linux_old1/drivers/dma/sirf-dma.c

1172 lines
33 KiB
C
Raw Normal View History

/*
* DMA controller driver for CSR SiRFprimaII
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*
* Licensed under GPLv2 or later.
*/
#include <linux/module.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/clk.h>
#include <linux/of_dma.h>
#include <linux/sirfsoc_dma.h>
#include "dmaengine.h"
#define SIRFSOC_DMA_VER_A7V1 1
#define SIRFSOC_DMA_VER_A7V2 2
#define SIRFSOC_DMA_VER_A6 4
#define SIRFSOC_DMA_DESCRIPTORS 16
#define SIRFSOC_DMA_CHANNELS 16
#define SIRFSOC_DMA_TABLE_NUM 256
#define SIRFSOC_DMA_CH_ADDR 0x00
#define SIRFSOC_DMA_CH_XLEN 0x04
#define SIRFSOC_DMA_CH_YLEN 0x08
#define SIRFSOC_DMA_CH_CTRL 0x0C
#define SIRFSOC_DMA_WIDTH_0 0x100
#define SIRFSOC_DMA_CH_VALID 0x140
#define SIRFSOC_DMA_CH_INT 0x144
#define SIRFSOC_DMA_INT_EN 0x148
#define SIRFSOC_DMA_INT_EN_CLR 0x14C
#define SIRFSOC_DMA_CH_LOOP_CTRL 0x150
#define SIRFSOC_DMA_CH_LOOP_CTRL_CLR 0x154
#define SIRFSOC_DMA_WIDTH_ATLAS7 0x10
#define SIRFSOC_DMA_VALID_ATLAS7 0x14
#define SIRFSOC_DMA_INT_ATLAS7 0x18
#define SIRFSOC_DMA_INT_EN_ATLAS7 0x1c
#define SIRFSOC_DMA_LOOP_CTRL_ATLAS7 0x20
#define SIRFSOC_DMA_CUR_DATA_ADDR 0x34
#define SIRFSOC_DMA_MUL_ATLAS7 0x38
#define SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7 0x158
#define SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7 0x15C
#define SIRFSOC_DMA_IOBG_SCMD_EN 0x800
#define SIRFSOC_DMA_EARLY_RESP_SET 0x818
#define SIRFSOC_DMA_EARLY_RESP_CLR 0x81C
#define SIRFSOC_DMA_MODE_CTRL_BIT 4
#define SIRFSOC_DMA_DIR_CTRL_BIT 5
#define SIRFSOC_DMA_MODE_CTRL_BIT_ATLAS7 2
#define SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7 3
#define SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7 4
#define SIRFSOC_DMA_TAB_NUM_ATLAS7 7
#define SIRFSOC_DMA_CHAIN_INT_BIT_ATLAS7 5
#define SIRFSOC_DMA_CHAIN_FLAG_SHIFT_ATLAS7 25
#define SIRFSOC_DMA_CHAIN_ADDR_SHIFT 32
#define SIRFSOC_DMA_INT_FINI_INT_ATLAS7 BIT(0)
#define SIRFSOC_DMA_INT_CNT_INT_ATLAS7 BIT(1)
#define SIRFSOC_DMA_INT_PAU_INT_ATLAS7 BIT(2)
#define SIRFSOC_DMA_INT_LOOP_INT_ATLAS7 BIT(3)
#define SIRFSOC_DMA_INT_INV_INT_ATLAS7 BIT(4)
#define SIRFSOC_DMA_INT_END_INT_ATLAS7 BIT(5)
#define SIRFSOC_DMA_INT_ALL_ATLAS7 0x3F
/* xlen and dma_width register is in 4 bytes boundary */
#define SIRFSOC_DMA_WORD_LEN 4
#define SIRFSOC_DMA_XLEN_MAX_V1 0x800
#define SIRFSOC_DMA_XLEN_MAX_V2 0x1000
struct sirfsoc_dma_desc {
struct dma_async_tx_descriptor desc;
struct list_head node;
/* SiRFprimaII 2D-DMA parameters */
int xlen; /* DMA xlen */
int ylen; /* DMA ylen */
int width; /* DMA width */
int dir;
bool cyclic; /* is loop DMA? */
bool chain; /* is chain DMA? */
u32 addr; /* DMA buffer address */
u64 chain_table[SIRFSOC_DMA_TABLE_NUM]; /* chain tbl */
};
struct sirfsoc_dma_chan {
struct dma_chan chan;
struct list_head free;
struct list_head prepared;
struct list_head queued;
struct list_head active;
struct list_head completed;
unsigned long happened_cyclic;
unsigned long completed_cyclic;
/* Lock for this structure */
spinlock_t lock;
int mode;
};
struct sirfsoc_dma_regs {
u32 ctrl[SIRFSOC_DMA_CHANNELS];
u32 interrupt_en;
};
struct sirfsoc_dma {
struct dma_device dma;
struct tasklet_struct tasklet;
struct sirfsoc_dma_chan channels[SIRFSOC_DMA_CHANNELS];
void __iomem *base;
int irq;
struct clk *clk;
int type;
void (*exec_desc)(struct sirfsoc_dma_desc *sdesc,
int cid, int burst_mode, void __iomem *base);
struct sirfsoc_dma_regs regs_save;
};
struct sirfsoc_dmadata {
void (*exec)(struct sirfsoc_dma_desc *sdesc,
int cid, int burst_mode, void __iomem *base);
int type;
};
enum sirfsoc_dma_chain_flag {
SIRFSOC_DMA_CHAIN_NORMAL = 0x01,
SIRFSOC_DMA_CHAIN_PAUSE = 0x02,
SIRFSOC_DMA_CHAIN_LOOP = 0x03,
SIRFSOC_DMA_CHAIN_END = 0x04
};
#define DRV_NAME "sirfsoc_dma"
static int sirfsoc_dma_runtime_suspend(struct device *dev);
/* Convert struct dma_chan to struct sirfsoc_dma_chan */
