2012-03-05 19:49:28 +08:00
|
|
|
/*
|
|
|
|
* Based on arch/arm/mm/proc.S
|
|
|
|
*
|
|
|
|
* Copyright (C) 2001 Deep Blue Solutions Ltd.
|
|
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
|
|
* Author: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
#include <asm/assembler.h>
|
|
|
|
#include <asm/asm-offsets.h>
|
|
|
|
#include <asm/hwcap.h>
|
|
|
|
#include <asm/pgtable.h>
|
2016-04-28 00:47:07 +08:00
|
|
|
#include <asm/pgtable-hwdef.h>
|
2016-02-25 09:44:57 +08:00
|
|
|
#include <asm/cpufeature.h>
|
|
|
|
#include <asm/alternative.h>
|
2012-03-05 19:49:28 +08:00
|
|
|
|
2014-04-03 00:55:40 +08:00
|
|
|
#ifdef CONFIG_ARM64_64K_PAGES
|
|
|
|
#define TCR_TG_FLAGS TCR_TG0_64K | TCR_TG1_64K
|
2015-10-19 21:19:37 +08:00
|
|
|
#elif defined(CONFIG_ARM64_16K_PAGES)
|
|
|
|
#define TCR_TG_FLAGS TCR_TG0_16K | TCR_TG1_16K
|
|
|
|
#else /* CONFIG_ARM64_4K_PAGES */
|
2014-04-03 00:55:40 +08:00
|
|
|
#define TCR_TG_FLAGS TCR_TG0_4K | TCR_TG1_4K
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define TCR_SMP_FLAGS TCR_SHARED
|
2012-03-05 19:49:28 +08:00
|
|
|
|
2014-04-03 00:55:40 +08:00
|
|
|
/* PTWs cacheable, inner/outer WBWA */
|
|
|
|
#define TCR_CACHE_FLAGS TCR_IRGN_WBWA | TCR_ORGN_WBWA
|
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
#define MAIR(attr, mt) ((attr) << ((mt) * 8))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* cpu_do_idle()
|
|
|
|
*
|
|
|
|
* Idle the processor (wait for interrupt).
|
|
|
|
*/
|
|
|
|
ENTRY(cpu_do_idle)
|
|
|
|
dsb sy // WFI may enter a low-power mode
|
|
|
|
wfi
|
|
|
|
ret
|
|
|
|
ENDPROC(cpu_do_idle)
|
|
|
|
|
2015-01-27 02:33:44 +08:00
|
|
|
#ifdef CONFIG_CPU_PM
|
2013-07-17 17:14:45 +08:00
|
|
|
/**
|
|
|
|
* cpu_do_suspend - save CPU registers context
|
|
|
|
*
|
|
|
|
* x0: virtual address of context pointer
|
|
|
|
*/
|
|
|
|
ENTRY(cpu_do_suspend)
|
|
|
|
mrs x2, tpidr_el0
|
|
|
|
mrs x3, tpidrro_el0
|
|
|
|
mrs x4, contextidr_el1
|
2016-04-28 00:47:07 +08:00
|
|
|
mrs x5, cpacr_el1
|
|
|
|
mrs x6, tcr_el1
|
|
|
|
mrs x7, vbar_el1
|
|
|
|
mrs x8, mdscr_el1
|
|
|
|
mrs x9, oslsr_el1
|
|
|
|
mrs x10, sctlr_el1
|
2018-01-08 23:38:06 +08:00
|
|
|
alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
|
2016-11-04 04:23:09 +08:00
|
|
|
mrs x11, tpidr_el1
|
2018-01-08 23:38:06 +08:00
|
|
|
alternative_else
|
|
|
|
mrs x11, tpidr_el2
|
|
|
|
alternative_endif
|
2016-11-04 04:23:09 +08:00
|
|
|
mrs x12, sp_el0
|
2013-07-17 17:14:45 +08:00
|
|
|
stp x2, x3, [x0]
|
2016-04-28 00:47:07 +08:00
|
|
|
stp x4, xzr, [x0, #16]
|
|
|
|
stp x5, x6, [x0, #32]
|
|
|
|
stp x7, x8, [x0, #48]
|
|
|
|
stp x9, x10, [x0, #64]
|
2016-11-04 04:23:09 +08:00
|
|
|
stp x11, x12, [x0, #80]
|
2013-07-17 17:14:45 +08:00
