linux_old1/drivers/net/declance.c

1383 lines
35 KiB
C
Raw Normal View History

/*
* Lance ethernet driver for the MIPS processor based
* DECstation family
*
*
* adopted from sunlance.c by Richard van den Berg
*
* Copyright (C) 2002, 2003, 2005, 2006 Maciej W. Rozycki
*
* additional sources:
* - PMAD-AA TURBOchannel Ethernet Module Functional Specification,
* Revision 1.2
*
* History:
*
* v0.001: The kernel accepts the code and it shows the hardware address.
*
* v0.002: Removed most sparc stuff, left only some module and dma stuff.
*
* v0.003: Enhanced base address calculation from proposals by
* Harald Koerfgen and Thomas Riemer.
*
* v0.004: lance-regs is pointing at the right addresses, added prom
* check. First start of address mapping and DMA.
*
* v0.005: started to play around with LANCE-DMA. This driver will not
* work for non IOASIC lances. HK
*
* v0.006: added pointer arrays to lance_private and setup routine for
* them in dec_lance_init. HK
*
* v0.007: Big shit. The LANCE seems to use a different DMA mechanism to
* access the init block. This looks like one (short) word at a
* time, but the smallest amount the IOASIC can transfer is a
* (long) word. So we have a 2-2 padding here. Changed
* lance_init_block accordingly. The 16-16 padding for the buffers
* seems to be correct. HK
*
* v0.008: mods to make PMAX_LANCE work. 01/09/1999 triemer
*
* v0.009: Module support fixes, multiple interfaces support, various
* bits. macro
*
* v0.010: Fixes for the PMAD mapping of the LANCE buffer and for the
* PMAX requirement to only use halfword accesses to the
* buffer. macro
*
* v0.011: Converted the PMAD to the driver model. macro
*/
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/spinlock.h>
#include <linux/stddef.h>
#include <linux/string.h>
#include <linux/tc.h>
#include <linux/types.h>
#include <asm/addrspace.h>
#include <asm/system.h>
#include <asm/dec/interrupts.h>
#include <asm/dec/ioasic.h>
#include <asm/dec/ioasic_addrs.h>
#include <asm/dec/kn01.h>
#include <asm/dec/machtype.h>
#include <asm/dec/system.h>
static char version[] __devinitdata =
"declance.c: v0.011 by Linux MIPS DECstation task force\n";
MODULE_AUTHOR("Linux MIPS DECstation task force");
MODULE_DESCRIPTION("DEC LANCE (DECstation onboard, PMAD-xx) driver");
MODULE_LICENSE("GPL");
#define __unused __attribute__ ((unused))
/*
* card types
*/
#define ASIC_LANCE 1
#define PMAD_LANCE 2
#define PMAX_LANCE 3
#define LE_CSR0 0
#define LE_CSR1 1
#define LE_CSR2 2
#define LE_CSR3 3
#define LE_MO_PROM 0x8000 /* Enable promiscuous mode */
#define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */
#define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */
#define LE_C0_CERR 0x2000 /* SQE: Signal quality error */
#define LE_C0_MISS 0x1000 /* MISS: Missed a packet */
#define LE_C0_MERR 0x0800 /* ME: Memory error */
#define LE_C0_RINT 0x0400 /* Received interrupt */
#define LE_C0_TINT 0x0200 /* Transmitter Interrupt */
#define LE_C0_IDON 0x0100 /* IFIN: Init finished. */
#define LE_C0_INTR 0x0080 /* Interrupt or error */
#define LE_C0_INEA 0x0040 /* Interrupt enable */
#define LE_C0_RXON 0x0020 /* Receiver on */
#define LE_C0_TXON 0x0010 /* Transmitter on */
#define LE_C0_TDMD 0x0008 /* Transmitter demand */
#define LE_C0_STOP 0x0004 /* Stop the card */
#define LE_C0_STRT 0x0002 /* Start the card */
#define LE_C0_INIT 0x0001 /* Init the card */
#define LE_C3_BSWP 0x4 /* SWAP */
#define LE_C3_ACON 0x2 /* ALE Control */
#define LE_C3_BCON 0x1 /* Byte control */
/* Receive message descriptor 1 */
#define LE_R1_OWN 0x8000 /* Who owns the entry */
#define LE_R1_ERR 0x4000 /* Error: if FRA, OFL, CRC or BUF is set */
#define LE_R1_FRA 0x2000 /* FRA: Frame error */
#define LE_R1_OFL 0x1000 /* OFL: Frame overflow */
#define LE_R1_CRC 0x0800 /* CRC error */
#define LE_R1_BUF 0x0400 /* BUF: Buffer error */
#define LE_R1_SOP 0x0200 /* Start of packet */
#define LE_R1_EOP 0x0100 /* End of packet */
#define LE_R1_POK 0x0300 /* Packet is complete: SOP + EOP */
/* Transmit message descriptor 1 */
#define LE_T1_OWN 0x8000 /* Lance owns the packet */
#define LE_T1_ERR 0x4000 /* Error summary */
#define LE_T1_EMORE 0x1000 /* Error: more than one retry needed */
#define LE_T1_EONE 0x0800 /* Error: one retry needed */
#define LE_T1_EDEF 0x0400 /* Error: deferred */
#define LE_T1_SOP 0x0200 /* Start of packet */
#define LE_T1_EOP 0x0100 /* End of packet */
#define LE_T1_POK 0x0300 /* Packet is complete: SOP + EOP */
#define LE_T3_BUF 0x8000 /* Buffer error */
#define LE_T3_UFL 0x4000 /* Error underflow */
#define LE_T3_LCOL 0x1000 /* Error late collision */
#define LE_T3_CLOS 0x0800 /* Error carrier loss */
#define LE_T3_RTY 0x0400 /* Error retry */
#define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */
/* Define: 2^4 Tx buffers and 2^4 Rx buffers */
#ifndef LANCE_LOG_TX_BUFFERS
#define LANCE_LOG_TX_BUFFERS 4
#define LANCE_LOG_RX_BUFFERS 4
#endif
#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
#define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
#define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
#define PKT_BUF_SZ 1536
#define RX_BUFF_SIZE PKT_BUF_SZ
#define TX_BUFF_SIZE PKT_BUF_SZ
#undef TEST_HITS
#define ZERO 0
/*
* The DS2100/3100 have a linear 64 kB buffer which supports halfword
* accesses only. Each halfword of the buffer is word-aligned in the
* CPU address space.
