linux_old1/drivers/net/irda/via-ircc.h

854 lines
21 KiB
C
Raw Normal View History

/*********************************************************************
*
* Filename: via-ircc.h
* Version: 1.0
* Description: Driver for the VIA VT8231/VT8233 IrDA chipsets
* Author: VIA Technologies, inc
* Date : 08/06/2003
Copyright (c) 1998-2003 VIA Technologies, Inc.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTIES OR REPRESENTATIONS; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
* Comment:
* jul/08/2002 : Rx buffer length should use Rx ring ptr.
* Oct/28/2002 : Add SB id for 3147 and 3177.
* jul/09/2002 : only implement two kind of dongle currently.
* Oct/02/2002 : work on VT8231 and VT8233 .
* Aug/06/2003 : change driver format to pci driver .
********************************************************************/
#ifndef via_IRCC_H
#define via_IRCC_H
#include <linux/time.h>
#include <linux/spinlock.h>
#include <linux/pm.h>
#include <linux/types.h>
#include <asm/io.h>
#define MAX_TX_WINDOW 7
#define MAX_RX_WINDOW 7
struct st_fifo_entry {
int status;
int len;
};
struct st_fifo {
struct st_fifo_entry entries[MAX_RX_WINDOW + 2];
int pending_bytes;
int head;
int tail;
int len;
};
struct frame_cb {
void *start; /* Start of frame in DMA mem */
int len; /* Lenght of frame in DMA mem */
};
struct tx_fifo {
struct frame_cb queue[MAX_TX_WINDOW + 2]; /* Info about frames in queue */
int ptr; /* Currently being sent */
int len; /* Lenght of queue */
int free; /* Next free slot */
void *tail; /* Next free start in DMA mem */
};
struct eventflag // for keeping track of Interrupt Events
{
//--------tx part
unsigned char TxFIFOUnderRun;
unsigned char EOMessage;
unsigned char TxFIFOReady;
unsigned char EarlyEOM;
//--------rx part
unsigned char PHYErr;
unsigned char CRCErr;
unsigned char RxFIFOOverRun;
unsigned char EOPacket;
unsigned char RxAvail;
unsigned char TooLargePacket;
unsigned char SIRBad;
//--------unknown
unsigned char Unknown;
//----------
unsigned char TimeOut;
unsigned char RxDMATC;
unsigned char TxDMATC;
};
/* Private data for each instance */
struct via_ircc_cb {
struct st_fifo st_fifo; /* Info about received frames */
struct tx_fifo tx_fifo; /* Info about frames to be transmitted */
struct net_device *netdev; /* Yes! we are some kind of netdevice */
struct net_device_stats stats;
struct irlap_cb *irlap; /* The link layer we are binded to */
struct qos_info qos; /* QoS capabilities for this device */
chipio_t io; /* IrDA controller information */
iobuff_t tx_buff; /* Transmit buffer */
iobuff_t rx_buff; /* Receive buffer */
dma_addr_t tx_buff_dma;
dma_addr_t rx_buff_dma;
__u8 ier; /* Interrupt enable register */
struct timeval stamp;
struct timeval now;
spinlock_t lock; /* For serializing operations */
__u32 flags; /* Interface flags */
__u32 new_speed;
int index; /* Instance index */
struct eventflag EventFlag;
struct pm_dev *dev;
unsigned int chip_id; /* to remember chip id */
unsigned int RetryCount;
unsigned int RxDataReady;
unsigned int RxLastCount;
};
//---------I=Infrared, H=Host, M=Misc, T=Tx, R=Rx, ST=Status,
// CF=Config, CT=Control, L=Low, H=High, C=Count
#define I_CF_L_0 0x10
#define I_CF_H_0 0x11
#define I_SIR_BOF 0x12
#define I_SIR_EOF 0x13
#define I_ST_CT_0 0x15
#define I_ST_L_1 0x16
#define I_ST_H_1 0x17
#define I_CF_L_1 0x18
#define I_CF_H_1 0x19
#define I_CF_L_2 0x1a
#define I_CF_H_2 0x1b
#define I_CF_3 0x1e
#define H_CT 0x20
#define H_ST 0x21
#define M_CT 0x22
#define TX_CT_1 0x23