|
|
|
ret
|
|
|
|
ENDPROC(cpu_do_suspend)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cpu_do_resume - restore CPU register context
|
|
|
|
*
|
2016-04-28 00:47:07 +08:00
|
|
|
* x0: Address of context pointer
|
2013-07-17 17:14:45 +08:00
|
|
|
*/
|
2016-08-25 01:27:29 +08:00
|
|
|
.pushsection ".idmap.text", "ax"
|
2013-07-17 17:14:45 +08:00
|
|
|
ENTRY(cpu_do_resume)
|
|
|
|
ldp x2, x3, [x0]
|
|
|
|
ldp x4, x5, [x0, #16]
|
2016-04-28 00:47:07 +08:00
|
|
|
ldp x6, x8, [x0, #32]
|
|
|
|
ldp x9, x10, [x0, #48]
|
|
|
|
ldp x11, x12, [x0, #64]
|
2016-11-04 04:23:09 +08:00
|
|
|
ldp x13, x14, [x0, #80]
|
2013-07-17 17:14:45 +08:00
|
|
|
msr tpidr_el0, x2
|
|
|
|
msr tpidrro_el0, x3
|
|
|
|
msr contextidr_el1, x4
|
|
|
|
msr cpacr_el1, x6
|
2016-04-28 00:47:07 +08:00
|
|
|
|
|
|
|
/* Don't change t0sz here, mask those bits when restoring */
|
|
|
|
mrs x5, tcr_el1
|
|
|
|
bfi x8, x5, TCR_T0SZ_OFFSET, TCR_TxSZ_WIDTH
|
|
|
|
|
2013-07-17 17:14:45 +08:00
|
|
|
msr tcr_el1, x8
|
|
|
|
msr vbar_el1, x9
|
2016-08-26 23:03:42 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* __cpu_setup() cleared MDSCR_EL1.MDE and friends, before unmasking
|
|
|
|
* debug exceptions. By restoring MDSCR_EL1 here, we may take a debug
|
2017-11-02 20:12:34 +08:00
|
|
|
* exception. Mask them until local_daif_restore() in cpu_suspend()
|
2016-08-26 23:03:42 +08:00
|
|
|
* resets them.
|
|
|
|
*/
|
2017-11-02 20:12:34 +08:00
|
|
|
disable_daif
|
2013-07-17 17:14:45 +08:00
|
|
|
msr mdscr_el1, x10
|
2016-08-26 23:03:42 +08:00
|
|
|
|
2016-04-28 00:47:07 +08:00
|
|
|
msr sctlr_el1, x12
|
2018-01-08 23:38:06 +08:00
|
|
|
alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
|
2016-11-04 04:23:09 +08:00
|
|
|
msr tpidr_el1, x13
|
2018-01-08 23:38:06 +08:00
|
|
|
alternative_else
|
|
|
|
msr tpidr_el2, x13
|
|
|
|
alternative_endif
|
2016-11-04 04:23:09 +08:00
|
|
|
msr sp_el0, x14
|
2013-07-17 17:14:45 +08:00
|
|
|
/*
|
|
|
|
* Restore oslsr_el1 by writing oslar_el1
|
|
|
|
*/
|
|
|
|
ubfx x11, x11, #1, #1
|
|
|
|
msr oslar_el1, x11
|
2016-01-13 22:50:03 +08:00
|
|
|
reset_pmuserenr_el0 x0 // Disable PMU access from EL0
|
2018-01-16 03:38:59 +08:00
|
|
|
|
|
|
|
alternative_if ARM64_HAS_RAS_EXTN
|
|
|
|
msr_s SYS_DISR_EL1, xzr
|
|
|
|
alternative_else_nop_endif
|
|
|
|
|
2013-07-17 17:14:45 +08:00
|
|
|
isb
|
|
|
|
ret
|
|
|
|
ENDPROC(cpu_do_resume)
|
2016-08-25 01:27:29 +08:00
|
|
|
.popsection
|
2013-07-17 17:14:45 +08:00
|
|
|
#endif
|
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
/*
|
2014-01-27 15:19:32 +08:00
|
|
|
* cpu_do_switch_mm(pgd_phys, tsk)
|
2012-03-05 19:49:28 +08:00
|
|
|
*
|
|
|
|
* Set the translation table base pointer to be pgd_phys.
