" ((u32)new),
"c" ((u32)(new >> 32)),
"0" (old)
: "memory");
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
return prev;
}
static inline u64 __cmpxchg64_local(volatile u64 *ptr, u64 old, u64 new)
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
{
u64 prev;
asm volatile("cmpxchg8b %1"
: "=A" (prev),
"+m" (*ptr)
: "b" ((u32)new),
"c" ((u32)(new >> 32)),
"0" (old)
: "memory");
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
return prev;
}
#ifndef CONFIG_X86_CMPXCHG
/*
* Building a kernel capable running on 80386. It may be necessary to
* simulate the cmpxchg on the 80386 CPU. For that purpose we define
* a function for each of the sizes we support.
*/
extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
unsigned long new, int size)
{
switch (size) {
case 1:
return cmpxchg_386_u8(ptr, old, new);
case 2:
return cmpxchg_386_u16(ptr, old, new);
case 4:
return cmpxchg_386_u32(ptr, old, new);
}
return old;
}
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
#define cmpxchg(ptr, o, n) \
({ \
__typeof__(*(ptr)) __ret; \
if (likely(boot_cpu_data.x86 > 3)) \
__ret = (__typeof__(*(ptr)))__cmpxchg((ptr), \
(unsigned long)(o), (unsigned long)(n), \
sizeof(*(ptr))); \
else \
__ret = (__typeof__(*(ptr)))cmpxchg_386((ptr), \
(unsigned long)(o), (unsigned long)(n), \
sizeof(*(ptr))); \
__ret; \
})
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
#define cmpxchg_local(ptr, o, n) \
({ \
__typeof__(*(ptr)) __ret; \
if (likely(boot_cpu_data.x86 > 3)) \
__ret = (__typeof__(*(ptr)))__cmpxchg_local((ptr), \
(unsigned long)(o), (unsigned long)(n), \
sizeof(*(ptr))); \
else \
__ret = (__typeof__(*(ptr)))cmpxchg_386((ptr), \
(unsigned long)(o), (unsigned long)(n), \
sizeof(*(ptr))); \
__ret; \
})
#endif
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
#ifndef CONFIG_X86_CMPXCHG64
/*
* Building a kernel capable running on 80386 and 80486. It may be necessary
* to simulate the cmpxchg8b on the 80386 and 80486 CPU.
*/
#define cmpxchg64(ptr, o, n) \
({ \
__typeof__(*(ptr)) __ret; \
__typeof__(*(ptr)) __old = (o); \
__typeof__(*(ptr)) __new = (n); \
alternative_io(LOCK_PREFIX_HERE \
"call cmpxchg8b_emu", \
"lock; cmpxchg8b (%%esi)" , \
X86_FEATURE_CX8, \
"=A" (__ret), \
"S" ((ptr)), "0" (__old), \
"b" ((unsigned int)__new), \
"c" ((unsigned int)(__new>>32)) \
: "memory"); \
__ret; })
#define cmpxchg64_local(ptr, o, n) \
({ \
__typeof__(*(ptr)) __ret; \
__typeof__(*(ptr)) __old = (o); \
__typeof__(*(ptr)) __new = (n); \
alternative_io("call cmpxchg8b_emu", \
"cmpxchg8b (%%esi)" , \
X86_FEATURE_CX8, \
"=A" (__ret), \
"S" ((ptr)), "0" (__old), \
"b" ((unsigned int)__new), \
"c" ((unsigned int)(__new>>32)) \
: "memory"); \
__ret; })
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486 Actually, on 386, cmpxchg and cmpxchg_local fall back on cmpxchg_386_u8/16/32: it disables interruptions around non atomic updates to mimic the cmpxchg behavior. The comment: /* Poor man's cmpxchg for 386. Unsuitable for SMP */ already present in cmpxchg_386_u32 tells much about how this cmpxchg implementation should not be used in a SMP context. However, the cmpxchg_local can perfectly use this fallback, since it only needs to be atomic wrt the local cpu. This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64 and cmpxchg64_local on 80386 and 80486. Q: but why is it called cmpxchg_486 when the other functions are called A: Because the standard cmpxchg is missing only on 386, but cmpxchg8b is missing both on 386 and 486. Citing Intel's Instruction set reference: cmpxchg: This instruction is not supported on Intel processors earlier than the Intel486 processors. cmpxchg8b: This instruction encoding is not supported on Intel processors earlier than the Pentium processors. Q: What's the reason to have cmpxchg64_local on 32 bit architectures? Without that need all this would just be a few simple defines. A: cmpxchg64_local on 32 bits architectures takes unsigned long long parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense to provide a flavor of cmpxchg and cmpxchg_local using this instruction. Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it makes sense _not_ to define cmpxchg64 while cmpxchg could still be available. Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a However, cmpxchg64_local will be emulated by disabling interrupts on all architectures where it is not supported atomically. Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it would make the 386/486 fallbacks ugly, make its design different from cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot be emulated) and require the __cmpxchg_local to be expressed as a macro rather than an inline function so the parameters would not be fixed to unsigned long long in every case. So I think cmpxchg64_local makes sense there, but I am open to suggestions. Q: Are there any callers? A: I am actually using it in LTTng in my timestamping code. I use it to work around CPUs with asynchronous TSCs. I need to update 64 bits values atomically on this 32 bits architecture. Changelog: - Ran though checkpatch. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:47 +08:00
#endif
#endif /* _ASM_X86_CMPXCHG_32_H */