*
* The PMAD-AA has a 128 kB buffer on-board.
*
* The IOASIC LANCE devices use a shared memory region. This region
* as seen from the CPU is (max) 128 kB long and has to be on an 128 kB
* boundary. The LANCE sees this as a 64 kB long continuous memory
* region.
*
* The LANCE's DMA address is used as an index in this buffer and DMA
* takes place in bursts of eight 16-bit words which are packed into
* four 32-bit words by the IOASIC. This leads to a strange padding:
* 16 bytes of valid data followed by a 16 byte gap :-(.
*/
struct lance_rx_desc {
unsigned short rmd0; /* low address of packet */
unsigned short rmd1; /* high address of packet
and descriptor bits */
short length; /* 2s complement (negative!)
of buffer length */
unsigned short mblength; /* actual number of bytes received */
};
struct lance_tx_desc {
unsigned short tmd0; /* low address of packet */
unsigned short tmd1; /* high address of packet
and descriptor bits */
short length; /* 2s complement (negative!)
of buffer length */
unsigned short misc;
};
/* First part of the LANCE initialization block, described in databook. */
struct lance_init_block {
unsigned short mode; /* pre-set mode (reg. 15) */
unsigned short phys_addr[3]; /* physical ethernet address */
unsigned short filter[4]; /* multicast filter */
/* Receive and transmit ring base, along with extra bits. */
unsigned short rx_ptr; /* receive descriptor addr */
unsigned short rx_len; /* receive len and high addr */
unsigned short tx_ptr; /* transmit descriptor addr */
unsigned short tx_len; /* transmit len and high addr */
short gap[4];
/* The buffer descriptors */
struct lance_rx_desc brx_ring[RX_RING_SIZE];
struct lance_tx_desc btx_ring[TX_RING_SIZE];
};
#define BUF_OFFSET_CPU sizeof(struct lance_init_block)
#define BUF_OFFSET_LNC sizeof(struct lance_init_block)
#define shift_off(off, type) \
(type == ASIC_LANCE || type == PMAX_LANCE ? off << 1 : off)
#define lib_off(rt, type) \
shift_off(offsetof(struct lance_init_block, rt), type)
#define lib_ptr(ib, rt, type) \
((volatile u16 *)((u8 *)(ib) + lib_off(rt, type)))
#define rds_off(rt, type) \
shift_off(offsetof(struct lance_rx_desc, rt), type)
#define rds_ptr(rd, rt, type) \
((volatile u16 *)((u8 *)(rd) + rds_off(rt, type)))
#define tds_off(rt, type) \
shift_off(offsetof(struct lance_tx_desc, rt), type)
#define tds_ptr(td, rt, type) \
((volatile u16 *)((u8 *)(td) + tds_off(rt, type)))
struct lance_private {
struct net_device *next;
int type;
int dma_irq;
volatile struct lance_regs *ll;
spinlock_t lock;
int rx_new, tx_new;
int rx_old, tx_old;
unsigned short busmaster_regval;
struct timer_list multicast_timer;
/* Pointers to the ring buffers as seen from the CPU */
char *rx_buf_ptr_cpu[RX_RING_SIZE];
char *tx_buf_ptr_cpu[TX_RING_SIZE];
/* Pointers to the ring buffers as seen from the LANCE */
uint rx_buf_ptr_lnc[RX_RING_SIZE];
uint tx_buf_ptr_lnc[TX_RING_SIZE];
};
#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
lp->tx_old+TX_RING_MOD_MASK-lp->tx_new:\
lp->tx_old - lp->tx_new-1)
/* The lance control ports are at an absolute address, machine and tc-slot
* dependent.
