xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
/*
|
|
|
|
* PCI Backend - Handles the virtual fields found on the capability lists
|
|
|
|
* in the configuration space.
|
|
|
|
*
|
|
|
|
* Author: Ryan Wilson <hap9@epoch.ncsc.mil>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include "pciback.h"
|
|
|
|
#include "conf_space.h"
|
|
|
|
|
|
|
|
static LIST_HEAD(capabilities);
|
2011-07-20 07:40:51 +08:00
|
|
|
struct xen_pcibk_config_capability {
|
|
|
|
struct list_head cap_list;
|
|
|
|
|
|
|
|
int capability;
|
|
|
|
|
|
|
|
/* If the device has the capability found above, add these fields */
|
|
|
|
const struct config_field *fields;
|
|
|
|
};
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
|
|
|
|
static const struct config_field caplist_header[] = {
|
|
|
|
{
|
|
|
|
.offset = PCI_CAP_LIST_ID,
|
|
|
|
.size = 2, /* encompass PCI_CAP_LIST_ID & PCI_CAP_LIST_NEXT */
|
2011-07-20 07:40:51 +08:00
|
|
|
.u.w.read = xen_pcibk_read_config_word,
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
.u.w.write = NULL,
|
|
|
|
},
|
|
|
|
{}
|
|
|
|
};
|
|
|
|
|
2011-07-20 07:40:51 +08:00
|
|
|
static inline void register_capability(struct xen_pcibk_config_capability *cap)
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
{
|
|
|
|
list_add_tail(&cap->cap_list, &capabilities);
|
|
|
|
}
|
|
|
|
|
2011-07-20 07:40:51 +08:00
|
|
|
int xen_pcibk_config_capability_add_fields(struct pci_dev *dev)
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
{
|
|
|
|
int err = 0;
|
2011-07-20 07:40:51 +08:00
|
|
|
struct xen_pcibk_config_capability *cap;
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
int cap_offset;
|
|
|
|
|
|
|
|
list_for_each_entry(cap, &capabilities, cap_list) {
|
|
|
|
cap_offset = pci_find_capability(dev, cap->capability);
|
|
|
|
if (cap_offset) {
|
|
|
|
dev_dbg(&dev->dev, "Found capability 0x%x at 0x%x\n",
|
|
|
|
cap->capability, cap_offset);
|
|
|
|
|
2011-07-20 07:40:51 +08:00
|
|
|
err = xen_pcibk_config_add_fields_offset(dev,
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
caplist_header,
|
|
|
|
cap_offset);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
2011-07-20 07:40:51 +08:00
|
|
|
err = xen_pcibk_config_add_fields_offset(dev,
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
cap->fields,
|
|
|
|
cap_offset);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2011-07-20 07:40:51 +08:00
|
|
|
static int vpd_address_write(struct pci_dev *dev, int offset, u16 value,
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
/* Disallow writes to the vital product data */
|
|
|
|
if (value & PCI_VPD_ADDR_F)
|
|
|
|
return PCIBIOS_SET_FAILED;
|
|
|
|
else
|
|
|
|
return pci_write_config_word(dev, offset, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct config_field caplist_vpd[] = {
|
|
|
|
{
|
|
|
|
.offset = PCI_VPD_ADDR,
|
|
|
|
.size = 2,
|
|
|
|
.u.w.read = xen_pcibk_read_config_word,
|
|
|
|
.u.w.write = vpd_address_write,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.offset = PCI_VPD_DATA,
|
|
|
|
.size = 4,
|
|
|
|
.u.dw.read = xen_pcibk_read_config_dword,
|
|
|
|
.u.dw.write = NULL,
|
|
|
|
},
|
|
|
|
{}
|
|
|
|
};
|
|
|
|
|
|
|
|
static int pm_caps_read(struct pci_dev *dev, int offset, u16 *value,
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
u16 real_value;
|
|
|
|
|
|
|
|
err = pci_read_config_word(dev, offset, &real_value);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
*value = real_value & ~PCI_PM_CAP_PME_MASK;
|
|
|
|
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* PM_OK_BITS specifies the bits that the driver domain is allowed to change.