static inline
struct sirfsoc_dma_chan *dma_chan_to_sirfsoc_dma_chan(struct dma_chan *c)
{
return container_of(c, struct sirfsoc_dma_chan, chan);
}
/* Convert struct dma_chan to struct sirfsoc_dma */
static inline struct sirfsoc_dma *dma_chan_to_sirfsoc_dma(struct dma_chan *c)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(c);
return container_of(schan, struct sirfsoc_dma, channels[c->chan_id]);
}
static void sirfsoc_dma_execute_hw_a7v2(struct sirfsoc_dma_desc *sdesc,
int cid, int burst_mode, void __iomem *base)
{
if (sdesc->chain) {
/* DMA v2 HW chain mode */
writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) |
(sdesc->chain <<
SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) |
(0x8 << SIRFSOC_DMA_TAB_NUM_ATLAS7) | 0x3,
base + SIRFSOC_DMA_CH_CTRL);
} else {
/* DMA v2 legacy mode */
writel_relaxed(sdesc->xlen, base + SIRFSOC_DMA_CH_XLEN);
writel_relaxed(sdesc->ylen, base + SIRFSOC_DMA_CH_YLEN);
writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_ATLAS7);
writel_relaxed((sdesc->width*((sdesc->ylen+1)>>1)),
base + SIRFSOC_DMA_MUL_ATLAS7);
writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) |
(sdesc->chain <<
SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) |
0x3, base + SIRFSOC_DMA_CH_CTRL);
}
writel_relaxed(sdesc->chain ? SIRFSOC_DMA_INT_END_INT_ATLAS7 :
(SIRFSOC_DMA_INT_FINI_INT_ATLAS7 |
SIRFSOC_DMA_INT_LOOP_INT_ATLAS7),
base + SIRFSOC_DMA_INT_EN_ATLAS7);
writel(sdesc->addr, base + SIRFSOC_DMA_CH_ADDR);
if (sdesc->cyclic)
writel(0x10001, base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
}
static void sirfsoc_dma_execute_hw_a7v1(struct sirfsoc_dma_desc *sdesc,
int cid, int burst_mode, void __iomem *base)
{
writel_relaxed(1, base + SIRFSOC_DMA_IOBG_SCMD_EN);
writel_relaxed((1 << cid), base + SIRFSOC_DMA_EARLY_RESP_SET);
writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4);
writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
(sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN);
writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN);
writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) |
(1 << cid), base + SIRFSOC_DMA_INT_EN);
writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
if (sdesc->cyclic) {
writel((1 << cid) | 1 << (cid + 16) |
readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7),
base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7);
}
}
static void sirfsoc_dma_execute_hw_a6(struct sirfsoc_dma_desc *sdesc,
int cid, int burst_mode, void __iomem *base)
{
writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4);
writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
(sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN);
writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN);
writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) |
(1 << cid), base + SIRFSOC_DMA_INT_EN);
writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
if (sdesc->cyclic) {
writel((1 << cid) | 1 << (cid + 16) |
readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL),
base + SIRFSOC_DMA_CH_LOOP_CTRL);
}
}
/* Execute all queued DMA descriptors */
static void sirfsoc_dma_execute(struct sirfsoc_dma_chan *schan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
struct sirfsoc_dma_desc *sdesc = NULL;
void __iomem *base;
/*
* lock has been held by functions calling this, so we don't hold
* lock again
*/
base = sdma->base;
sdesc = list_first_entry(&schan->queued, struct sirfsoc_dma_desc,
node);
/* Move the first queued descriptor to active list */
list_move_tail(&sdesc->node, &schan->active);
if (sdma->type == SIRFSOC_DMA_VER_A7V2)
cid = 0;
/* Start the DMA transfer */
sdma->exec_desc(sdesc, cid, schan->mode, base);
if (sdesc->cyclic)
schan->happened_cyclic = schan->completed_cyclic = 0;
}
/* Interrupt handler */
static irqreturn_t sirfsoc_dma_irq(int irq, void *data)
{
struct sirfsoc_dma *sdma = data;