* DECstations do only 32-bit access and the LANCE uses 16 bit addresses,
* so we have to give the structure an extra member making rap pointing
* at the right address
*/
struct lance_regs {
volatile unsigned short rdp; /* register data port */
unsigned short pad;
volatile unsigned short rap; /* register address port */
};
int dec_lance_debug = 2;
static struct tc_driver dec_lance_tc_driver;
static struct net_device *root_lance_dev;
static inline void writereg(volatile unsigned short *regptr, short value)
{
*regptr = value;
iob();
}
/* Load the CSR registers */
static void load_csrs(struct lance_private *lp)
{
volatile struct lance_regs *ll = lp->ll;
uint leptr;
/* The address space as seen from the LANCE
* begins at address 0. HK
*/
leptr = 0;
writereg(&ll->rap, LE_CSR1);
writereg(&ll->rdp, (leptr & 0xFFFF));
writereg(&ll->rap, LE_CSR2);
writereg(&ll->rdp, leptr >> 16);
writereg(&ll->rap, LE_CSR3);
writereg(&ll->rdp, lp->busmaster_regval);
/* Point back to csr0 */
writereg(&ll->rap, LE_CSR0);
}
/*
* Our specialized copy routines
*
*/
static void cp_to_buf(const int type, void *to, const void *from, int len)
{
unsigned short *tp, *fp, clen;
unsigned char *rtp, *rfp;
if (type == PMAD_LANCE) {
memcpy(to, from, len);
} else if (type == PMAX_LANCE) {
clen = len >> 1;
tp = (unsigned short *) to;
fp = (unsigned short *) from;
while (clen--) {
*tp++ = *fp++;
tp++;
}
clen = len & 1;
rtp = (unsigned char *) tp;
rfp = (unsigned char *) fp;
while (clen--) {
*rtp++ = *rfp++;
}
} else {
/*
* copy 16 Byte chunks
*/
clen = len >> 4;
tp = (unsigned short *) to;
fp = (unsigned short *) from;
while (clen--) {
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
tp += 8;
}
/*
* do the rest, if any.
*/
clen = len & 15;
rtp = (unsigned char *) tp;
rfp = (unsigned char *) fp;
while (clen--) {
*rtp++ = *rfp++;
}
}
iob();
}
static void cp_from_buf(const int type, void *to, const void *from, int len)
{
unsigned short *tp, *fp, clen;
unsigned char *rtp, *rfp;
if (type == PMAD_LANCE) {
memcpy(to, from, len);
} else if (type == PMAX_LANCE) {
clen = len >> 1;
tp = (unsigned short *) to;
fp = (unsigned short *) from;
while (clen--) {
*tp++ = *fp++;
fp++;
}
clen = len & 1;
rtp = (unsigned char *) tp;
rfp = (unsigned char *) fp;
while (clen--) {
*rtp++ = *rfp++;
}
} else {
/*
* copy 16 Byte chunks
*/
clen = len >> 4;
tp = (unsigned short *) to;
fp = (unsigned short *) from;
while (clen--) {
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
*tp++ = *fp++;
fp += 8;
}
/*
* do the rest, if any.
*/
clen = len & 15;
rtp = (unsigned char *) tp;
rfp = (unsigned char *) fp;
while (clen--) {
*rtp++ = *rfp++;
}
}
}
/* Setup the Lance Rx and Tx rings */
static void lance_init_ring(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile u16 *ib = (volatile u16 *)dev->mem_start;
uint leptr;
int i;
/* Lock out other processes while setting up hardware */
netif_stop_queue(dev);
lp->rx_new = lp->tx_new = 0;
lp->rx_old = lp->tx_old = 0;
/* Copy the ethernet address to the lance init block.
* XXX bit 0 of the physical address registers has to be zero
*/
*lib_ptr(ib, phys_addr[0], lp->type) = (dev->dev_addr[1] << 8) |
dev->dev_addr[0];
*lib_ptr(ib, phys_addr[1], lp->type) = (dev->dev_addr[3] << 8) |
dev->dev_addr[2];
*lib_ptr(ib, phys_addr[2], lp->type) = (dev->dev_addr[5] << 8) |
dev->dev_addr[4];
/* Setup the initialization block */
/* Setup rx descriptor pointer */
leptr = offsetof(struct lance_init_block, brx_ring);
*lib_ptr(ib, rx_len, lp->type) = (LANCE_LOG_RX_BUFFERS << 13) |
(leptr >> 16);
*lib_ptr(ib, rx_ptr, lp->type) = leptr;
if (ZERO)
printk("RX ptr: %8.8x(%8.8x)\n",
leptr, lib_off(brx_ring, lp->type));
/* Setup tx descriptor pointer */
leptr = offsetof(struct lance_init_block, btx_ring);
*lib_ptr(ib, tx_len, lp->type) = (LANCE_LOG_TX_BUFFERS << 13) |
(leptr >> 16);
*lib_ptr(ib, tx_ptr, lp->type) = leptr;
if (ZERO)
printk("TX ptr: %8.8x(%8.8x)\n",
leptr, lib_off(btx_ring, lp->type));
if (ZERO)
printk("TX rings:\n");
/* Setup the Tx ring entries */
for (i = 0; i < TX_RING_SIZE; i++) {
leptr = lp->tx_buf_ptr_lnc[i];
*lib_ptr(ib, btx_ring[i].tmd0, lp->type) = leptr;
*lib_ptr(ib, btx_ring[i].tmd1, lp->type) = (leptr >> 16) &
0xff;
*lib_ptr(ib, btx_ring[i].length, lp->type) = 0xf000;
/* The ones required by tmd2 */
