linux_old1/security/lsm_audit.c

419 lines
9.4 KiB
C
Raw Normal View History

/*
* common LSM auditing functions
*
* Based on code written for SELinux by :
* Stephen Smalley, <sds@epoch.ncsc.mil>
* James Morris <jmorris@redhat.com>
* Author : Etienne Basset, <etienne.basset@ensta.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2,
* as published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <net/sock.h>
#include <linux/un.h>
#include <net/af_unix.h>
#include <linux/audit.h>
#include <linux/ipv6.h>
#include <linux/ip.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/dccp.h>
#include <linux/sctp.h>
#include <linux/lsm_audit.h>
/**
* ipv4_skb_to_auditdata : fill auditdata from skb
* @skb : the skb
* @ad : the audit data to fill
* @proto : the layer 4 protocol
*
* return 0 on success
*/
int ipv4_skb_to_auditdata(struct sk_buff *skb,
struct common_audit_data *ad, u8 *proto)
{
int ret = 0;
struct iphdr *ih;
ih = ip_hdr(skb);
if (ih == NULL)
return -EINVAL;
ad->u.net->v4info.saddr = ih->saddr;
ad->u.net->v4info.daddr = ih->daddr;
if (proto)
*proto = ih->protocol;
/* non initial fragment */
if (ntohs(ih->frag_off) & IP_OFFSET)
return 0;
switch (ih->protocol) {
case IPPROTO_TCP: {
struct tcphdr *th = tcp_hdr(skb);
if (th == NULL)
break;
ad->u.net->sport = th->source;
ad->u.net->dport = th->dest;
break;
}
case IPPROTO_UDP: {
struct udphdr *uh = udp_hdr(skb);
if (uh == NULL)
break;
ad->u.net->sport = uh->source;
ad->u.net->dport = uh->dest;
break;
}
case IPPROTO_DCCP: {
struct dccp_hdr *dh = dccp_hdr(skb);
if (dh == NULL)
break;
ad->u.net->sport = dh->dccph_sport;
ad->u.net->dport = dh->dccph_dport;
break;
}
case IPPROTO_SCTP: {
struct sctphdr *sh = sctp_hdr(skb);
if (sh == NULL)
break;
ad->u.net->sport = sh->source;
ad->u.net->dport = sh->dest;
break;
}
default:
ret = -EINVAL;
}
return ret;
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
/**
* ipv6_skb_to_auditdata : fill auditdata from skb
* @skb : the skb
* @ad : the audit data to fill
* @proto : the layer 4 protocol
*
* return 0 on success
*/
int ipv6_skb_to_auditdata(struct sk_buff *skb,
struct common_audit_data *ad, u8 *proto)
{
int offset, ret = 0;
struct ipv6hdr *ip6;
u8 nexthdr;
__be16 frag_off;
ip6 = ipv6_hdr(skb);
if (ip6 == NULL)
return -EINVAL;
ad->u.net->v6info.saddr = ip6->saddr;
ad->u.net->v6info.daddr = ip6->daddr;
ret = 0;
/* IPv6 can have several extension header before the Transport header
* skip them */
offset = skb_network_offset(skb);
offset += sizeof(*ip6);
nexthdr = ip6->nexthdr;
offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
if (offset < 0)
return 0;
if (proto)
*proto = nexthdr;
switch (nexthdr) {
case IPPROTO_TCP: {
struct tcphdr _tcph, *th;
th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
if (th == NULL)
break;
ad->u.net->sport = th->source;
ad->u.net->dport = th->dest;
break;
}
case IPPROTO_UDP: {
struct udphdr _udph, *uh;
uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
if (uh == NULL)
break;
ad->u.net->sport = uh->source;
ad->u.net->dport = uh->dest;
break;
}
case IPPROTO_DCCP: {
struct dccp_hdr _dccph, *dh;
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
if (dh == NULL)
break;
ad->u.net->sport = dh->dccph_sport;
ad->u.net->dport = dh->dccph_dport;
break;
}
case IPPROTO_SCTP: {
struct sctphdr _sctph, *sh;
sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
if (sh == NULL)
break;
ad->u.net->sport = sh->source;
ad->u.net->dport = sh->dest;
break;
}
default:
ret = -EINVAL;
}
return ret;
}
#endif
static inline void print_ipv6_addr(struct audit_buffer *ab,
struct in6_addr *addr, __be16 port,
char *name1, char *name2)
{
if (!ipv6_addr_any(addr))
audit_log_format(ab, " %s=%pI6c", name1, addr);
if (port)
audit_log_format(ab, " %s=%d", name2, ntohs(port));
}
static inline void print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
__be16 port, char *name1, char *name2)
{
if (addr)
audit_log_format(ab, " %s=%pI4", name1, &addr);
if (port)
audit_log_format(ab, " %s=%d", name2, ntohs(port));
}
/**
* dump_common_audit_data - helper to dump common audit data
* @a : common audit data
*
*/
static void dump_common_audit_data(struct audit_buffer *ab,
struct common_audit_data *a)
{
struct task_struct *tsk = current;
/*
* To keep stack sizes in check force programers to notice if they
* start making this union too large! See struct lsm_network_audit
* as an example of how to deal with large data.