#define TX_CT_2 0x24
#define TX_ST 0x25
#define RX_CT 0x26
#define RX_ST 0x27
#define RESET 0x28
#define P_ADDR 0x29
#define RX_C_L 0x2a
#define RX_C_H 0x2b
#define RX_P_L 0x2c
#define RX_P_H 0x2d
#define TX_C_L 0x2e
#define TX_C_H 0x2f
#define TIMER 0x32
#define I_CF_4 0x33
#define I_T_C_L 0x34
#define I_T_C_H 0x35
#define VERSION 0x3f
//-------------------------------
#define StartAddr 0x10 // the first register address
#define EndAddr 0x3f // the last register address
#define GetBit(val,bit) val = (unsigned char) ((val>>bit) & 0x1)
// Returns the bit
#define SetBit(val,bit) val= (unsigned char ) (val | (0x1 << bit))
// Sets bit to 1
#define ResetBit(val,bit) val= (unsigned char ) (val & ~(0x1 << bit))
// Sets bit to 0
#define OFF 0
#define ON 1
#define DMA_TX_MODE 0x08
#define DMA_RX_MODE 0x04
#define DMA1 0
#define DMA2 0xc0
#define MASK1 DMA1+0x0a
#define MASK2 DMA2+0x14
#define Clk_bit 0x40
#define Tx_bit 0x01
#define Rd_Valid 0x08
#define RxBit 0x08
static void DisableDmaChannel(unsigned int channel)
{
switch (channel) { // 8 Bit DMA channels DMAC1
case 0:
outb(4, MASK1); //mask channel 0
break;
case 1:
outb(5, MASK1); //Mask channel 1
break;
case 2:
outb(6, MASK1); //Mask channel 2
break;
case 3:
outb(7, MASK1); //Mask channel 3
break;
case 5:
outb(5, MASK2); //Mask channel 5
break;
case 6:
outb(6, MASK2); //Mask channel 6
break;
case 7:
outb(7, MASK2); //Mask channel 7
break;
default:
break;
}; //Switch
}
static unsigned char ReadLPCReg(int iRegNum)
{
unsigned char iVal;
outb(0x87, 0x2e);
outb(0x87, 0x2e);
outb(iRegNum, 0x2e);
iVal = inb(0x2f);
outb(0xaa, 0x2e);
return iVal;
}
static void WriteLPCReg(int iRegNum, unsigned char iVal)
{
outb(0x87, 0x2e);
outb(0x87, 0x2e);
outb(iRegNum, 0x2e);
outb(iVal, 0x2f);
outb(0xAA, 0x2e);
}
static __u8 ReadReg(unsigned int BaseAddr, int iRegNum)
{
return ((__u8) inb(BaseAddr + iRegNum));
}
static void WriteReg(unsigned int BaseAddr, int iRegNum, unsigned char iVal)
{
outb(iVal, BaseAddr + iRegNum);
}
static int WriteRegBit(unsigned int BaseAddr, unsigned char RegNum,
unsigned char BitPos, unsigned char value)
{
__u8 Rtemp, Wtemp;
if (BitPos > 7) {
return -1;
}
if ((RegNum < StartAddr) || (RegNum > EndAddr))
return -1;
Rtemp = ReadReg(BaseAddr, RegNum);
if (value == 0)
Wtemp = ResetBit(Rtemp, BitPos);
else {
if (value == 1)
Wtemp = SetBit(Rtemp, BitPos);
else
return -1;
}
WriteReg(BaseAddr, RegNum, Wtemp);
return 0;
}
static __u8 CheckRegBit(unsigned int BaseAddr, unsigned char RegNum,
unsigned char BitPos)
{
__u8 temp;
if (BitPos > 7)
return 0xff;
if ((RegNum < StartAddr) || (RegNum > EndAddr)) {
// printf("what is the register %x!\n",RegNum);
}
temp = ReadReg(BaseAddr, RegNum);
return GetBit(temp, BitPos);
}
static void SetMaxRxPacketSize(__u16 iobase, __u16 size)
{
__u16 low, high;
if ((size & 0xe000) == 0) {
low = size & 0x00ff;
high = (size & 0x1f00) >> 8;
WriteReg(iobase, I_CF_L_2, low);
WriteReg(iobase, I_CF_H_2, high);
}
}
//for both Rx and Tx
static void SetFIFO(__u16 iobase, __u16 value)
{
switch (value) {
case 128:
WriteRegBit(iobase, 0x11, 0, 0);
WriteRegBit(iobase, 0x11, 7, 1);
break;
case 64:
WriteRegBit(iobase, 0x11, 0, 0);
WriteRegBit(iobase, 0x11, 7, 0);
break;
case 32:
WriteRegBit(iobase, 0x11, 0, 1);
WriteRegBit(iobase, 0x11, 7, 0);
break;
default:
WriteRegBit(iobase, 0x11, 0, 0);
WriteRegBit(iobase, 0x11, 7, 0);
}
}
#define CRC16(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,7,val) //0 for 32 CRC
/*
#define SetVFIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,5,val)