*lib_ptr(ib, btx_ring[i].misc, lp->type) = 0;
if (i < 3 && ZERO)
printk("%d: 0x%8.8x(0x%8.8x)\n",
i, leptr, (uint)lp->tx_buf_ptr_cpu[i]);
}
/* Setup the Rx ring entries */
if (ZERO)
printk("RX rings:\n");
for (i = 0; i < RX_RING_SIZE; i++) {
leptr = lp->rx_buf_ptr_lnc[i];
*lib_ptr(ib, brx_ring[i].rmd0, lp->type) = leptr;
*lib_ptr(ib, brx_ring[i].rmd1, lp->type) = ((leptr >> 16) &
0xff) |
LE_R1_OWN;
*lib_ptr(ib, brx_ring[i].length, lp->type) = -RX_BUFF_SIZE |
0xf000;
*lib_ptr(ib, brx_ring[i].mblength, lp->type) = 0;
if (i < 3 && ZERO)
printk("%d: 0x%8.8x(0x%8.8x)\n",
i, leptr, (uint)lp->rx_buf_ptr_cpu[i]);
}
iob();
}
static int init_restart_lance(struct lance_private *lp)
{
volatile struct lance_regs *ll = lp->ll;
int i;
writereg(&ll->rap, LE_CSR0);
writereg(&ll->rdp, LE_C0_INIT);
/* Wait for the lance to complete initialization */
for (i = 0; (i < 100) && !(ll->rdp & LE_C0_IDON); i++) {
udelay(10);
}
if ((i == 100) || (ll->rdp & LE_C0_ERR)) {
printk("LANCE unopened after %d ticks, csr0=%4.4x.\n",
i, ll->rdp);
return -1;
}
if ((ll->rdp & LE_C0_ERR)) {
printk("LANCE unopened after %d ticks, csr0=%4.4x.\n",
i, ll->rdp);
return -1;
}
writereg(&ll->rdp, LE_C0_IDON);
writereg(&ll->rdp, LE_C0_STRT);
writereg(&ll->rdp, LE_C0_INEA);
return 0;
}
static int lance_rx(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile u16 *ib = (volatile u16 *)dev->mem_start;
volatile u16 *rd;
unsigned short bits;
int entry, len;
struct sk_buff *skb;
#ifdef TEST_HITS
{
int i;
printk("[");
for (i = 0; i < RX_RING_SIZE; i++) {
if (i == lp->rx_new)
printk("%s", *lib_ptr(ib, brx_ring[i].rmd1,
lp->type) &
LE_R1_OWN ? "_" : "X");
else
printk("%s", *lib_ptr(ib, brx_ring[i].rmd1,
lp->type) &
LE_R1_OWN ? "." : "1");
}
printk("]");
}
#endif
for (rd = lib_ptr(ib, brx_ring[lp->rx_new], lp->type);
!((bits = *rds_ptr(rd, rmd1, lp->type)) & LE_R1_OWN);
rd = lib_ptr(ib, brx_ring[lp->rx_new], lp->type)) {
entry = lp->rx_new;
/* We got an incomplete frame? */
if ((bits & LE_R1_POK) != LE_R1_POK) {
dev->stats.rx_over_errors++;
dev->stats.rx_errors++;
} else if (bits & LE_R1_ERR) {
/* Count only the end frame as a rx error,
* not the beginning
*/
if (bits & LE_R1_BUF)
dev->stats.rx_fifo_errors++;
if (bits & LE_R1_CRC)
dev->stats.rx_crc_errors++;
if (bits & LE_R1_OFL)
dev->stats.rx_over_errors++;
if (bits & LE_R1_FRA)
dev->stats.rx_frame_errors++;
if (bits & LE_R1_EOP)
dev->stats.rx_errors++;
} else {
len = (*rds_ptr(rd, mblength, lp->type) & 0xfff) - 4;
skb = dev_alloc_skb(len + 2);
if (skb == 0) {
printk("%s: Memory squeeze, deferring packet.\n",
dev->name);
dev->stats.rx_dropped++;
*rds_ptr(rd, mblength, lp->type) = 0;
*rds_ptr(rd, rmd1, lp->type) =
((lp->rx_buf_ptr_lnc[entry] >> 16) &
0xff) | LE_R1_OWN;
lp->rx_new = (entry + 1) & RX_RING_MOD_MASK;
return 0;
}
dev->stats.rx_bytes += len;
skb_reserve(skb, 2); /* 16 byte align */
skb_put(skb, len); /* make room */
cp_from_buf(lp->type, skb->data,
(char *)lp->rx_buf_ptr_cpu[entry], len);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;
}
/* Return the packet to the pool */
*rds_ptr(rd, mblength, lp->type) = 0;
*rds_ptr(rd, length, lp->type) = -RX_BUFF_SIZE | 0xf000;
*rds_ptr(rd, rmd1, lp->type) =
((lp->rx_buf_ptr_lnc[entry] >> 16) & 0xff) | LE_R1_OWN;
lp->rx_new = (entry + 1) & RX_RING_MOD_MASK;
}
return 0;
}
static void lance_tx(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile u16 *ib = (volatile u16 *)dev->mem_start;
volatile struct lance_regs *ll = lp->ll;
volatile u16 *td;
int i, j;
int status;
j = lp->tx_old;
spin_lock(&lp->lock);
for (i = j; i != lp->tx_new; i = j) {
td = lib_ptr(ib, btx_ring[i], lp->type);
/* If we hit a packet not owned by us, stop */
if (*tds_ptr(td, tmd1, lp->type) & LE_T1_OWN)
break;
if (*tds_ptr(td, tmd1, lp->type) & LE_T1_ERR) {
status = *tds_ptr(td, misc, lp->type);
dev->stats.tx_errors++;
if (status & LE_T3_RTY)
dev->stats.tx_aborted_errors++;
if (status & LE_T3_LCOL)
dev->stats.tx_window_errors++;
if (status & LE_T3_CLOS) {
dev->stats.tx_carrier_errors++;
printk("%s: Carrier Lost\n", dev->name);
/* Stop the lance */
writereg(&ll->rap, LE_CSR0);
writereg(&ll->rdp, LE_C0_STOP);
lance_init_ring(dev);
load_csrs(lp);
init_restart_lance(lp);
goto out;
}
/* Buffer errors and underflows turn off the
* transmitter, restart the adapter.