*/
BUILD_BUG_ON(sizeof(a->u) > sizeof(void *)*2);
audit_log_format(ab, " pid=%d comm=", task_pid_nr(tsk));
audit_log_untrustedstring(ab, tsk->comm);
switch (a->type) {
case LSM_AUDIT_DATA_NONE:
return;
case LSM_AUDIT_DATA_IPC:
audit_log_format(ab, " key=%d ", a->u.ipc_id);
break;
case LSM_AUDIT_DATA_CAP:
audit_log_format(ab, " capability=%d ", a->u.cap);
break;
case LSM_AUDIT_DATA_PATH: {
struct inode *inode;
audit_log_d_path(ab, " path=", &a->u.path);
inode = a->u.path.dentry->d_inode;
if (inode) {
audit_log_format(ab, " dev=");
audit_log_untrustedstring(ab, inode->i_sb->s_id);
audit_log_format(ab, " ino=%lu", inode->i_ino);
}
break;
}
case LSM_AUDIT_DATA_DENTRY: {
struct inode *inode;
audit_log_format(ab, " name=");
audit_log_untrustedstring(ab, a->u.dentry->d_name.name);
inode = a->u.dentry->d_inode;
if (inode) {
audit_log_format(ab, " dev=");
audit_log_untrustedstring(ab, inode->i_sb->s_id);
audit_log_format(ab, " ino=%lu", inode->i_ino);
}
break;
}
case LSM_AUDIT_DATA_INODE: {
struct dentry *dentry;
struct inode *inode;
inode = a->u.inode;
dentry = d_find_alias(inode);
if (dentry) {
audit_log_format(ab, " name=");
audit_log_untrustedstring(ab,
dentry->d_name.name);
dput(dentry);
}
audit_log_format(ab, " dev=");
audit_log_untrustedstring(ab, inode->i_sb->s_id);
audit_log_format(ab, " ino=%lu", inode->i_ino);
break;
}
case LSM_AUDIT_DATA_TASK:
tsk = a->u.tsk;
if (tsk) {
pid_t pid = task_pid_nr(tsk);
if (pid) {
audit_log_format(ab, " pid=%d comm=", pid);
audit_log_untrustedstring(ab, tsk->comm);
}
}
break;
case LSM_AUDIT_DATA_NET:
if (a->u.net->sk) {
struct sock *sk = a->u.net->sk;
struct unix_sock *u;
int len = 0;
char *p = NULL;
switch (sk->sk_family) {
case AF_INET: {
struct inet_sock *inet = inet_sk(sk);
print_ipv4_addr(ab, inet->inet_rcv_saddr,
inet->inet_sport,
"laddr", "lport");
print_ipv4_addr(ab, inet->inet_daddr,
inet->inet_dport,
"faddr", "fport");
break;
}
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6: {
struct inet_sock *inet = inet_sk(sk);
print_ipv6_addr(ab, &sk->sk_v6_rcv_saddr,
inet->inet_sport,
"laddr", "lport");
print_ipv6_addr(ab, &sk->sk_v6_daddr,
inet->inet_dport,
"faddr", "fport");
break;
}
#endif
case AF_UNIX:
u = unix_sk(sk);
if (u->path.dentry) {
audit_log_d_path(ab, " path=", &u->path);
break;
}
if (!u->addr)
break;
len = u->addr->len-sizeof(short);
p = &u->addr->name->sun_path[0];
audit_log_format(ab, " path=");
if (*p)
audit_log_untrustedstring(ab, p);
else
audit_log_n_hex(ab, p, len);
break;
}
}
switch (a->u.net->family) {
case AF_INET:
print_ipv4_addr(ab, a->u.net->v4info.saddr,
a->u.net->sport,
"saddr", "src");
print_ipv4_addr(ab, a->u.net->v4info.daddr,
a->u.net->dport,
"daddr", "dest");
break;
case AF_INET6:
print_ipv6_addr(ab, &a->u.net->v6info.saddr,
a->u.net->sport,
"saddr", "src");
print_ipv6_addr(ab, &a->u.net->v6info.daddr,
a->u.net->dport,
"daddr", "dest");
break;
}
if (a->u.net->netif > 0) {
struct net_device *dev;
/* NOTE: we always use init's namespace */
dev = dev_get_by_index(&init_net, a->u.net->netif);
if (dev) {
audit_log_format(ab, " netif=%s", dev->name);
dev_put(dev);
}
}
break;
#ifdef CONFIG_KEYS
case LSM_AUDIT_DATA_KEY:
audit_log_format(ab, " key_serial=%u", a->u.key_struct.key);
if (a->u.key_struct.key_desc) {
audit_log_format(ab, " key_desc=");
audit_log_untrustedstring(ab, a->u.key_struct.key_desc);
}
break;
#endif
case LSM_AUDIT_DATA_KMOD:
audit_log_format(ab, " kmod=");
audit_log_untrustedstring(ab, a->u.kmod_name);
break;
} /* switch (a->type) */
}
/**
* common_lsm_audit - generic LSM auditing function
* @a: auxiliary audit data
* @pre_audit: lsm-specific pre-audit callback
* @post_audit: lsm-specific post-audit callback
*
* setup the audit buffer for common security information
* uses callback to print LSM specific information
*/
void common_lsm_audit(struct common_audit_data *a,
void (*pre_audit)(struct audit_buffer *, void *),
void (*post_audit)(struct audit_buffer *, void *))
{
struct audit_buffer *ab;
if (a == NULL)
return;
/* we use GFP_ATOMIC so we won't sleep */
ab = audit_log_start(current->audit_context, GFP_ATOMIC | __GFP_NOWARN,
AUDIT_AVC);
if (ab == NULL)
return;
if (pre_audit)
pre_audit(ab, a);
dump_common_audit_data(ab, a);
if (post_audit)
post_audit(ab, a);
audit_log_end(ab);
}