#define SetFIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,6,val)
#define SetMIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,5,val)
#define SetSIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,4,val)
*/
#define SIRFilter(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,3,val)
#define Filter(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,2,val)
#define InvertTX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,1,val)
#define InvertRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,0,val)
//****************************I_CF_H_0
#define EnableTX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,4,val)
#define EnableRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,3,val)
#define EnableDMA(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,2,val)
#define SIRRecvAny(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,1,val)
#define DiableTrans(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,0,val)
//***************************I_SIR_BOF,I_SIR_EOF
#define SetSIRBOF(BaseAddr,val) WriteReg(BaseAddr,I_SIR_BOF,val)
#define SetSIREOF(BaseAddr,val) WriteReg(BaseAddr,I_SIR_EOF,val)
#define GetSIRBOF(BaseAddr) ReadReg(BaseAddr,I_SIR_BOF)
#define GetSIREOF(BaseAddr) ReadReg(BaseAddr,I_SIR_EOF)
//*******************I_ST_CT_0
#define EnPhys(BaseAddr,val) WriteRegBit(BaseAddr,I_ST_CT_0,7,val)
#define IsModeError(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,6) //RO
#define IsVFIROn(BaseAddr) CheckRegBit(BaseAddr,0x14,0) //RO for VT1211 only
#define IsFIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,5) //RO
#define IsMIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,4) //RO
#define IsSIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,3) //RO
#define IsEnableTX(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,2) //RO
#define IsEnableRX(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,1) //RO
#define Is16CRC(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,0) //RO
//***************************I_CF_3
#define DisableAdjacentPulseWidth(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,5,val) //1 disable
#define DisablePulseWidthAdjust(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,4,val) //1 disable
#define UseOneRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,1,val) //0 use two RX
#define SlowIRRXLowActive(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,0,val) //0 show RX high=1 in SIR
//***************************H_CT
#define EnAllInt(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,7,val)
#define TXStart(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,6,val)
#define RXStart(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,5,val)
#define ClearRXInt(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,4,val) // 1 clear
//*****************H_ST
#define IsRXInt(BaseAddr) CheckRegBit(BaseAddr,H_ST,4)
#define GetIntIndentify(BaseAddr) ((ReadReg(BaseAddr,H_ST)&0xf1) >>1)
#define IsHostBusy(BaseAddr) CheckRegBit(BaseAddr,H_ST,0)
#define GetHostStatus(BaseAddr) ReadReg(BaseAddr,H_ST) //RO
//**************************M_CT
#define EnTXDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,7,val)
#define EnRXDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,6,val)
#define SwapDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,5,val)
#define EnInternalLoop(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,4,val)