struct sirfsoc_dma_chan *schan;
struct sirfsoc_dma_desc *sdesc = NULL;
u32 is;
bool chain;
int ch;
void __iomem *reg;
switch (sdma->type) {
case SIRFSOC_DMA_VER_A6:
case SIRFSOC_DMA_VER_A7V1:
is = readl(sdma->base + SIRFSOC_DMA_CH_INT);
reg = sdma->base + SIRFSOC_DMA_CH_INT;
while ((ch = fls(is) - 1) >= 0) {
is &= ~(1 << ch);
writel_relaxed(1 << ch, reg);
schan = &sdma->channels[ch];
spin_lock(&schan->lock);
sdesc = list_first_entry(&schan->active,
struct sirfsoc_dma_desc, node);
if (!sdesc->cyclic) {
/* Execute queued descriptors */
list_splice_tail_init(&schan->active,
&schan->completed);
dma_cookie_complete(&sdesc->desc);
if (!list_empty(&schan->queued))
sirfsoc_dma_execute(schan);
} else
schan->happened_cyclic++;
spin_unlock(&schan->lock);
}
break;
case SIRFSOC_DMA_VER_A7V2:
is = readl(sdma->base + SIRFSOC_DMA_INT_ATLAS7);
reg = sdma->base + SIRFSOC_DMA_INT_ATLAS7;
writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7, reg);
schan = &sdma->channels[0];
spin_lock(&schan->lock);
sdesc = list_first_entry(&schan->active,
struct sirfsoc_dma_desc, node);
if (!sdesc->cyclic) {
chain = sdesc->chain;
if ((chain && (is & SIRFSOC_DMA_INT_END_INT_ATLAS7)) ||
(!chain &&
(is & SIRFSOC_DMA_INT_FINI_INT_ATLAS7))) {
/* Execute queued descriptors */
list_splice_tail_init(&schan->active,
&schan->completed);
dma_cookie_complete(&sdesc->desc);
if (!list_empty(&schan->queued))
sirfsoc_dma_execute(schan);
}
} else if (sdesc->cyclic && (is &
SIRFSOC_DMA_INT_LOOP_INT_ATLAS7))
schan->happened_cyclic++;
spin_unlock(&schan->lock);
break;
default:
break;
}
/* Schedule tasklet */
tasklet_schedule(&sdma->tasklet);
return IRQ_HANDLED;
}
/* process completed descriptors */
static void sirfsoc_dma_process_completed(struct sirfsoc_dma *sdma)
{
dma_cookie_t last_cookie = 0;
struct sirfsoc_dma_chan *schan;
struct sirfsoc_dma_desc *sdesc;
struct dma_async_tx_descriptor *desc;
unsigned long flags;
unsigned long happened_cyclic;
LIST_HEAD(list);
int i;
for (i = 0; i < sdma->dma.chancnt; i++) {
schan = &sdma->channels[i];
/* Get all completed descriptors */
spin_lock_irqsave(&schan->lock, flags);
if (!list_empty(&schan->completed)) {
list_splice_tail_init(&schan->completed, &list);
spin_unlock_irqrestore(&schan->lock, flags);
/* Execute callbacks and run dependencies */
list_for_each_entry(sdesc, &list, node) {
desc = &sdesc->desc;
dmaengine_desc_get_callback_invoke(desc, NULL);
last_cookie = desc->cookie;
dma_run_dependencies(desc);
}
/* Free descriptors */
spin_lock_irqsave(&schan->lock, flags);
list_splice_tail_init(&list, &schan->free);
schan->chan.completed_cookie = last_cookie;
spin_unlock_irqrestore(&schan->lock, flags);
} else {
if (list_empty(&schan->active)) {
spin_unlock_irqrestore(&schan->lock, flags);
continue;
}
/* for cyclic channel, desc is always in active list */
sdesc = list_first_entry(&schan->active,
struct sirfsoc_dma_desc, node);
/* cyclic DMA */
happened_cyclic = schan->happened_cyclic;
spin_unlock_irqrestore(&schan->lock, flags);
desc = &sdesc->desc;
while (happened_cyclic != schan->completed_cyclic) {
dmaengine_desc_get_callback_invoke(desc, NULL);
schan->completed_cyclic++;
}
}
}
}
/* DMA Tasklet */
static void sirfsoc_dma_tasklet(unsigned long data)
{
struct sirfsoc_dma *sdma = (void *)data;
sirfsoc_dma_process_completed(sdma);
}
/* Submit descriptor to hardware */
static dma_cookie_t sirfsoc_dma_tx_submit(struct dma_async_tx_descriptor *txd)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(txd->chan);
struct sirfsoc_dma_desc *sdesc;
unsigned long flags;
dma_cookie_t cookie;
sdesc = container_of(txd, struct sirfsoc_dma_desc, desc);
spin_lock_irqsave(&schan->lock, flags);
/* Move descriptor to queue */
list_move_tail(&sdesc->node, &schan->queued);
cookie = dma_cookie_assign(txd);
spin_unlock_irqrestore(&schan->lock, flags);
return cookie;
}
static int sirfsoc_dma_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