*/
if (status & (LE_T3_BUF | LE_T3_UFL)) {
dev->stats.tx_fifo_errors++;
printk("%s: Tx: ERR_BUF|ERR_UFL, restarting\n",
dev->name);
/* Stop the lance */
writereg(&ll->rap, LE_CSR0);
writereg(&ll->rdp, LE_C0_STOP);
lance_init_ring(dev);
load_csrs(lp);
init_restart_lance(lp);
goto out;
}
} else if ((*tds_ptr(td, tmd1, lp->type) & LE_T1_POK) ==
LE_T1_POK) {
/*
* So we don't count the packet more than once.
*/
*tds_ptr(td, tmd1, lp->type) &= ~(LE_T1_POK);
/* One collision before packet was sent. */
if (*tds_ptr(td, tmd1, lp->type) & LE_T1_EONE)
dev->stats.collisions++;
/* More than one collision, be optimistic. */
if (*tds_ptr(td, tmd1, lp->type) & LE_T1_EMORE)
dev->stats.collisions += 2;
dev->stats.tx_packets++;
}
j = (j + 1) & TX_RING_MOD_MASK;
}
lp->tx_old = j;
out:
if (netif_queue_stopped(dev) &&
TX_BUFFS_AVAIL > 0)
netif_wake_queue(dev);
spin_unlock(&lp->lock);
}
static irqreturn_t lance_dma_merr_int(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
printk(KERN_ERR "%s: DMA error\n", dev->name);
return IRQ_HANDLED;
}
static irqreturn_t lance_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
int csr0;
writereg(&ll->rap, LE_CSR0);
csr0 = ll->rdp;
/* Acknowledge all the interrupt sources ASAP */
writereg(&ll->rdp, csr0 & (LE_C0_INTR | LE_C0_TINT | LE_C0_RINT));
if ((csr0 & LE_C0_ERR)) {
/* Clear the error condition */
writereg(&ll->rdp, LE_C0_BABL | LE_C0_ERR | LE_C0_MISS |
LE_C0_CERR | LE_C0_MERR);
}
if (csr0 & LE_C0_RINT)
lance_rx(dev);
if (csr0 & LE_C0_TINT)
lance_tx(dev);
if (csr0 & LE_C0_BABL)
dev->stats.tx_errors++;
if (csr0 & LE_C0_MISS)
dev->stats.rx_errors++;
if (csr0 & LE_C0_MERR) {
printk("%s: Memory error, status %04x\n", dev->name, csr0);
writereg(&ll->rdp, LE_C0_STOP);
lance_init_ring(dev);
load_csrs(lp);
init_restart_lance(lp);
netif_wake_queue(dev);
}
writereg(&ll->rdp, LE_C0_INEA);
writereg(&ll->rdp, LE_C0_INEA);
return IRQ_HANDLED;
}
static int lance_open(struct net_device *dev)
{
volatile u16 *ib = (volatile u16 *)dev->mem_start;
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
int status = 0;
/* Stop the Lance */
writereg(&ll->rap, LE_CSR0);
writereg(&ll->rdp, LE_C0_STOP);
/* Set mode and clear multicast filter only at device open,
* so that lance_init_ring() called at any error will not
* forget multicast filters.
*
* BTW it is common bug in all lance drivers! --ANK
*/
*lib_ptr(ib, mode, lp->type) = 0;
*lib_ptr(ib, filter[0], lp->type) = 0;
*lib_ptr(ib, filter[1], lp->type) = 0;
*lib_ptr(ib, filter[2], lp->type) = 0;
*lib_ptr(ib, filter[3], lp->type) = 0;
lance_init_ring(dev);
load_csrs(lp);
netif_start_queue(dev);
/* Associate IRQ with lance_interrupt */
if (request_irq(dev->irq, lance_interrupt, 0, "lance", dev)) {
printk("%s: Can't get IRQ %d\n", dev->name, dev->irq);
return -EAGAIN;
}
if (lp->dma_irq >= 0) {
unsigned long flags;
if (request_irq(lp->dma_irq, lance_dma_merr_int, 0,
"lance error", dev)) {
free_irq(dev->irq, dev);
printk("%s: Can't get DMA IRQ %d\n", dev->name,
lp->dma_irq);
return -EAGAIN;
}
spin_lock_irqsave(&ioasic_ssr_lock, flags);
fast_mb();
/* Enable I/O ASIC LANCE DMA. */
ioasic_write(IO_REG_SSR,
ioasic_read(IO_REG_SSR) | IO_SSR_LANCE_DMA_EN);
fast_mb();
spin_unlock_irqrestore(&ioasic_ssr_lock, flags);
}
status = init_restart_lance(lp);
return status;
}
static int lance_close(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
netif_stop_queue(dev);
del_timer_sync(&lp->multicast_timer);
/* Stop the card */
writereg(&ll->rap, LE_CSR0);
writereg(&ll->rdp, LE_C0_STOP);
if (lp->dma_irq >= 0) {
unsigned long flags;
spin_lock_irqsave(&ioasic_ssr_lock, flags);
fast_mb();
/* Disable I/O ASIC LANCE DMA. */
ioasic_write(IO_REG_SSR,
ioasic_read(IO_REG_SSR) & ~IO_SSR_LANCE_DMA_EN);
fast_iob();
spin_unlock_irqrestore(&ioasic_ssr_lock, flags);
free_irq(lp->dma_irq, dev);
}
free_irq(dev->irq, dev);
return 0;
}
static inline int lance_reset(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
int status;
/* Stop the lance */
writereg(&ll->rap, LE_CSR0);
writereg(&ll->rdp, LE_C0_STOP);
lance_init_ring(dev);
load_csrs(lp);