|
|
|
|
*
|
|
|
|
* - pgd_phys - physical address of new TTB
|
|
|
|
*/
|
|
|
|
ENTRY(cpu_do_switch_mm)
|
2017-08-10 20:19:09 +08:00
|
|
|
mrs x2, ttbr1_el1
|
2015-10-07 01:46:24 +08:00
|
|
|
mmid x1, x1 // get mm->context.id
|
2018-01-24 16:27:08 +08:00
|
|
|
phys_to_ttbr x0, x3
|
2018-01-10 21:18:30 +08:00
|
|
|
#ifdef CONFIG_ARM64_SW_TTBR0_PAN
|
2018-01-24 16:27:08 +08:00
|
|
|
bfi x3, x1, #48, #16 // set the ASID field in TTBR0
|
2018-01-10 21:18:30 +08:00
|
|
|
#endif
|
2017-08-10 20:19:09 +08:00
|
|
|
bfi x2, x1, #48, #16 // set the ASID
|
|
|
|
msr ttbr1_el1, x2 // in TTBR1 (since TCR.A1 is set)
|
|
|
|
isb
|
2018-01-24 16:27:08 +08:00
|
|
|
msr ttbr0_el1, x3 // now update TTBR0
|
2012-03-05 19:49:28 +08:00
|
|
|
isb
|
2018-01-03 02:19:39 +08:00
|
|
|
b post_ttbr_update_workaround // Back to C code...
|
2012-03-05 19:49:28 +08:00
|
|
|
ENDPROC(cpu_do_switch_mm)
|
|
|
|
|
arm64: mm: add code to safely replace TTBR1_EL1
If page tables are modified without suitable TLB maintenance, the ARM
architecture permits multiple TLB entries to be allocated for the same
VA. When this occurs, it is permitted that TLB conflict aborts are
raised in response to synchronous data/instruction accesses, and/or and
amalgamation of the TLB entries may be used as a result of a TLB lookup.
The presence of conflicting TLB entries may result in a variety of
behaviours detrimental to the system (e.g. erroneous physical addresses
may be used by I-cache fetches and/or page table walks). Some of these
cases may result in unexpected changes of hardware state, and/or result
in the (asynchronous) delivery of SError.
To avoid these issues, we must avoid situations where conflicting
entries may be allocated into TLBs. For user and module mappings we can
follow a strict break-before-make approach, but this cannot work for
modifications to the swapper page tables that cover the kernel text and
data.
Instead, this patch adds code which is intended to be executed from the
idmap, which can safely unmap the swapper page tables as it only
requires the idmap to be active. This enables us to uninstall the active
TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry
without potentially unmapping code or data required for the sequence.
This avoids the risk of conflict, but requires that updates are staged
in a copy of the swapper page tables prior to being installed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 19:45:01 +08:00
|
|
|
.pushsection ".idmap.text", "ax"
|
|
|
|
/*
|
|
|
|
* void idmap_cpu_replace_ttbr1(phys_addr_t new_pgd)
|
|
|
|
*
|
|
|
|
* This is the low-level counterpart to cpu_replace_ttbr1, and should not be
|
|
|
|
* called by anything else. It can only be executed from a TTBR0 mapping.
|
|
|
|
*/
|
|
|
|
ENTRY(idmap_cpu_replace_ttbr1)
|
2017-11-02 20:12:34 +08:00
|
|
|
save_and_disable_daif flags=x2
|
arm64: mm: add code to safely replace TTBR1_EL1
If page tables are modified without suitable TLB maintenance, the ARM
architecture permits multiple TLB entries to be allocated for the same
VA. When this occurs, it is permitted that TLB conflict aborts are
raised in response to synchronous data/instruction accesses, and/or and
amalgamation of the TLB entries may be used as a result of a TLB lookup.
The presence of conflicting TLB entries may result in a variety of
behaviours detrimental to the system (e.g. erroneous physical addresses
may be used by I-cache fetches and/or page table walks). Some of these
cases may result in unexpected changes of hardware state, and/or result
in the (asynchronous) delivery of SError.