unsigned long flags;
if ((config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) ||
(config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES))
return -EINVAL;
spin_lock_irqsave(&schan->lock, flags);
schan->mode = (config->src_maxburst == 4 ? 1 : 0);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_terminate_all(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
switch (sdma->type) {
case SIRFSOC_DMA_VER_A7V1:
writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_INT_EN_CLR);
writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_INT);
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base +
SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7);
writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
break;
case SIRFSOC_DMA_VER_A7V2:
writel_relaxed(0, sdma->base + SIRFSOC_DMA_INT_EN_ATLAS7);
writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7,
sdma->base + SIRFSOC_DMA_INT_ATLAS7);
writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
writel_relaxed(0, sdma->base + SIRFSOC_DMA_VALID_ATLAS7);
break;
case SIRFSOC_DMA_VER_A6:
writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) &
~(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN);
writel_relaxed(readl_relaxed(sdma->base +
SIRFSOC_DMA_CH_LOOP_CTRL) &
~((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
break;
default:
break;
}
list_splice_tail_init(&schan->active, &schan->free);
list_splice_tail_init(&schan->queued, &schan->free);
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_pause_chan(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
switch (sdma->type) {
case SIRFSOC_DMA_VER_A7V1:
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base +
SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7);
break;
case SIRFSOC_DMA_VER_A7V2:
writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
break;
case SIRFSOC_DMA_VER_A6:
writel_relaxed(readl_relaxed(sdma->base +
SIRFSOC_DMA_CH_LOOP_CTRL) &
~((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
break;
default:
break;
}
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
static int sirfsoc_dma_resume_chan(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
int cid = schan->chan.chan_id;
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
switch (sdma->type) {
case SIRFSOC_DMA_VER_A7V1:
writel_relaxed((1 << cid) | 1 << (cid + 16),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7);
break;
case SIRFSOC_DMA_VER_A7V2:
writel_relaxed(0x10001,
sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
break;
case SIRFSOC_DMA_VER_A6:
writel_relaxed(readl_relaxed(sdma->base +
SIRFSOC_DMA_CH_LOOP_CTRL) |
((1 << cid) | 1 << (cid + 16)),
sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
break;
default:
break;
}
spin_unlock_irqrestore(&schan->lock, flags);
return 0;
}
/* Alloc channel resources */
static int sirfsoc_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc;
unsigned long flags;
LIST_HEAD(descs);
int i;
pm_runtime_get_sync(sdma->dma.dev);
/* Alloc descriptors for this channel */
for (i = 0; i < SIRFSOC_DMA_DESCRIPTORS; i++) {
sdesc = kzalloc(sizeof(*sdesc), GFP_KERNEL);
if (!sdesc) {
dev_notice(sdma->dma.dev, "Memory allocation error. "
"Allocated only %u descriptors\n", i);
break;
}
dma_async_tx_descriptor_init(&sdesc->desc, chan);
sdesc->desc.flags = DMA_CTRL_ACK;
sdesc->desc.tx_submit = sirfsoc_dma_tx_submit;
list_add_tail(&sdesc->node, &descs);
}
/* Return error only if no descriptors were allocated */
if (i == 0)
return -ENOMEM;
spin_lock_irqsave(&schan->lock, flags);
list_splice_tail_init(&descs, &schan->free);
spin_unlock_irqrestore(&schan->lock, flags);
return i;
}
/* Free channel resources */
static void sirfsoc_dma_free_chan_resources(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_desc *sdesc, *tmp;
unsigned long flags;
LIST_HEAD(descs);
spin_lock_irqsave(&schan->lock, flags);
/* Channel must be idle */