dev->trans_start = jiffies; /* prevent tx timeout */
status = init_restart_lance(lp);
return status;
}
static void lance_tx_timeout(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
printk(KERN_ERR "%s: transmit timed out, status %04x, reset\n",
dev->name, ll->rdp);
lance_reset(dev);
netif_wake_queue(dev);
}
static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
volatile u16 *ib = (volatile u16 *)dev->mem_start;
unsigned long flags;
int entry, len;
len = skb->len;
if (len < ETH_ZLEN) {
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
len = ETH_ZLEN;
}
dev->stats.tx_bytes += len;
spin_lock_irqsave(&lp->lock, flags);
entry = lp->tx_new;
*lib_ptr(ib, btx_ring[entry].length, lp->type) = (-len);
*lib_ptr(ib, btx_ring[entry].misc, lp->type) = 0;
cp_to_buf(lp->type, (char *)lp->tx_buf_ptr_cpu[entry], skb->data, len);
/* Now, give the packet to the lance */
*lib_ptr(ib, btx_ring[entry].tmd1, lp->type) =
((lp->tx_buf_ptr_lnc[entry] >> 16) & 0xff) |
(LE_T1_POK | LE_T1_OWN);
lp->tx_new = (entry + 1) & TX_RING_MOD_MASK;
if (TX_BUFFS_AVAIL <= 0)
netif_stop_queue(dev);
/* Kick the lance: transmit now */
writereg(&ll->rdp, LE_C0_INEA | LE_C0_TDMD);
spin_unlock_irqrestore(&lp->lock, flags);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static void lance_load_multicast(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile u16 *ib = (volatile u16 *)dev->mem_start;
struct netdev_hw_addr *ha;
char *addrs;
u32 crc;
/* set all multicast bits */
if (dev->flags & IFF_ALLMULTI) {
*lib_ptr(ib, filter[0], lp->type) = 0xffff;
*lib_ptr(ib, filter[1], lp->type) = 0xffff;
*lib_ptr(ib, filter[2], lp->type) = 0xffff;
*lib_ptr(ib, filter[3], lp->type) = 0xffff;
return;
}
/* clear the multicast filter */
*lib_ptr(ib, filter[0], lp->type) = 0;
*lib_ptr(ib, filter[1], lp->type) = 0;
*lib_ptr(ib, filter[2], lp->type) = 0;
*lib_ptr(ib, filter[3], lp->type) = 0;
/* Add addresses */
netdev_for_each_mc_addr(ha, dev) {
addrs = ha->addr;
/* multicast address? */
if (!(*addrs & 1))
continue;
crc = ether_crc_le(ETH_ALEN, addrs);
crc = crc >> 26;
*lib_ptr(ib, filter[crc >> 4], lp->type) |= 1 << (crc & 0xf);
}
}
static void lance_set_multicast(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile u16 *ib = (volatile u16 *)dev->mem_start;
volatile struct lance_regs *ll = lp->ll;
if (!netif_running(dev))
return;
if (lp->tx_old != lp->tx_new) {
mod_timer(&lp->multicast_timer, jiffies + 4 * HZ/100);
netif_wake_queue(dev);
return;
}
netif_stop_queue(dev);
writereg(&ll->rap, LE_CSR0);
writereg(&ll->rdp, LE_C0_STOP);
lance_init_ring(dev);
if (dev->flags & IFF_PROMISC) {
*lib_ptr(ib, mode, lp->type) |= LE_MO_PROM;
} else {
*lib_ptr(ib, mode, lp->type) &= ~LE_MO_PROM;
lance_load_multicast(dev);
}
load_csrs(lp);
init_restart_lance(lp);
netif_wake_queue(dev);
}
static void lance_set_multicast_retry(unsigned long _opaque)
{
struct net_device *dev = (struct net_device *) _opaque;
lance_set_multicast(dev);
}
static const struct net_device_ops lance_netdev_ops = {
.ndo_open = lance_open,
.ndo_stop = lance_close,
.ndo_start_xmit = lance_start_xmit,
.ndo_tx_timeout = lance_tx_timeout,
.ndo_set_multicast_list = lance_set_multicast,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
};
static int __init dec_lance_probe(struct device *bdev, const int type)
{
static unsigned version_printed;
static const char fmt[] = "declance%d";
char name[10];
struct net_device *dev;
struct lance_private *lp;
volatile struct lance_regs *ll;
resource_size_t start = 0, len = 0;
int i, ret;
unsigned long esar_base;
unsigned char *esar;
if (dec_lance_debug && version_printed++ == 0)
printk(version);
if (bdev)
snprintf(name, sizeof(name), "%s", dev_name(bdev));
else {
i = 0;
dev = root_lance_dev;
while (dev) {
i++;
lp = netdev_priv(dev);
dev = lp->next;
}
snprintf(name, sizeof(name), fmt, i);
}
dev = alloc_etherdev(sizeof(struct lance_private));
if (!dev) {
printk(KERN_ERR "%s: Unable to allocate etherdev, aborting.\n",
name);
ret = -ENOMEM;
goto err_out;
}
/*
* alloc_etherdev ensures the data structures used by the LANCE
* are aligned.