To avoid these issues, we must avoid situations where conflicting
entries may be allocated into TLBs. For user and module mappings we can
follow a strict break-before-make approach, but this cannot work for
modifications to the swapper page tables that cover the kernel text and
data.
Instead, this patch adds code which is intended to be executed from the
idmap, which can safely unmap the swapper page tables as it only
requires the idmap to be active. This enables us to uninstall the active
TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry
without potentially unmapping code or data required for the sequence.
This avoids the risk of conflict, but requires that updates are staged
in a copy of the swapper page tables prior to being installed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 19:45:01 +08:00
|
|
|
|
|
|
|
adrp x1, empty_zero_page
|
2017-12-14 01:07:18 +08:00
|
|
|
phys_to_ttbr x1, x3
|
|
|
|
msr ttbr1_el1, x3
|
arm64: mm: add code to safely replace TTBR1_EL1
If page tables are modified without suitable TLB maintenance, the ARM
architecture permits multiple TLB entries to be allocated for the same
VA. When this occurs, it is permitted that TLB conflict aborts are
raised in response to synchronous data/instruction accesses, and/or and
amalgamation of the TLB entries may be used as a result of a TLB lookup.
The presence of conflicting TLB entries may result in a variety of
behaviours detrimental to the system (e.g. erroneous physical addresses
may be used by I-cache fetches and/or page table walks). Some of these
cases may result in unexpected changes of hardware state, and/or result
in the (asynchronous) delivery of SError.
To avoid these issues, we must avoid situations where conflicting
entries may be allocated into TLBs. For user and module mappings we can
follow a strict break-before-make approach, but this cannot work for
modifications to the swapper page tables that cover the kernel text and
data.
Instead, this patch adds code which is intended to be executed from the
idmap, which can safely unmap the swapper page tables as it only
requires the idmap to be active. This enables us to uninstall the active
TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry
without potentially unmapping code or data required for the sequence.
This avoids the risk of conflict, but requires that updates are staged
in a copy of the swapper page tables prior to being installed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 19:45:01 +08:00
|
|
|
isb
|
|
|
|
|
|
|
|
tlbi vmalle1
|
|
|
|
dsb nsh
|
|
|
|
isb
|
|
|
|
|
2017-12-14 01:07:18 +08:00
|
|
|
phys_to_ttbr x0, x3
|
|
|
|
msr ttbr1_el1, x3
|
arm64: mm: add code to safely replace TTBR1_EL1
If page tables are modified without suitable TLB maintenance, the ARM
architecture permits multiple TLB entries to be allocated for the same
VA. When this occurs, it is permitted that TLB conflict aborts are
raised in response to synchronous data/instruction accesses, and/or and
amalgamation of the TLB entries may be used as a result of a TLB lookup.
The presence of conflicting TLB entries may result in a variety of
behaviours detrimental to the system (e.g. erroneous physical addresses
may be used by I-cache fetches and/or page table walks). Some of these
cases may result in unexpected changes of hardware state, and/or result
in the (asynchronous) delivery of SError.
To avoid these issues, we must avoid situations where conflicting
entries may be allocated into TLBs. For user and module mappings we can
follow a strict break-before-make approach, but this cannot work for
modifications to the swapper page tables that cover the kernel text and
data.
Instead, this patch adds code which is intended to be executed from the
idmap, which can safely unmap the swapper page tables as it only
requires the idmap to be active. This enables us to uninstall the active
TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry
without potentially unmapping code or data required for the sequence.
This avoids the risk of conflict, but requires that updates are staged
in a copy of the swapper page tables prior to being installed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 19:45:01 +08:00
|
|
|
isb
|
|
|
|
|
2017-11-02 20:12:34 +08:00
|
|
|
restore_daif x2
|
arm64: mm: add code to safely replace TTBR1_EL1
If page tables are modified without suitable TLB maintenance, the ARM
architecture permits multiple TLB entries to be allocated for the same
VA. When this occurs, it is permitted that TLB conflict aborts are
raised in response to synchronous data/instruction accesses, and/or and
amalgamation of the TLB entries may be used as a result of a TLB lookup.
The presence of conflicting TLB entries may result in a variety of
behaviours detrimental to the system (e.g. erroneous physical addresses
may be used by I-cache fetches and/or page table walks). Some of these
cases may result in unexpected changes of hardware state, and/or result
in the (asynchronous) delivery of SError.