#define EnExternalLoop(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,3,val)
//**************************TX_CT_1
#define EnTXFIFOHalfLevelInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,4,val) //half empty int (1 half)
#define EnTXFIFOUnderrunEOMInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,5,val)
#define EnTXFIFOReadyInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,6,val) //int when reach it threshold (setting by bit 4)
//**************************TX_CT_2
#define ForceUnderrun(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,7,val) // force an underrun int
#define EnTXCRC(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,6,val) //1 for FIR,MIR...0 (not SIR)
#define ForceBADCRC(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,5,val) //force an bad CRC
#define SendSIP(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,4,val) //send indication pulse for prevent SIR disturb
#define ClearEnTX(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,3,val) // opposite to EnTX
//*****************TX_ST
#define GetTXStatus(BaseAddr) ReadReg(BaseAddr,TX_ST) //RO
//**************************RX_CT
#define EnRXSpecInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,0,val)
#define EnRXFIFOReadyInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,1,val) //enable int when reach it threshold (setting by bit 7)
#define EnRXFIFOHalfLevelInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,7,val) //enable int when (1) half full...or (0) just not full
//*****************RX_ST
#define GetRXStatus(BaseAddr) ReadReg(BaseAddr,RX_ST) //RO
//***********************P_ADDR
#define SetPacketAddr(BaseAddr,addr) WriteReg(BaseAddr,P_ADDR,addr)
//***********************I_CF_4
#define EnGPIOtoRX2(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,7,val)
#define EnTimerInt(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,1,val)
#define ClearTimerInt(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,0,val)
//***********************I_T_C_L
#define WriteGIO(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_L,7,val)
#define ReadGIO(BaseAddr) CheckRegBit(BaseAddr,I_T_C_L,7)
#define ReadRX(BaseAddr) CheckRegBit(BaseAddr,I_T_C_L,3) //RO
#define WriteTX(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_L,0,val)
//***********************I_T_C_H
#define EnRX2(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_H,7,val)
#define ReadRX2(BaseAddr) CheckRegBit(BaseAddr,I_T_C_H,7)
//**********************Version
#define GetFIRVersion(BaseAddr) ReadReg(BaseAddr,VERSION)
static void SetTimer(__u16 iobase, __u8 count)
{
EnTimerInt(iobase, OFF);
WriteReg(iobase, TIMER, count);
EnTimerInt(iobase, ON);
}
static void SetSendByte(__u16 iobase, __u32 count)
{
__u32 low, high;
if ((count & 0xf000) == 0) {
low = count & 0x00ff;
high = (count & 0x0f00) >> 8;
WriteReg(iobase, TX_C_L, low);
WriteReg(iobase, TX_C_H, high);
}
}
static void ResetChip(__u16 iobase, __u8 type)
{
__u8 value;
value = (type + 2) << 4;
WriteReg(iobase, RESET, type);
}
static int CkRxRecv(__u16 iobase, struct via_ircc_cb *self)
{
__u8 low, high;
__u16 wTmp = 0, wTmp1 = 0, wTmp_new = 0;
low = ReadReg(iobase, RX_C_L);
high = ReadReg(iobase, RX_C_H);
wTmp1 = high;
wTmp = (wTmp1 << 8) | low;
udelay(10);
low = ReadReg(iobase, RX_C_L);
high = ReadReg(iobase, RX_C_H);
wTmp1 = high;
wTmp_new = (wTmp1 << 8) | low;
if (wTmp_new != wTmp)
return 1;
else
return 0;
}
static __u16 RxCurCount(__u16 iobase, struct via_ircc_cb * self)
{
__u8 low, high;
__u16 wTmp = 0, wTmp1 = 0;
low = ReadReg(iobase, RX_P_L);