BUG_ON(!list_empty(&schan->prepared));
BUG_ON(!list_empty(&schan->queued));
BUG_ON(!list_empty(&schan->active));
BUG_ON(!list_empty(&schan->completed));
/* Move data */
list_splice_tail_init(&schan->free, &descs);
spin_unlock_irqrestore(&schan->lock, flags);
/* Free descriptors */
list_for_each_entry_safe(sdesc, tmp, &descs, node)
kfree(sdesc);
pm_runtime_put(sdma->dma.dev);
}
/* Send pending descriptor to hardware */
static void sirfsoc_dma_issue_pending(struct dma_chan *chan)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->lock, flags);
if (list_empty(&schan->active) && !list_empty(&schan->queued))
sirfsoc_dma_execute(schan);
spin_unlock_irqrestore(&schan->lock, flags);
}
/* Check request completion status */
static enum dma_status
sirfsoc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
unsigned long flags;
enum dma_status ret;
struct sirfsoc_dma_desc *sdesc;
int cid = schan->chan.chan_id;
unsigned long dma_pos;
unsigned long dma_request_bytes;
unsigned long residue;
spin_lock_irqsave(&schan->lock, flags);
if (list_empty(&schan->active)) {
ret = dma_cookie_status(chan, cookie, txstate);
dma_set_residue(txstate, 0);
spin_unlock_irqrestore(&schan->lock, flags);
return ret;
}
sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node);
if (sdesc->cyclic)
dma_request_bytes = (sdesc->xlen + 1) * (sdesc->ylen + 1) *
(sdesc->width * SIRFSOC_DMA_WORD_LEN);
else
dma_request_bytes = sdesc->xlen * SIRFSOC_DMA_WORD_LEN;
ret = dma_cookie_status(chan, cookie, txstate);
if (sdma->type == SIRFSOC_DMA_VER_A7V2)
cid = 0;
if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
dma_pos = readl_relaxed(sdma->base + SIRFSOC_DMA_CUR_DATA_ADDR);
} else {
dma_pos = readl_relaxed(
sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR) << 2;
}
residue = dma_request_bytes - (dma_pos - sdesc->addr);
dma_set_residue(txstate, residue);
spin_unlock_irqrestore(&schan->lock, flags);
return ret;
}
static struct dma_async_tx_descriptor *sirfsoc_dma_prep_interleaved(
struct dma_chan *chan, struct dma_interleaved_template *xt,
unsigned long flags)
{
struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc = NULL;
unsigned long iflags;
int ret;
if ((xt->dir != DMA_MEM_TO_DEV) && (xt->dir != DMA_DEV_TO_MEM)) {
ret = -EINVAL;
goto err_dir;
}
/* Get free descriptor */
spin_lock_irqsave(&schan->lock, iflags);
if (!list_empty(&schan->free)) {
sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
node);
list_del(&sdesc->node);
}
spin_unlock_irqrestore(&schan->lock, iflags);
if (!sdesc) {
/* try to free completed descriptors */
sirfsoc_dma_process_completed(sdma);
ret = 0;
goto no_desc;
}
/* Place descriptor in prepared list */
spin_lock_irqsave(&schan->lock, iflags);
/*
* Number of chunks in a frame can only be 1 for prima2
* and ylen (number of frame - 1) must be at least 0
*/
if ((xt->frame_size == 1) && (xt->numf > 0)) {
sdesc->cyclic = 0;
sdesc->xlen = xt->sgl[0].size / SIRFSOC_DMA_WORD_LEN;
sdesc->width = (xt->sgl[0].size + xt->sgl[0].icg) /
SIRFSOC_DMA_WORD_LEN;
sdesc->ylen = xt->numf - 1;
if (xt->dir == DMA_MEM_TO_DEV) {
sdesc->addr = xt->src_start;
sdesc->dir = 1;
} else {
sdesc->addr = xt->dst_start;
sdesc->dir = 0;
}
list_add_tail(&sdesc->node, &schan->prepared);
} else {
pr_err("sirfsoc DMA Invalid xfer\n");
ret = -EINVAL;
goto err_xfer;
}
spin_unlock_irqrestore(&schan->lock, iflags);
return &sdesc->desc;
err_xfer:
spin_unlock_irqrestore(&schan->lock, iflags);
no_desc:
err_dir:
return ERR_PTR(ret);
}
static struct dma_async_tx_descriptor *
sirfsoc_dma_prep_cyclic(struct dma_chan *chan, dma_addr_t addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction direction, unsigned long flags)
{
struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
struct sirfsoc_dma_desc *sdesc = NULL;
unsigned long iflags;
/*
* we only support cycle transfer with 2 period
* If the X-length is set to 0, it would be the loop mode.
