linux_old1/virt/kvm/irq_comm.c

374 lines
10 KiB
C
Raw Normal View History

/*
* irq_comm.c: Common API for in kernel interrupt controller
* Copyright (c) 2007, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
* Authors:
* Yaozu (Eddie) Dong <Eddie.dong@intel.com>
*
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*/
#include <linux/kvm_host.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/export.h>
#include <trace/events/kvm.h>
#include <asm/msidef.h>
#ifdef CONFIG_IA64
#include <asm/iosapic.h>
#endif
#include "irq.h"
#include "ioapic.h"
static int kvm_set_pic_irq(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
#ifdef CONFIG_X86
struct kvm_pic *pic = pic_irqchip(kvm);
return kvm_pic_set_irq(pic, e->irqchip.pin, irq_source_id, level);
#else
return -1;
#endif
}
static int kvm_set_ioapic_irq(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
struct kvm_ioapic *ioapic = kvm->arch.vioapic;
return kvm_ioapic_set_irq(ioapic, e->irqchip.pin, irq_source_id, level,
line_status);
}
inline static bool kvm_is_dm_lowest_prio(struct kvm_lapic_irq *irq)
{
#ifdef CONFIG_IA64
return irq->delivery_mode ==
(IOSAPIC_LOWEST_PRIORITY << IOSAPIC_DELIVERY_SHIFT);
#else
return irq->delivery_mode == APIC_DM_LOWEST;
#endif
}
int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src,
struct kvm_lapic_irq *irq, unsigned long *dest_map)
{
int i, r = -1;
struct kvm_vcpu *vcpu, *lowest = NULL;
if (irq->dest_mode == 0 && irq->dest_id == 0xff &&
kvm_is_dm_lowest_prio(irq)) {
printk(KERN_INFO "kvm: apic: phys broadcast and lowest prio\n");
irq->delivery_mode = APIC_DM_FIXED;
}
if (kvm_irq_delivery_to_apic_fast(kvm, src, irq, &r, dest_map))
return r;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!kvm_apic_present(vcpu))
continue;
if (!kvm_apic_match_dest(vcpu, src, irq->shorthand,
irq->dest_id, irq->dest_mode))
continue;
if (!kvm_is_dm_lowest_prio(irq)) {
if (r < 0)
r = 0;
r += kvm_apic_set_irq(vcpu, irq, dest_map);
} else if (kvm_lapic_enabled(vcpu)) {
if (!lowest)
lowest = vcpu;
else if (kvm_apic_compare_prio(vcpu, lowest) < 0)
lowest = vcpu;
}
}
if (lowest)
r = kvm_apic_set_irq(lowest, irq, dest_map);
return r;
}
static inline void kvm_set_msi_irq(struct kvm_kernel_irq_routing_entry *e,
struct kvm_lapic_irq *irq)
{
trace_kvm_msi_set_irq(e->msi.address_lo, e->msi.data);
irq->dest_id = (e->msi.address_lo &
MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT;
irq->vector = (e->msi.data &
MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT;
irq->dest_mode = (1 << MSI_ADDR_DEST_MODE_SHIFT) & e->msi.address_lo;
irq->trig_mode = (1 << MSI_DATA_TRIGGER_SHIFT) & e->msi.data;
irq->delivery_mode = e->msi.data & 0x700;
irq->level = 1;
irq->shorthand = 0;
/* TODO Deal with RH bit of MSI message address */
}
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level, bool line_status)
{
struct kvm_lapic_irq irq;
if (!level)
return -1;
kvm_set_msi_irq(e, &irq);
return kvm_irq_delivery_to_apic(kvm, NULL, &irq, NULL);
}
static int kvm_set_msi_inatomic(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm)
{
struct kvm_lapic_irq irq;
int r;
kvm_set_msi_irq(e, &irq);
if (kvm_irq_delivery_to_apic_fast(kvm, NULL, &irq, &r, NULL))
return r;
else
return -EWOULDBLOCK;
}
/*
* Deliver an IRQ in an atomic context if we can, or return a failure,
* user can retry in a process context.