high = ReadReg(iobase, RX_P_H);
wTmp1 = high;
wTmp = (wTmp1 << 8) | low;
return wTmp;
}
/* This Routine can only use in recevie_complete
* for it will update last count.
*/
static __u16 GetRecvByte(__u16 iobase, struct via_ircc_cb * self)
{
__u8 low, high;
__u16 wTmp, wTmp1, ret;
low = ReadReg(iobase, RX_P_L);
high = ReadReg(iobase, RX_P_H);
wTmp1 = high;
wTmp = (wTmp1 << 8) | low;
if (wTmp >= self->RxLastCount)
ret = wTmp - self->RxLastCount;
else
ret = (0x8000 - self->RxLastCount) + wTmp;
self->RxLastCount = wTmp;
/* RX_P is more actually the RX_C
low=ReadReg(iobase,RX_C_L);
high=ReadReg(iobase,RX_C_H);
if(!(high&0xe000)) {
temp=(high<<8)+low;
return temp;
}
else return 0;
*/
return ret;
}
static void Sdelay(__u16 scale)
{
__u8 bTmp;
int i, j;
for (j = 0; j < scale; j++) {
for (i = 0; i < 0x20; i++) {
bTmp = inb(0xeb);
outb(bTmp, 0xeb);
}
}
}
static void Tdelay(__u16 scale)
{
__u8 bTmp;
int i, j;
for (j = 0; j < scale; j++) {
for (i = 0; i < 0x50; i++) {
bTmp = inb(0xeb);
outb(bTmp, 0xeb);
}
}
}
static void ActClk(__u16 iobase, __u8 value)
{
__u8 bTmp;
bTmp = ReadReg(iobase, 0x34);
if (value)
WriteReg(iobase, 0x34, bTmp | Clk_bit);
else
WriteReg(iobase, 0x34, bTmp & ~Clk_bit);
}
static void ClkTx(__u16 iobase, __u8 Clk, __u8 Tx)
{
__u8 bTmp;
bTmp = ReadReg(iobase, 0x34);
if (Clk == 0)
bTmp &= ~Clk_bit;
else {
if (Clk == 1)
bTmp |= Clk_bit;
}
WriteReg(iobase, 0x34, bTmp);
Sdelay(1);
if (Tx == 0)
bTmp &= ~Tx_bit;
else {
if (Tx == 1)
bTmp |= Tx_bit;
}
WriteReg(iobase, 0x34, bTmp);
}
static void Wr_Byte(__u16 iobase, __u8 data)
{
__u8 bData = data;
// __u8 btmp;
int i;
ClkTx(iobase, 0, 1);
Tdelay(2);
ActClk(iobase, 1);
Tdelay(1);
for (i = 0; i < 8; i++) { //LDN
if ((bData >> i) & 0x01) {
ClkTx(iobase, 0, 1); //bit data = 1;
} else {
ClkTx(iobase, 0, 0); //bit data = 1;
}
Tdelay(2);
Sdelay(1);
ActClk(iobase, 1); //clk hi
Tdelay(1);
}
}
static __u8 Rd_Indx(__u16 iobase, __u8 addr, __u8 index)
{
__u8 data = 0, bTmp, data_bit;
int i;
bTmp = addr | (index << 1) | 0;
ClkTx(iobase, 0, 0);
Tdelay(2);
ActClk(iobase, 1);
udelay(1);
Wr_Byte(iobase, bTmp);
Sdelay(1);
ClkTx(iobase, 0, 0);
Tdelay(2);
for (i = 0; i < 10; i++) {
ActClk(iobase, 1);
Tdelay(1);
ActClk(iobase, 0);
Tdelay(1);
ClkTx(iobase, 0, 1);
Tdelay(1);
bTmp = ReadReg(iobase, 0x34);
if (!(bTmp & Rd_Valid))
break;
}
if (!(bTmp & Rd_Valid)) {
for (i = 0; i < 8; i++) {
ActClk(iobase, 1);
Tdelay(1);
ActClk(iobase, 0);
bTmp = ReadReg(iobase, 0x34);
data_bit = 1 << i;
if (bTmp & RxBit)
data |= data_bit;
else
data &= ~data_bit;
Tdelay(2);
}
} else {
for (i = 0; i < 2; i++) {
ActClk(iobase, 1);
Tdelay(1);
ActClk(iobase, 0);
Tdelay(2);
}
bTmp = ReadReg(iobase, 0x34);
}
for (i = 0; i < 1; i++) {
ActClk(iobase, 1);
Tdelay(1);
ActClk(iobase, 0);
Tdelay(2);
}
ClkTx(iobase, 0, 0);
Tdelay(1);
for (i = 0; i < 3; i++) {
ActClk(iobase, 1);
Tdelay(1);
ActClk(iobase, 0);
Tdelay(2);
}
return data;
}
static void Wr_Indx(__u16 iobase, __u8 addr, __u8 index, __u8 data)
{
int i;
__u8 bTmp;
ClkTx(iobase, 0, 0);
udelay(2);
ActClk(iobase, 1);
udelay(1);
bTmp = addr | (index << 1) | 1;
Wr_Byte(iobase, bTmp);
Wr_Byte(iobase, data);
for (i = 0; i < 2; i++) {
ClkTx(iobase, 0, 0);
Tdelay(2);
ActClk(iobase, 1);
Tdelay(1);
}
ActClk(iobase, 0);
}
static void ResetDongle(__u16 iobase)
{
int i;
ClkTx(iobase, 0, 0);
Tdelay(1);
for (i = 0; i < 30; i++) {
ActClk(iobase, 1);
Tdelay(1);
ActClk(iobase, 0);
Tdelay(1);
}
ActClk(iobase, 0);
}
static void SetSITmode(__u16 iobase)