*/
lp = netdev_priv(dev);
spin_lock_init(&lp->lock);
lp->type = type;
switch (type) {
case ASIC_LANCE:
dev->base_addr = CKSEG1ADDR(dec_kn_slot_base + IOASIC_LANCE);
/* buffer space for the on-board LANCE shared memory */
/*
* FIXME: ugly hack!
*/
dev->mem_start = CKSEG1ADDR(0x00020000);
dev->mem_end = dev->mem_start + 0x00020000;
dev->irq = dec_interrupt[DEC_IRQ_LANCE];
esar_base = CKSEG1ADDR(dec_kn_slot_base + IOASIC_ESAR);
/* Workaround crash with booting KN04 2.1k from Disk */
memset((void *)dev->mem_start, 0,
dev->mem_end - dev->mem_start);
/*
* setup the pointer arrays, this sucks [tm] :-(
*/
for (i = 0; i < RX_RING_SIZE; i++) {
lp->rx_buf_ptr_cpu[i] =
(char *)(dev->mem_start + 2 * BUF_OFFSET_CPU +
2 * i * RX_BUFF_SIZE);
lp->rx_buf_ptr_lnc[i] =
(BUF_OFFSET_LNC + i * RX_BUFF_SIZE);
}
for (i = 0; i < TX_RING_SIZE; i++) {
lp->tx_buf_ptr_cpu[i] =
(char *)(dev->mem_start + 2 * BUF_OFFSET_CPU +
2 * RX_RING_SIZE * RX_BUFF_SIZE +
2 * i * TX_BUFF_SIZE);
lp->tx_buf_ptr_lnc[i] =
(BUF_OFFSET_LNC +
RX_RING_SIZE * RX_BUFF_SIZE +
i * TX_BUFF_SIZE);
}
/* Setup I/O ASIC LANCE DMA. */
lp->dma_irq = dec_interrupt[DEC_IRQ_LANCE_MERR];
ioasic_write(IO_REG_LANCE_DMA_P,
CPHYSADDR(dev->mem_start) << 3);
break;
#ifdef CONFIG_TC
case PMAD_LANCE:
dev_set_drvdata(bdev, dev);
start = to_tc_dev(bdev)->resource.start;
len = to_tc_dev(bdev)->resource.end - start + 1;
if (!request_mem_region(start, len, dev_name(bdev))) {
printk(KERN_ERR
"%s: Unable to reserve MMIO resource\n",
dev_name(bdev));
ret = -EBUSY;
goto err_out_dev;
}
dev->mem_start = CKSEG1ADDR(start);
dev->mem_end = dev->mem_start + 0x100000;
dev->base_addr = dev->mem_start + 0x100000;
dev->irq = to_tc_dev(bdev)->interrupt;
esar_base = dev->mem_start + 0x1c0002;
lp->dma_irq = -1;
for (i = 0; i < RX_RING_SIZE; i++) {
lp->rx_buf_ptr_cpu[i] =
(char *)(dev->mem_start + BUF_OFFSET_CPU +
i * RX_BUFF_SIZE);
lp->rx_buf_ptr_lnc[i] =
(BUF_OFFSET_LNC + i * RX_BUFF_SIZE);
}
for (i = 0; i < TX_RING_SIZE; i++) {
lp->tx_buf_ptr_cpu[i] =
(char *)(dev->mem_start + BUF_OFFSET_CPU +
RX_RING_SIZE * RX_BUFF_SIZE +
i * TX_BUFF_SIZE);
lp->tx_buf_ptr_lnc[i] =
(BUF_OFFSET_LNC +
RX_RING_SIZE * RX_BUFF_SIZE +
i * TX_BUFF_SIZE);
}
break;
#endif
case PMAX_LANCE:
dev->irq = dec_interrupt[DEC_IRQ_LANCE];
dev->base_addr = CKSEG1ADDR(KN01_SLOT_BASE + KN01_LANCE);
dev->mem_start = CKSEG1ADDR(KN01_SLOT_BASE + KN01_LANCE_MEM);
dev->mem_end = dev->mem_start + KN01_SLOT_SIZE;
esar_base = CKSEG1ADDR(KN01_SLOT_BASE + KN01_ESAR + 1);
lp->dma_irq = -1;
/*
* setup the pointer arrays, this sucks [tm] :-(
*/
for (i = 0; i < RX_RING_SIZE; i++) {
lp->rx_buf_ptr_cpu[i] =
(char *)(dev->mem_start + 2 * BUF_OFFSET_CPU +
2 * i * RX_BUFF_SIZE);
lp->rx_buf_ptr_lnc[i] =
(BUF_OFFSET_LNC + i * RX_BUFF_SIZE);
}
for (i = 0; i < TX_RING_SIZE; i++) {
lp->tx_buf_ptr_cpu[i] =
(char *)(dev->mem_start + 2 * BUF_OFFSET_CPU +
2 * RX_RING_SIZE * RX_BUFF_SIZE +
2 * i * TX_BUFF_SIZE);
lp->tx_buf_ptr_lnc[i] =
(BUF_OFFSET_LNC +
RX_RING_SIZE * RX_BUFF_SIZE +
i * TX_BUFF_SIZE);
}
break;
default:
printk(KERN_ERR "%s: declance_init called with unknown type\n",
name);
ret = -ENODEV;
goto err_out_dev;
}
ll = (struct lance_regs *) dev->base_addr;
esar = (unsigned char *) esar_base;
/* prom checks */
/* First, check for test pattern */
if (esar[0x60] != 0xff && esar[0x64] != 0x00 &&
esar[0x68] != 0x55 && esar[0x6c] != 0xaa) {
printk(KERN_ERR
"%s: Ethernet station address prom not found!\n",
name);
ret = -ENODEV;
goto err_out_resource;
}
/* Check the prom contents */
for (i = 0; i < 8; i++) {
if (esar[i * 4] != esar[0x3c - i * 4] &&
esar[i * 4] != esar[0x40 + i * 4] &&
esar[0x3c - i * 4] != esar[0x40 + i * 4]) {
printk(KERN_ERR "%s: Something is wrong with the "
"ethernet station address prom!\n", name);
ret = -ENODEV;
goto err_out_resource;
}
}
/* Copy the ethernet address to the device structure, later to the
* lance initialization block so the lance gets it every time it's
* (re)initialized.