* The DMA address keeps increasing until reaching the end of a loop
* area whose size is defined by (DMA_WIDTH x (Y_LENGTH + 1)). Then
* the DMA address goes back to the beginning of this area.
* In loop mode, the DMA data region is divided into two parts, BUFA
* and BUFB. DMA controller generates interrupts twice in each loop:
* when the DMA address reaches the end of BUFA or the end of the
* BUFB
*/
if (buf_len != 2 * period_len)
return ERR_PTR(-EINVAL);
/* Get free descriptor */
spin_lock_irqsave(&schan->lock, iflags);
if (!list_empty(&schan->free)) {
sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
node);
list_del(&sdesc->node);
}
spin_unlock_irqrestore(&schan->lock, iflags);
if (!sdesc)
return NULL;
/* Place descriptor in prepared list */
spin_lock_irqsave(&schan->lock, iflags);
sdesc->addr = addr;
sdesc->cyclic = 1;
sdesc->xlen = 0;
sdesc->ylen = buf_len / SIRFSOC_DMA_WORD_LEN - 1;
sdesc->width = 1;
list_add_tail(&sdesc->node, &schan->prepared);
spin_unlock_irqrestore(&schan->lock, iflags);
return &sdesc->desc;
}
/*
* The DMA controller consists of 16 independent DMA channels.
* Each channel is allocated to a different function
*/
bool sirfsoc_dma_filter_id(struct dma_chan *chan, void *chan_id)
{
unsigned int ch_nr = (unsigned int) chan_id;
if (ch_nr == chan->chan_id +
chan->device->dev_id * SIRFSOC_DMA_CHANNELS)
return true;
return false;
}
EXPORT_SYMBOL(sirfsoc_dma_filter_id);
#define SIRFSOC_DMA_BUSWIDTHS \
(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
static struct dma_chan *of_dma_sirfsoc_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct sirfsoc_dma *sdma = ofdma->of_dma_data;
unsigned int request = dma_spec->args[0];
if (request >= SIRFSOC_DMA_CHANNELS)
return NULL;
return dma_get_slave_channel(&sdma->channels[request].chan);
}
static int sirfsoc_dma_probe(struct platform_device *op)
{
struct device_node *dn = op->dev.of_node;
struct device *dev = &op->dev;
struct dma_device *dma;
struct sirfsoc_dma *sdma;
struct sirfsoc_dma_chan *schan;
struct sirfsoc_dmadata *data;
struct resource res;
ulong regs_start, regs_size;
u32 id;
int ret, i;
sdma = devm_kzalloc(dev, sizeof(*sdma), GFP_KERNEL);
if (!sdma)
return -ENOMEM;
data = (struct sirfsoc_dmadata *)
(of_match_device(op->dev.driver->of_match_table,
&op->dev)->data);
sdma->exec_desc = data->exec;
sdma->type = data->type;
if (of_property_read_u32(dn, "cell-index", &id)) {
dev_err(dev, "Fail to get DMAC index\n");
return -ENODEV;
}
sdma->irq = irq_of_parse_and_map(dn, 0);
if (!sdma->irq) {
dev_err(dev, "Error mapping IRQ!\n");
return -EINVAL;
}
sdma->clk = devm_clk_get(dev, NULL);
if (IS_ERR(sdma->clk)) {
dev_err(dev, "failed to get a clock.\n");
return PTR_ERR(sdma->clk);
}
ret = of_address_to_resource(dn, 0, &res);
if (ret) {
dev_err(dev, "Error parsing memory region!\n");
goto irq_dispose;
}
regs_start = res.start;
regs_size = resource_size(&res);
sdma->base = devm_ioremap(dev, regs_start, regs_size);
if (!sdma->base) {
dev_err(dev, "Error mapping memory region!\n");
ret = -ENOMEM;
goto irq_dispose;
}
ret = request_irq(sdma->irq, &sirfsoc_dma_irq, 0, DRV_NAME, sdma);
if (ret) {
dev_err(dev, "Error requesting IRQ!\n");
ret = -EINVAL;
goto irq_dispose;
}
dma = &sdma->dma;
dma->dev = dev;
dma->device_alloc_chan_resources = sirfsoc_dma_alloc_chan_resources;
dma->device_free_chan_resources = sirfsoc_dma_free_chan_resources;