{
__u8 bTmp;
bTmp = ReadLPCReg(0x28);
WriteLPCReg(0x28, bTmp | 0x10); //select ITMOFF
bTmp = ReadReg(iobase, 0x35);
WriteReg(iobase, 0x35, bTmp | 0x40); // Driver ITMOFF
WriteReg(iobase, 0x28, bTmp | 0x80); // enable All interrupt
}
static void SI_SetMode(__u16 iobase, int mode)
{
//__u32 dTmp;
__u8 bTmp;
WriteLPCReg(0x28, 0x70); // S/W Reset
SetSITmode(iobase);
ResetDongle(iobase);
udelay(10);
Wr_Indx(iobase, 0x40, 0x0, 0x17); //RX ,APEN enable,Normal power
Wr_Indx(iobase, 0x40, 0x1, mode); //Set Mode
Wr_Indx(iobase, 0x40, 0x2, 0xff); //Set power to FIR VFIR > 1m
bTmp = Rd_Indx(iobase, 0x40, 1);
}
static void InitCard(__u16 iobase)
{
ResetChip(iobase, 5);
WriteReg(iobase, I_ST_CT_0, 0x00); // open CHIP on
SetSIRBOF(iobase, 0xc0); // hardware default value
SetSIREOF(iobase, 0xc1);
}
static void CommonInit(__u16 iobase)
{
// EnTXCRC(iobase,0);
SwapDMA(iobase, OFF);
SetMaxRxPacketSize(iobase, 0x0fff); //set to max:4095
EnRXFIFOReadyInt(iobase, OFF);
EnRXFIFOHalfLevelInt(iobase, OFF);
EnTXFIFOHalfLevelInt(iobase, OFF);
EnTXFIFOUnderrunEOMInt(iobase, ON);
// EnTXFIFOReadyInt(iobase,ON);
InvertTX(iobase, OFF);
InvertRX(iobase, OFF);
// WriteLPCReg(0xF0,0); //(if VT1211 then do this)
if (IsSIROn(iobase)) {
SIRFilter(iobase, ON);
SIRRecvAny(iobase, ON);
} else {
SIRFilter(iobase, OFF);
SIRRecvAny(iobase, OFF);
}
EnRXSpecInt(iobase, ON);
WriteReg(iobase, I_ST_CT_0, 0x80);
EnableDMA(iobase, ON);
}
static void SetBaudRate(__u16 iobase, __u32 rate)
{
__u8 value = 11, temp;
if (IsSIROn(iobase)) {
switch (rate) {
case (__u32) (2400L):
value = 47;
break;
case (__u32) (9600L):
value = 11;
break;
case (__u32) (19200L):
value = 5;
break;
case (__u32) (38400L):
value = 2;
break;
case (__u32) (57600L):
value = 1;
break;
case (__u32) (115200L):
value = 0;
break;
default:
break;
};
} else if (IsMIROn(iobase)) {
value = 0; // will automatically be fixed in 1.152M
} else if (IsFIROn(iobase)) {
value = 0; // will automatically be fixed in 4M
}
temp = (ReadReg(iobase, I_CF_H_1) & 0x03);
temp |= value << 2;
WriteReg(iobase, I_CF_H_1, temp);
}
static void SetPulseWidth(__u16 iobase, __u8 width)
{
__u8 temp, temp1, temp2;
temp = (ReadReg(iobase, I_CF_L_1) & 0x1f);
temp1 = (ReadReg(iobase, I_CF_H_1) & 0xfc);
temp2 = (width & 0x07) << 5;
temp |= temp2;
temp2 = (width & 0x18) >> 3;
temp1 |= temp2;
WriteReg(iobase, I_CF_L_1, temp);
WriteReg(iobase, I_CF_H_1, temp1);
}
static void SetSendPreambleCount(__u16 iobase, __u8 count)
{
__u8 temp;
temp = ReadReg(iobase, I_CF_L_1) & 0xe0;
temp |= count;
WriteReg(iobase, I_CF_L_1, temp);
}
static void SetVFIR(__u16 BaseAddr, __u8 val)
{
__u8 tmp;
tmp = ReadReg(BaseAddr, I_CF_L_0);
WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f);
WriteRegBit(BaseAddr, I_CF_H_0, 5, val);
}
static void SetFIR(__u16 BaseAddr, __u8 val)
{
__u8 tmp;
WriteRegBit(BaseAddr, I_CF_H_0, 5, 0);
tmp = ReadReg(BaseAddr, I_CF_L_0);
WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f);
WriteRegBit(BaseAddr, I_CF_L_0, 6, val);
}
static void SetMIR(__u16 BaseAddr, __u8 val)
{
__u8 tmp;
WriteRegBit(BaseAddr, I_CF_H_0, 5, 0);
tmp = ReadReg(BaseAddr, I_CF_L_0);
WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f);
WriteRegBit(BaseAddr, I_CF_L_0, 5, val);
}
static void SetSIR(__u16 BaseAddr, __u8 val)
{
__u8 tmp;
WriteRegBit(BaseAddr, I_CF_H_0, 5, 0);
tmp = ReadReg(BaseAddr, I_CF_L_0);
WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f);
WriteRegBit(BaseAddr, I_CF_L_0, 4, val);
}
#endif /* via_IRCC_H */