|
|
|
|
* Can't allow driver domain to enable PMEs - they're shared */
|
|
|
|
#define PM_OK_BITS (PCI_PM_CTRL_PME_STATUS|PCI_PM_CTRL_DATA_SEL_MASK)
|
|
|
|
|
|
|
|
static int pm_ctrl_write(struct pci_dev *dev, int offset, u16 new_value,
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
u16 old_value;
|
|
|
|
pci_power_t new_state, old_state;
|
|
|
|
|
|
|
|
err = pci_read_config_word(dev, offset, &old_value);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
old_state = (pci_power_t)(old_value & PCI_PM_CTRL_STATE_MASK);
|
|
|
|
new_state = (pci_power_t)(new_value & PCI_PM_CTRL_STATE_MASK);
|
|
|
|
|
|
|
|
new_value &= PM_OK_BITS;
|
|
|
|
if ((old_value & PM_OK_BITS) != new_value) {
|
|
|
|
new_value = (old_value & ~PM_OK_BITS) | new_value;
|
|
|
|
err = pci_write_config_word(dev, offset, new_value);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Let pci core handle the power management change */
|
|
|
|
dev_dbg(&dev->dev, "set power state to %x\n", new_state);
|
|
|
|
err = pci_set_power_state(dev, new_state);
|
|
|
|
if (err) {
|
|
|
|
err = PCIBIOS_SET_FAILED;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Ensure PMEs are disabled */
|
|
|
|
static void *pm_ctrl_init(struct pci_dev *dev, int offset)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
u16 value;
|
|
|
|
|
|
|
|
err = pci_read_config_word(dev, offset, &value);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (value & PCI_PM_CTRL_PME_ENABLE) {
|
|
|
|
value &= ~PCI_PM_CTRL_PME_ENABLE;
|
|
|
|
err = pci_write_config_word(dev, offset, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
return ERR_PTR(err);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct config_field caplist_pm[] = {
|
|
|
|
{
|
|
|
|
.offset = PCI_PM_PMC,
|
|
|
|
.size = 2,
|
|
|
|
.u.w.read = pm_caps_read,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.offset = PCI_PM_CTRL,
|
|
|
|
.size = 2,
|
|
|
|
.init = pm_ctrl_init,
|
|
|
|
.u.w.read = xen_pcibk_read_config_word,
|
|
|
|
.u.w.write = pm_ctrl_write,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.offset = PCI_PM_PPB_EXTENSIONS,
|
|
|
|
.size = 1,
|
|
|
|
.u.b.read = xen_pcibk_read_config_byte,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.offset = PCI_PM_DATA_REGISTER,
|
|
|
|
.size = 1,
|
|
|
|
.u.b.read = xen_pcibk_read_config_byte,
|
|
|
|
},
|
|
|
|
{}
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct xen_pcibk_config_capability xen_pcibk_config_capability_pm = {
|
|
|
|
.capability = PCI_CAP_ID_PM,
|
|
|
|
.fields = caplist_pm,
|
|
|
|
};
|
|
|
|
static struct xen_pcibk_config_capability xen_pcibk_config_capability_vpd = {
|
|
|
|
.capability = PCI_CAP_ID_VPD,
|
|
|
|
.fields = caplist_vpd,
|
|
|
|
};
|
|
|
|
|
|
|
|
int xen_pcibk_config_capability_init(void)
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
{
|
2011-07-20 07:40:51 +08:00
|
|
|
register_capability(&xen_pcibk_config_capability_vpd);
|
|
|
|
register_capability(&xen_pcibk_config_capability_pm);
|
xen/pciback: xen pci backend driver.
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|