dma->device_issue_pending = sirfsoc_dma_issue_pending;
dma->device_config = sirfsoc_dma_slave_config;
dma->device_pause = sirfsoc_dma_pause_chan;
dma->device_resume = sirfsoc_dma_resume_chan;
dma->device_terminate_all = sirfsoc_dma_terminate_all;
dma->device_tx_status = sirfsoc_dma_tx_status;
dma->device_prep_interleaved_dma = sirfsoc_dma_prep_interleaved;
dma->device_prep_dma_cyclic = sirfsoc_dma_prep_cyclic;
dma->src_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
dma->dst_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
INIT_LIST_HEAD(&dma->channels);
dma_cap_set(DMA_SLAVE, dma->cap_mask);
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
for (i = 0; i < SIRFSOC_DMA_CHANNELS; i++) {
schan = &sdma->channels[i];
schan->chan.device = dma;
dma_cookie_init(&schan->chan);
INIT_LIST_HEAD(&schan->free);
INIT_LIST_HEAD(&schan->prepared);
INIT_LIST_HEAD(&schan->queued);
INIT_LIST_HEAD(&schan->active);
INIT_LIST_HEAD(&schan->completed);
spin_lock_init(&schan->lock);
list_add_tail(&schan->chan.device_node, &dma->channels);
}
tasklet_init(&sdma->tasklet, sirfsoc_dma_tasklet, (unsigned long)sdma);
/* Register DMA engine */
dev_set_drvdata(dev, sdma);
ret = dma_async_device_register(dma);
if (ret)
goto free_irq;
/* Device-tree DMA controller registration */
ret = of_dma_controller_register(dn, of_dma_sirfsoc_xlate, sdma);
if (ret) {
dev_err(dev, "failed to register DMA controller\n");
goto unreg_dma_dev;
}
pm_runtime_enable(&op->dev);
dev_info(dev, "initialized SIRFSOC DMAC driver\n");
return 0;
unreg_dma_dev:
dma_async_device_unregister(dma);
free_irq:
free_irq(sdma->irq, sdma);
irq_dispose:
irq_dispose_mapping(sdma->irq);
return ret;
}
static int sirfsoc_dma_remove(struct platform_device *op)
{
struct device *dev = &op->dev;
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
of_dma_controller_free(op->dev.of_node);
dma_async_device_unregister(&sdma->dma);
free_irq(sdma->irq, sdma);
tasklet_kill(&sdma->tasklet);
irq_dispose_mapping(sdma->irq);
pm_runtime_disable(&op->dev);
if (!pm_runtime_status_suspended(&op->dev))
sirfsoc_dma_runtime_suspend(&op->dev);
return 0;
}
static int __maybe_unused sirfsoc_dma_runtime_suspend(struct device *dev)
{
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
clk_disable_unprepare(sdma->clk);
return 0;
}
static int __maybe_unused sirfsoc_dma_runtime_resume(struct device *dev)
{
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(sdma->clk);
if (ret < 0) {
dev_err(dev, "clk_enable failed: %d\n", ret);
return ret;
}
return 0;
}
static int __maybe_unused sirfsoc_dma_pm_suspend(struct device *dev)
{
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
struct sirfsoc_dma_regs *save = &sdma->regs_save;
struct sirfsoc_dma_chan *schan;
int ch;
int ret;
int count;
u32 int_offset;
/*
* if we were runtime-suspended before, resume to enable clock
* before accessing register
*/
if (pm_runtime_status_suspended(dev)) {
ret = sirfsoc_dma_runtime_resume(dev);
if (ret < 0)
return ret;
}
if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
count = 1;
int_offset = SIRFSOC_DMA_INT_EN_ATLAS7;
} else {
count = SIRFSOC_DMA_CHANNELS;
int_offset = SIRFSOC_DMA_INT_EN;
}
/*
* DMA controller will lose all registers while suspending
* so we need to save registers for active channels
*/
for (ch = 0; ch < count; ch++) {
schan = &sdma->channels[ch];
if (list_empty(&schan->active))