* Return value:
* -EWOULDBLOCK - Can't deliver in atomic context: retry in a process context.
* Other values - No need to retry.
*/
int kvm_set_irq_inatomic(struct kvm *kvm, int irq_source_id, u32 irq, int level)
{
struct kvm_kernel_irq_routing_entry *e;
int ret = -EINVAL;
struct kvm_irq_routing_table *irq_rt;
kvm/irqchip: Speed up KVM_SET_GSI_ROUTING When starting lots of dataplane devices the bootup takes very long on Christian's s390 with irqfd patches. With larger setups he is even able to trigger some timeouts in some components. Turns out that the KVM_SET_GSI_ROUTING ioctl takes very long (strace claims up to 0.1 sec) when having multiple CPUs. This is caused by the synchronize_rcu and the HZ=100 of s390. By changing the code to use a private srcu we can speed things up. This patch reduces the boot time till mounting root from 8 to 2 seconds on my s390 guest with 100 disks. Uses of hlist_for_each_entry_rcu, hlist_add_head_rcu, hlist_del_init_rcu are fine because they do not have lockdep checks (hlist_for_each_entry_rcu uses rcu_dereference_raw rather than rcu_dereference, and write-sides do not do rcu lockdep at all). Note that we're hardly relying on the "sleepable" part of srcu. We just want SRCU's faster detection of grace periods. Testing was done by Andrew Theurer using netperf tests STREAM, MAERTS and RR. The difference between results "before" and "after" the patch has mean -0.2% and standard deviation 0.6%. Using a paired t-test on the data points says that there is a 2.5% probability that the patch is the cause of the performance difference (rather than a random fluctuation). (Restricting the t-test to RR, which is the most likely to be affected, changes the numbers to respectively -0.3% mean, 0.7% stdev, and 8% probability that the numbers actually say something about the patch. The probability increases mostly because there are fewer data points). Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-01-16 20:44:20 +08:00
int idx;
trace_kvm_set_irq(irq, level, irq_source_id);
/*
* Injection into either PIC or IOAPIC might need to scan all CPUs,
* which would need to be retried from thread context; when same GSI
* is connected to both PIC and IOAPIC, we'd have to report a
* partial failure here.
* Since there's no easy way to do this, we only support injecting MSI
* which is limited to 1:1 GSI mapping.
*/
kvm/irqchip: Speed up KVM_SET_GSI_ROUTING When starting lots of dataplane devices the bootup takes very long on Christian's s390 with irqfd patches. With larger setups he is even able to trigger some timeouts in some components. Turns out that the KVM_SET_GSI_ROUTING ioctl takes very long (strace claims up to 0.1 sec) when having multiple CPUs. This is caused by the synchronize_rcu and the HZ=100 of s390. By changing the code to use a private srcu we can speed things up. This patch reduces the boot time till mounting root from 8 to 2 seconds on my s390 guest with 100 disks. Uses of hlist_for_each_entry_rcu, hlist_add_head_rcu, hlist_del_init_rcu are fine because they do not have lockdep checks (hlist_for_each_entry_rcu uses rcu_dereference_raw rather than rcu_dereference, and write-sides do not do rcu lockdep at all). Note that we're hardly relying on the "sleepable" part of srcu. We just want SRCU's faster detection of grace periods. Testing was done by Andrew Theurer using netperf tests STREAM, MAERTS and RR. The difference between results "before" and "after" the patch has mean -0.2% and standard deviation 0.6%. Using a paired t-test on the data points says that there is a 2.5% probability that the patch is the cause of the performance difference (rather than a random fluctuation). (Restricting the t-test to RR, which is the most likely to be affected, changes the numbers to respectively -0.3% mean, 0.7% stdev, and 8% probability that the numbers actually say something about the patch. The probability increases mostly because there are fewer data points). Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-01-16 20:44:20 +08:00