To avoid these issues, we must avoid situations where conflicting
entries may be allocated into TLBs. For user and module mappings we can
follow a strict break-before-make approach, but this cannot work for
modifications to the swapper page tables that cover the kernel text and
data.
Instead, this patch adds code which is intended to be executed from the
idmap, which can safely unmap the swapper page tables as it only
requires the idmap to be active. This enables us to uninstall the active
TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry
without potentially unmapping code or data required for the sequence.
This avoids the risk of conflict, but requires that updates are staged
in a copy of the swapper page tables prior to being installed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 19:45:01 +08:00
|
|
|
|
|
|
|
ret
|
|
|
|
ENDPROC(idmap_cpu_replace_ttbr1)
|
|
|
|
.popsection
|
|
|
|
|
2012-03-05 19:49:28 +08:00
|
|
|
/*
|
|
|
|
* __cpu_setup
|
|
|
|
*
|
|
|
|
* Initialise the processor for turning the MMU on. Return in x0 the
|
|
|
|
* value of the SCTLR_EL1 register.
|
|
|
|
*/
|
2016-08-25 01:27:29 +08:00
|
|
|
.pushsection ".idmap.text", "ax"
|
2012-03-05 19:49:28 +08:00
|
|
|
ENTRY(__cpu_setup)
|
2015-10-07 01:46:22 +08:00
|
|
|
tlbi vmalle1 // Invalidate local TLB
|
|
|
|
dsb nsh
|
2012-03-05 19:49:28 +08:00
|
|
|
|
|
|
|
mov x0, #3 << 20
|
|
|
|
msr cpacr_el1, x0 // Enable FP/ASIMD
|
2015-08-20 18:47:13 +08:00
|
|
|
mov x0, #1 << 12 // Reset mdscr_el1 and disable
|
|
|
|
msr mdscr_el1, x0 // access to the DCC from EL0
|
arm64: debug: unmask PSTATE.D earlier
Clearing PSTATE.D is one of the requirements for generating a debug
exception. The arm64 booting protocol requires that PSTATE.D is set,
since many of the debug registers (for example, the hw_breakpoint
registers) are UNKNOWN out of reset and could potentially generate
spurious, fatal debug exceptions in early boot code if PSTATE.D was
clear. Once the debug registers have been safely initialised, PSTATE.D
is cleared, however this is currently broken for two reasons:
(1) The boot CPU clears PSTATE.D in a postcore_initcall and secondary
CPUs clear PSTATE.D in secondary_start_kernel. Since the initcall
runs after SMP (and the scheduler) have been initialised, there is
no guarantee that it is actually running on the boot CPU. In this
case, the boot CPU is left with PSTATE.D set and is not capable of
generating debug exceptions.
(2) In a preemptible kernel, we may explicitly schedule on the IRQ
return path to EL1. If an IRQ occurs with PSTATE.D set in the idle
thread, then we may schedule the kthread_init thread, run the
postcore_initcall to clear PSTATE.D and then context switch back
to the idle thread before returning from the IRQ. The exception
return path will then restore PSTATE.D from the stack, and set it
again.
This patch fixes the problem by moving the clearing of PSTATE.D earlier
to proc.S. This has the desirable effect of clearing it in one place for
all CPUs, long before we have to worry about the scheduler or any
exception handling. We ensure that the previous reset of MDSCR_EL1 has
completed before unmasking the exception, so that any spurious
exceptions resulting from UNKNOWN debug registers are not generated.
Without this patch applied, the kprobes selftests have been seen to fail
under KVM, where we end up attempting to step the OOL instruction buffer
with PSTATE.D set and therefore fail to complete the step.