continue;
save->ctrl[ch] = readl_relaxed(sdma->base +
ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
}
save->interrupt_en = readl_relaxed(sdma->base + int_offset);
/* Disable clock */
sirfsoc_dma_runtime_suspend(dev);
return 0;
}
static int __maybe_unused sirfsoc_dma_pm_resume(struct device *dev)
{
struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
struct sirfsoc_dma_regs *save = &sdma->regs_save;
struct sirfsoc_dma_desc *sdesc;
struct sirfsoc_dma_chan *schan;
int ch;
int ret;
int count;
u32 int_offset;
u32 width_offset;
/* Enable clock before accessing register */
ret = sirfsoc_dma_runtime_resume(dev);
if (ret < 0)
return ret;
if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
count = 1;
int_offset = SIRFSOC_DMA_INT_EN_ATLAS7;
width_offset = SIRFSOC_DMA_WIDTH_ATLAS7;
} else {
count = SIRFSOC_DMA_CHANNELS;
int_offset = SIRFSOC_DMA_INT_EN;
width_offset = SIRFSOC_DMA_WIDTH_0;
}
writel_relaxed(save->interrupt_en, sdma->base + int_offset);
for (ch = 0; ch < count; ch++) {
schan = &sdma->channels[ch];
if (list_empty(&schan->active))
continue;
sdesc = list_first_entry(&schan->active,
struct sirfsoc_dma_desc,
node);
writel_relaxed(sdesc->width,
sdma->base + width_offset + ch * 4);
writel_relaxed(sdesc->xlen,
sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_XLEN);
writel_relaxed(sdesc->ylen,
sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_YLEN);
writel_relaxed(save->ctrl[ch],
sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
writel_relaxed(sdesc->addr,
sdma->base + SIRFSOC_DMA_CH_ADDR);
} else {
writel_relaxed(sdesc->addr >> 2,
sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_ADDR);
}
}
/* if we were runtime-suspended before, suspend again */
if (pm_runtime_status_suspended(dev))
sirfsoc_dma_runtime_suspend(dev);
return 0;
}
static const struct dev_pm_ops sirfsoc_dma_pm_ops = {
SET_RUNTIME_PM_OPS(sirfsoc_dma_runtime_suspend, sirfsoc_dma_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(sirfsoc_dma_pm_suspend, sirfsoc_dma_pm_resume)
};
static struct sirfsoc_dmadata sirfsoc_dmadata_a6 = {
.exec = sirfsoc_dma_execute_hw_a6,
.type = SIRFSOC_DMA_VER_A6,
};
static struct sirfsoc_dmadata sirfsoc_dmadata_a7v1 = {
.exec = sirfsoc_dma_execute_hw_a7v1,
.type = SIRFSOC_DMA_VER_A7V1,
};
static struct sirfsoc_dmadata sirfsoc_dmadata_a7v2 = {
.exec = sirfsoc_dma_execute_hw_a7v2,
.type = SIRFSOC_DMA_VER_A7V2,
};
static const struct of_device_id sirfsoc_dma_match[] = {
{ .compatible = "sirf,prima2-dmac", .data = &sirfsoc_dmadata_a6,},
{ .compatible = "sirf,atlas7-dmac", .data = &sirfsoc_dmadata_a7v1,},
{ .compatible = "sirf,atlas7-dmac-v2", .data = &sirfsoc_dmadata_a7v2,},
{},
};
MODULE_DEVICE_TABLE(of, sirfsoc_dma_match);
static struct platform_driver sirfsoc_dma_driver = {
.probe = sirfsoc_dma_probe,
.remove = sirfsoc_dma_remove,
.driver = {
.name = DRV_NAME,
.pm = &sirfsoc_dma_pm_ops,
.of_match_table = sirfsoc_dma_match,
},
};
static __init int sirfsoc_dma_init(void)
{
return platform_driver_register(&sirfsoc_dma_driver);
}
static void __exit sirfsoc_dma_exit(void)
{
platform_driver_unregister(&sirfsoc_dma_driver);
}
subsys_initcall(sirfsoc_dma_init);
module_exit(sirfsoc_dma_exit);
MODULE_AUTHOR("Rongjun Ying <rongjun.ying@csr.com>");
MODULE_AUTHOR("Barry Song <baohua.song@csr.com>");
MODULE_DESCRIPTION("SIRFSOC DMA control driver");
MODULE_LICENSE("GPL v2");