idx = srcu_read_lock(&kvm->irq_srcu);
irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
if (irq < irq_rt->nr_rt_entries)
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry(e, &irq_rt->map[irq], link) {
if (likely(e->type == KVM_IRQ_ROUTING_MSI))
ret = kvm_set_msi_inatomic(e, kvm);
else
ret = -EWOULDBLOCK;
break;
}
kvm/irqchip: Speed up KVM_SET_GSI_ROUTING When starting lots of dataplane devices the bootup takes very long on Christian's s390 with irqfd patches. With larger setups he is even able to trigger some timeouts in some components. Turns out that the KVM_SET_GSI_ROUTING ioctl takes very long (strace claims up to 0.1 sec) when having multiple CPUs. This is caused by the synchronize_rcu and the HZ=100 of s390. By changing the code to use a private srcu we can speed things up. This patch reduces the boot time till mounting root from 8 to 2 seconds on my s390 guest with 100 disks. Uses of hlist_for_each_entry_rcu, hlist_add_head_rcu, hlist_del_init_rcu are fine because they do not have lockdep checks (hlist_for_each_entry_rcu uses rcu_dereference_raw rather than rcu_dereference, and write-sides do not do rcu lockdep at all). Note that we're hardly relying on the "sleepable" part of srcu. We just want SRCU's faster detection of grace periods. Testing was done by Andrew Theurer using netperf tests STREAM, MAERTS and RR. The difference between results "before" and "after" the patch has mean -0.2% and standard deviation 0.6%. Using a paired t-test on the data points says that there is a 2.5% probability that the patch is the cause of the performance difference (rather than a random fluctuation). (Restricting the t-test to RR, which is the most likely to be affected, changes the numbers to respectively -0.3% mean, 0.7% stdev, and 8% probability that the numbers actually say something about the patch. The probability increases mostly because there are fewer data points). Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-01-16 20:44:20 +08:00
srcu_read_unlock(&kvm->irq_srcu, idx);
return ret;
}
int kvm_request_irq_source_id(struct kvm *kvm)
{
unsigned long *bitmap = &kvm->arch.irq_sources_bitmap;
int irq_source_id;
mutex_lock(&kvm->irq_lock);
irq_source_id = find_first_zero_bit(bitmap, BITS_PER_LONG);
if (irq_source_id >= BITS_PER_LONG) {
printk(KERN_WARNING "kvm: exhaust allocatable IRQ sources!\n");
irq_source_id = -EFAULT;
goto unlock;
}
ASSERT(irq_source_id != KVM_USERSPACE_IRQ_SOURCE_ID);
#ifdef CONFIG_X86
ASSERT(irq_source_id != KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID);
#endif
set_bit(irq_source_id, bitmap);
unlock:
mutex_unlock(&kvm->irq_lock);
return irq_source_id;
}
void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id)
{
ASSERT(irq_source_id != KVM_USERSPACE_IRQ_SOURCE_ID);
#ifdef CONFIG_X86
ASSERT(irq_source_id != KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID);
#endif
mutex_lock(&kvm->irq_lock);
if (irq_source_id < 0 ||
irq_source_id >= BITS_PER_LONG) {
printk(KERN_ERR "kvm: IRQ source ID out of range!\n");