Cc: <stable@vger.kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-19 22:07:37 +08:00
|
|
|
isb // Unmask debug exceptions now,
|
|
|
|
enable_dbg // since this is per-cpu
|
2016-01-13 22:50:03 +08:00
|
|
|
reset_pmuserenr_el0 x0 // Disable PMU access from EL0
|
2012-03-05 19:49:28 +08:00
|
|
|
/*
|
|
|
|
* Memory region attributes for LPAE:
|
|
|
|
*
|
|
|
|
* n = AttrIndx[2:0]
|
|
|
|
* n MAIR
|
|
|
|
* DEVICE_nGnRnE 000 00000000
|
|
|
|
* DEVICE_nGnRE 001 00000100
|
|
|
|
* DEVICE_GRE 010 00001100
|
|
|
|
* NORMAL_NC 011 01000100
|
|
|
|
* NORMAL 100 11111111
|
2015-08-07 16:36:59 +08:00
|
|
|
* NORMAL_WT 101 10111011
|
2012-03-05 19:49:28 +08:00
|
|
|
*/
|
|
|
|
ldr x5, =MAIR(0x00, MT_DEVICE_nGnRnE) | \
|
|
|
|
MAIR(0x04, MT_DEVICE_nGnRE) | \
|
|
|
|
MAIR(0x0c, MT_DEVICE_GRE) | \
|
|
|
|
MAIR(0x44, MT_NORMAL_NC) | \
|
2015-08-07 16:36:59 +08:00
|
|
|
MAIR(0xff, MT_NORMAL) | \
|
|
|
|
MAIR(0xbb, MT_NORMAL_WT)
|
2012-03-05 19:49:28 +08:00
|
|
|
msr mair_el1, x5
|
|
|
|
/*
|
|
|
|
* Prepare SCTLR
|
|
|
|
*/
|
2018-01-16 03:38:55 +08:00
|
|
|
mov_q x0, SCTLR_EL1_SET
|
2012-03-05 19:49:28 +08:00
|
|
|
/*
|
|
|
|
* Set/prepare TCR and TTBR. We use 512GB (39-bit) address range for
|
|
|
|
* both user and kernel.
|
|
|
|
*/
|
2014-04-03 00:55:40 +08:00
|
|
|
ldr x10, =TCR_TxSZ(VA_BITS) | TCR_CACHE_FLAGS | TCR_SMP_FLAGS | \
|
2017-08-10 20:19:09 +08:00
|
|
|
TCR_TG_FLAGS | TCR_ASID16 | TCR_TBI0 | TCR_A1
|
arm64: mm: increase VA range of identity map
The page size and the number of translation levels, and hence the supported
virtual address range, are build-time configurables on arm64 whose optimal
values are use case dependent. However, in the current implementation, if
the system's RAM is located at a very high offset, the virtual address range
needs to reflect that merely because the identity mapping, which is only used
to enable or disable the MMU, requires the extended virtual range to map the
physical memory at an equal virtual offset.
This patch relaxes that requirement, by increasing the number of translation
levels for the identity mapping only, and only when actually needed, i.e.,
when system RAM's offset is found to be out of reach at runtime.
Tested-by: Laura Abbott <lauraa@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-03-20 00:42:27 +08:00
|
|
|
tcr_set_idmap_t0sz x10, x9
|
|
|
|
|
2014-03-07 16:49:25 +08:00
|
|
|
/*
|
2017-12-14 01:07:17 +08:00
|
|
|
* Set the IPS bits in TCR_EL1.
|
2014-03-07 16:49:25 +08:00
|
|
|
*/
|
2017-12-14 01:07:17 +08:00
|
|
|
tcr_compute_pa_size x10, #TCR_IPS_SHIFT, x5, x6
|
2015-07-11 00:24:28 +08:00
|
|
|
#ifdef CONFIG_ARM64_HW_AFDBM
|
|
|
|
/*
|
|
|
|
* Hardware update of the Access and Dirty bits.
|
|
|
|
*/
|
|
|
|
mrs x9, ID_AA64MMFR1_EL1
|
|
|
|
and x9, x9, #0xf
|
|
|
|
cbz x9, 2f
|
|
|
|
cmp x9, #2
|
|
|
|
b.lt 1f
|
|
|
|
orr x10, x10, #TCR_HD // hardware Dirty flag update
|
|
|
|
1: orr x10, x10, #TCR_HA // hardware Access flag update
|
|
|
|
2:
|
|
|
|
#endif /* CONFIG_ARM64_HW_AFDBM */
|
2012-03-05 19:49:28 +08:00
|
|
|
msr tcr_el1, x10
|
|
|
|
ret // return to head.S
|
|
|
|
ENDPROC(__cpu_setup)
|