*/
switch (type) {
case ASIC_LANCE:
printk("%s: IOASIC onboard LANCE", name);
break;
case PMAD_LANCE:
printk("%s: PMAD-AA", name);
break;
case PMAX_LANCE:
printk("%s: PMAX onboard LANCE", name);
break;
}
for (i = 0; i < 6; i++)
dev->dev_addr[i] = esar[i * 4];
printk(", addr = %pM, irq = %d\n", dev->dev_addr, dev->irq);
dev->netdev_ops = &lance_netdev_ops;
dev->watchdog_timeo = 5*HZ;
/* lp->ll is the location of the registers for lance card */
lp->ll = ll;
/* busmaster_regval (CSR3) should be zero according to the PMAD-AA
* specification.
*/
lp->busmaster_regval = 0;
dev->dma = 0;
/* We cannot sleep if the chip is busy during a
* multicast list update event, because such events
* can occur from interrupts (ex. IPv6). So we
* use a timer to try again later when necessary. -DaveM
*/
init_timer(&lp->multicast_timer);
lp->multicast_timer.data = (unsigned long) dev;
lp->multicast_timer.function = &lance_set_multicast_retry;
ret = register_netdev(dev);
if (ret) {
printk(KERN_ERR
"%s: Unable to register netdev, aborting.\n", name);
goto err_out_resource;
}
if (!bdev) {
lp->next = root_lance_dev;
root_lance_dev = dev;
}
printk("%s: registered as %s.\n", name, dev->name);
return 0;
err_out_resource:
if (bdev)
release_mem_region(start, len);
err_out_dev:
free_netdev(dev);
err_out:
return ret;
}
static void __exit dec_lance_remove(struct device *bdev)
{
struct net_device *dev = dev_get_drvdata(bdev);
resource_size_t start, len;
unregister_netdev(dev);
start = to_tc_dev(bdev)->resource.start;
len = to_tc_dev(bdev)->resource.end - start + 1;
release_mem_region(start, len);
free_netdev(dev);
}
/* Find all the lance cards on the system and initialize them */
static int __init dec_lance_platform_probe(void)
{
int count = 0;
if (dec_interrupt[DEC_IRQ_LANCE] >= 0) {
if (dec_interrupt[DEC_IRQ_LANCE_MERR] >= 0) {
if (dec_lance_probe(NULL, ASIC_LANCE) >= 0)
count++;
} else if (!TURBOCHANNEL) {
if (dec_lance_probe(NULL, PMAX_LANCE) >= 0)
count++;
}
}
return (count > 0) ? 0 : -ENODEV;
}
static void __exit dec_lance_platform_remove(void)
{
while (root_lance_dev) {
struct net_device *dev = root_lance_dev;
struct lance_private *lp = netdev_priv(dev);
unregister_netdev(dev);
root_lance_dev = lp->next;
free_netdev(dev);
}
}
#ifdef CONFIG_TC
static int __init dec_lance_tc_probe(struct device *dev);
static int __exit dec_lance_tc_remove(struct device *dev);
static const struct tc_device_id dec_lance_tc_table[] = {
{ "DEC ", "PMAD-AA " },
{ }
};
MODULE_DEVICE_TABLE(tc, dec_lance_tc_table);
static struct tc_driver dec_lance_tc_driver = {
.id_table = dec_lance_tc_table,
.driver = {
.name = "declance",
.bus = &tc_bus_type,
.probe = dec_lance_tc_probe,
.remove = __exit_p(dec_lance_tc_remove),
},
};
static int __init dec_lance_tc_probe(struct device *dev)
{
int status = dec_lance_probe(dev, PMAD_LANCE);
if (!status)
get_device(dev);
return status;
}
static int __exit dec_lance_tc_remove(struct device *dev)
{
put_device(dev);
dec_lance_remove(dev);
return 0;
}
#endif
static int __init dec_lance_init(void)
{
int status;
status = tc_register_driver(&dec_lance_tc_driver);
if (!status)
dec_lance_platform_probe();
return status;
}
static void __exit dec_lance_exit(void)
{
dec_lance_platform_remove();
tc_unregister_driver(&dec_lance_tc_driver);
}
module_init(dec_lance_init);
module_exit(dec_lance_exit);