goto unlock;
}
clear_bit(irq_source_id, &kvm->arch.irq_sources_bitmap);
if (!irqchip_in_kernel(kvm))
goto unlock;
kvm_ioapic_clear_all(kvm->arch.vioapic, irq_source_id);
#ifdef CONFIG_X86
kvm_pic_clear_all(pic_irqchip(kvm), irq_source_id);
#endif
unlock:
mutex_unlock(&kvm->irq_lock);
}
void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
struct kvm_irq_mask_notifier *kimn)
{
mutex_lock(&kvm->irq_lock);
kimn->irq = irq;
hlist_add_head_rcu(&kimn->link, &kvm->mask_notifier_list);
mutex_unlock(&kvm->irq_lock);
}
void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
struct kvm_irq_mask_notifier *kimn)
{
mutex_lock(&kvm->irq_lock);
hlist_del_rcu(&kimn->link);
mutex_unlock(&kvm->irq_lock);
kvm/irqchip: Speed up KVM_SET_GSI_ROUTING When starting lots of dataplane devices the bootup takes very long on Christian's s390 with irqfd patches. With larger setups he is even able to trigger some timeouts in some components. Turns out that the KVM_SET_GSI_ROUTING ioctl takes very long (strace claims up to 0.1 sec) when having multiple CPUs. This is caused by the synchronize_rcu and the HZ=100 of s390. By changing the code to use a private srcu we can speed things up. This patch reduces the boot time till mounting root from 8 to 2 seconds on my s390 guest with 100 disks. Uses of hlist_for_each_entry_rcu, hlist_add_head_rcu, hlist_del_init_rcu are fine because they do not have lockdep checks (hlist_for_each_entry_rcu uses rcu_dereference_raw rather than rcu_dereference, and write-sides do not do rcu lockdep at all). Note that we're hardly relying on the "sleepable" part of srcu. We just want SRCU's faster detection of grace periods. Testing was done by Andrew Theurer using netperf tests STREAM, MAERTS and RR. The difference between results "before" and "after" the patch has mean -0.2% and standard deviation 0.6%. Using a paired t-test on the data points says that there is a 2.5% probability that the patch is the cause of the performance difference (rather than a random fluctuation). (Restricting the t-test to RR, which is the most likely to be affected, changes the numbers to respectively -0.3% mean, 0.7% stdev, and 8% probability that the numbers actually say something about the patch. The probability increases mostly because there are fewer data points). Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-01-16 20:44:20 +08:00
synchronize_srcu(&kvm->irq_srcu);
}
void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
bool mask)
{
struct kvm_irq_mask_notifier *kimn;
kvm/irqchip: Speed up KVM_SET_GSI_ROUTING When starting lots of dataplane devices the bootup takes very long on Christian's s390 with irqfd patches. With larger setups he is even able to trigger some timeouts in some components. Turns out that the KVM_SET_GSI_ROUTING ioctl takes very long (strace claims up to 0.1 sec) when having multiple CPUs. This is caused by the synchronize_rcu and the HZ=100 of s390. By changing the code to use a private srcu we can speed things up. This patch reduces the boot time till mounting root from 8 to 2 seconds on my s390 guest with 100 disks. Uses of hlist_for_each_entry_rcu, hlist_add_head_rcu, hlist_del_init_rcu are fine because they do not have lockdep checks (hlist_for_each_entry_rcu uses rcu_dereference_raw rather than rcu_dereference, and write-sides do not do rcu lockdep at all). Note that we're hardly relying on the "sleepable" part of srcu. We just want SRCU's faster detection of grace periods. Testing was done by Andrew Theurer using netperf tests STREAM, MAERTS and RR. The difference between results "before" and "after" the patch has mean -0.2% and standard deviation 0.6%. Using a paired t-test on the data points says that there is a 2.5% probability that the patch is the cause of the performance difference (rather than a random fluctuation). (Restricting the t-test to RR, which is the most likely to be affected, changes the numbers to respectively -0.3% mean, 0.7% stdev, and 8% probability that the numbers actually say something about the patch. The probability increases mostly because there are fewer data points). Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-01-16 20:44:20 +08:00
int idx, gsi;
kvm/irqchip: Speed up KVM_SET_GSI_ROUTING When starting lots of dataplane devices the bootup takes very long on Christian's s390 with irqfd patches. With larger setups he is even able to trigger some timeouts in some components. Turns out that the KVM_SET_GSI_ROUTING ioctl takes very long (strace claims up to 0.1 sec) when having multiple CPUs. This is caused by the synchronize_rcu and the HZ=100 of s390. By changing the code to use a private srcu we can speed things up. This patch reduces the boot time till mounting root from 8 to 2 seconds on my s390 guest with 100 disks. Uses of hlist_for_each_entry_rcu, hlist_add_head_rcu, hlist_del_init_rcu are fine because they do not have lockdep checks (hlist_for_each_entry_rcu uses rcu_dereference_raw rather than rcu_dereference, and write-sides do not do rcu lockdep at all). Note that we're hardly relying on the "sleepable" part of srcu. We just want SRCU's faster detection of grace periods. Testing was done by Andrew Theurer using netperf tests STREAM, MAERTS and RR. The difference between results "before" and "after" the patch has mean -0.2% and standard deviation 0.6%. Using a paired t-test on the data points says that there is a 2.5% probability that the patch is the cause of the performance difference (rather than a random fluctuation). (Restricting the t-test to RR, which is the most likely to be affected, changes the numbers to respectively -0.3% mean, 0.7% stdev, and 8% probability that the numbers actually say something about the patch. The probability increases mostly because there are fewer data points). Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-01-16 20:44:20 +08:00
idx = srcu_read_lock(&kvm->irq_srcu);
gsi = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu)->chip[irqchip][pin];
if (gsi != -1)
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry_rcu(kimn, &kvm->mask_notifier_list, link)
if (kimn->irq == gsi)
kimn->func(kimn, mask);
kvm/irqchip: Speed up KVM_SET_GSI_ROUTING When starting lots of dataplane devices the bootup takes very long on Christian's s390 with irqfd patches. With larger setups he is even able to trigger some timeouts in some components. Turns out that the KVM_SET_GSI_ROUTING ioctl takes very long (strace claims up to 0.1 sec) when having multiple CPUs. This is caused by the synchronize_rcu and the HZ=100 of s390. By changing the code to use a private srcu we can speed things up. This patch reduces the boot time till mounting root from 8 to 2 seconds on my s390 guest with 100 disks. Uses of hlist_for_each_entry_rcu, hlist_add_head_rcu, hlist_del_init_rcu are fine because they do not have lockdep checks (hlist_for_each_entry_rcu uses rcu_dereference_raw rather than rcu_dereference, and write-sides do not do rcu lockdep at all). Note that we're hardly relying on the "sleepable" part of srcu. We just want SRCU's faster detection of grace periods. Testing was done by Andrew Theurer using netperf tests STREAM, MAERTS and RR. The difference between results "before" and "after" the patch has mean -0.2% and standard deviation 0.6%. Using a paired t-test on the data points says that there is a 2.5% probability that the patch is the cause of the performance difference (rather than a random fluctuation). (Restricting the t-test to RR, which is the most likely to be affected, changes the numbers to respectively -0.3% mean, 0.7% stdev, and 8% probability that the numbers actually say something about the patch. The probability increases mostly because there are fewer data points). Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-01-16 20:44:20 +08:00
srcu_read_unlock(&kvm->irq_srcu, idx);
}
int kvm_set_routing_entry(struct kvm_irq_routing_table *rt,
struct kvm_kernel_irq_routing_entry *e,
const struct kvm_irq_routing_entry *ue)
{
int r = -EINVAL;
int delta;
unsigned max_pin;
switch (ue->type) {
case KVM_IRQ_ROUTING_IRQCHIP:
delta = 0;
switch (ue->u.irqchip.irqchip) {
case KVM_IRQCHIP_PIC_MASTER:
e->set = kvm_set_pic_irq;
max_pin = PIC_NUM_PINS;
break;
case KVM_IRQCHIP_PIC_SLAVE:
e->set = kvm_set_pic_irq;
max_pin = PIC_NUM_PINS;
delta = 8;
break;
case KVM_IRQCHIP_IOAPIC:
max_pin = KVM_IOAPIC_NUM_PINS;
e->set = kvm_set_ioapic_irq;
break;
default:
goto out;
}
e->irqchip.irqchip = ue->u.irqchip.irqchip;
e->irqchip.pin = ue->u.irqchip.pin + delta;
if (e->irqchip.pin >= max_pin)
goto out;
rt->chip[ue->u.irqchip.irqchip][e->irqchip.pin] = ue->gsi;
break;
case KVM_IRQ_ROUTING_MSI:
e->set = kvm_set_msi;
e->msi.address_lo = ue->u.msi.address_lo;
e->msi.address_hi = ue->u.msi.address_hi;
e->msi.data = ue->u.msi.data;
break;
default:
goto out;
}
r = 0;
out:
return r;
}
#define IOAPIC_ROUTING_ENTRY(irq) \
{ .gsi = irq, .type = KVM_IRQ_ROUTING_IRQCHIP, \
.u.irqchip.irqchip = KVM_IRQCHIP_IOAPIC, .u.irqchip.pin = (irq) }
#define ROUTING_ENTRY1(irq) IOAPIC_ROUTING_ENTRY(irq)
#ifdef CONFIG_X86
# define PIC_ROUTING_ENTRY(irq) \
{ .gsi = irq, .type = KVM_IRQ_ROUTING_IRQCHIP, \
.u.irqchip.irqchip = SELECT_PIC(irq), .u.irqchip.pin = (irq) % 8 }
# define ROUTING_ENTRY2(irq) \
IOAPIC_ROUTING_ENTRY(irq), PIC_ROUTING_ENTRY(irq)
#else
# define ROUTING_ENTRY2(irq) \
IOAPIC_ROUTING_ENTRY(irq)
#endif
static const struct kvm_irq_routing_entry default_routing[] = {
ROUTING_ENTRY2(0), ROUTING_ENTRY2(1),
ROUTING_ENTRY2(2), ROUTING_ENTRY2(3),
ROUTING_ENTRY2(4), ROUTING_ENTRY2(5),
ROUTING_ENTRY2(6), ROUTING_ENTRY2(7),
ROUTING_ENTRY2(8), ROUTING_ENTRY2(9),
ROUTING_ENTRY2(10), ROUTING_ENTRY2(11),
ROUTING_ENTRY2(12), ROUTING_ENTRY2(13),
ROUTING_ENTRY2(14), ROUTING_ENTRY2(15),
ROUTING_ENTRY1(16), ROUTING_ENTRY1(17),
ROUTING_ENTRY1(18), ROUTING_ENTRY1(19),
ROUTING_ENTRY1(20), ROUTING_ENTRY1(21),
ROUTING_ENTRY1(22), ROUTING_ENTRY1(23),
#ifdef CONFIG_IA64
ROUTING_ENTRY1(24), ROUTING_ENTRY1(25),
ROUTING_ENTRY1(26), ROUTING_ENTRY1(27),
ROUTING_ENTRY1(28), ROUTING_ENTRY1(29),
ROUTING_ENTRY1(30), ROUTING_ENTRY1(31),
ROUTING_ENTRY1(32), ROUTING_ENTRY1(33),
ROUTING_ENTRY1(34), ROUTING_ENTRY1(35),
ROUTING_ENTRY1(36), ROUTING_ENTRY1(37),
ROUTING_ENTRY1(38), ROUTING_ENTRY1(39),
ROUTING_ENTRY1(40), ROUTING_ENTRY1(41),
ROUTING_ENTRY1(42), ROUTING_ENTRY1(43),
ROUTING_ENTRY1(44), ROUTING_ENTRY1(45),
ROUTING_ENTRY1(46), ROUTING_ENTRY1(47),
#endif
};
int kvm_setup_default_irq_routing(struct kvm *kvm)
{
return kvm_set_irq_routing(kvm, default_routing,
ARRAY_SIZE(default_routing), 0);
}