linux_old1/include/linux/ceph/osd_client.h

366 lines
11 KiB
C
Raw Normal View History

#ifndef _FS_CEPH_OSD_CLIENT_H
#define _FS_CEPH_OSD_CLIENT_H
#include <linux/completion.h>
#include <linux/kref.h>
#include <linux/mempool.h>
#include <linux/rbtree.h>
#include <linux/ceph/types.h>
#include <linux/ceph/osdmap.h>
#include <linux/ceph/messenger.h>
#include <linux/ceph/auth.h>
libceph: always allow trail in osd request An osd request structure contains an optional trail portion, which if present will contain data to be passed in the payload portion of the message containing the request. The trail field is a ceph_pagelist pointer, and if null it indicates there is no trail. A ceph_pagelist structure contains a length field, and it can legitimately hold value 0. Make use of this to change the interpretation of the "trail" of an osd request so that every osd request has trailing data, it just might have length 0. This means we change the r_trail field in a ceph_osd_request structure from a pointer to a structure that is always initialized. Note that in ceph_osdc_start_request(), the trail pointer (or now address of that structure) is assigned to a ceph message's trail field. Here's why that's still OK (looking at net/ceph/messenger.c): - What would have resulted in a null pointer previously will now refer to a 0-length page list. That message trail pointer is used in two functions, write_partial_msg_pages() and out_msg_pos_next(). - In write_partial_msg_pages(), a null page list pointer is handled the same as a message with 0-length trail, and both result in a "in_trail" variable set to false. The trail pointer is only used if in_trail is true. - The only other place the message trail pointer is used is out_msg_pos_next(). That function is only called by write_partial_msg_pages() and only touches the trail pointer if the in_trail value it is passed is true. Therefore a null ceph_msg->trail pointer is equivalent to a non-null pointer referring to a 0-length page list structure. Signed-off-by: Alex Elder <elder@inktank.com> Reviewed-by: Josh Durgin <josh.durgin@inktank.com>
2012-11-14 11:11:15 +08:00
#include <linux/ceph/pagelist.h>
struct ceph_msg;
struct ceph_snap_context;
struct ceph_osd_request;
struct ceph_osd_client;
struct ceph_authorizer;
/*
* completion callback for async writepages
*/
typedef void (*ceph_osdc_callback_t)(struct ceph_osd_request *,
struct ceph_msg *);
libceph: change how "safe" callback is used An osd request currently has two callbacks. They inform the initiator of the request when we've received confirmation for the target osd that a request was received, and when the osd indicates all changes described by the request are durable. The only time the second callback is used is in the ceph file system for a synchronous write. There's a race that makes some handling of this case unsafe. This patch addresses this problem. The error handling for this callback is also kind of gross, and this patch changes that as well. In ceph_sync_write(), if a safe callback is requested we want to add the request on the ceph inode's unsafe items list. Because items on this list must have their tid set (by ceph_osd_start_request()), the request added *after* the call to that function returns. The problem with this is that there's a race between starting the request and adding it to the unsafe items list; the request may already be complete before ceph_sync_write() even begins to put it on the list. To address this, we change the way the "safe" callback is used. Rather than just calling it when the request is "safe", we use it to notify the initiator the bounds (start and end) of the period during which the request is *unsafe*. So the initiator gets notified just before the request gets sent to the osd (when it is "unsafe"), and again when it's known the results are durable (it's no longer unsafe). The first call will get made in __send_request(), just before the request message gets sent to the messenger for the first time. That function is only called by __send_queued(), which is always called with the osd client's request mutex held. We then have this callback function insert the request on the ceph inode's unsafe list when we're told the request is unsafe. This will avoid the race because this call will be made under protection of the osd client's request mutex. It also nicely groups the setup and cleanup of the state associated with managing unsafe requests. The name of the "safe" callback field is changed to "unsafe" to better reflect its new purpose. It has a Boolean "unsafe" parameter to indicate whether the request is becoming unsafe or is now safe. Because the "msg" parameter wasn't used, we drop that. This resolves the original problem reportedin: http://tracker.ceph.com/issues/4706 Reported-by: Yan, Zheng <zheng.z.yan@intel.com> Signed-off-by: Alex Elder <elder@inktank.com> Reviewed-by: Yan, Zheng <zheng.z.yan@intel.com> Reviewed-by: Sage Weil <sage@inktank.com>
2013-04-16 00:20:42 +08:00
typedef void (*ceph_osdc_unsafe_callback_t)(struct ceph_osd_request *, bool);
/* a given osd we're communicating with */
struct ceph_osd {
atomic_t o_ref;
struct ceph_osd_client *o_osdc;
int o_osd;
int o_incarnation;
struct rb_node o_node;
struct ceph_connection o_con;
struct list_head o_requests;
struct list_head o_linger_requests;
struct list_head o_osd_lru;
struct ceph_auth_handshake o_auth;
unsigned long lru_ttl;
int o_marked_for_keepalive;
struct list_head o_keepalive_item;
};
#define CEPH_OSD_MAX_OP 2
enum ceph_osd_data_type {
CEPH_OSD_DATA_TYPE_NONE = 0,
CEPH_OSD_DATA_TYPE_PAGES,
CEPH_OSD_DATA_TYPE_PAGELIST,
#ifdef CONFIG_BLOCK
CEPH_OSD_DATA_TYPE_BIO,
#endif /* CONFIG_BLOCK */
};
struct ceph_osd_data {
enum ceph_osd_data_type type;
union {
struct {
struct page **pages;
u64 length;
u32 alignment;
bool pages_from_pool;
bool own_pages;
};
struct ceph_pagelist *pagelist;
#ifdef CONFIG_BLOCK
struct {
struct bio *bio; /* list of bios */
size_t bio_length; /* total in list */
};
#endif /* CONFIG_BLOCK */
};
};
struct ceph_osd_req_op {
u16 op; /* CEPH_OSD_OP_* */
u32 payload_len;
union {
struct ceph_osd_data raw_data_in;
struct {
u64 offset, length;
u64 truncate_size;
u32 truncate_seq;
struct ceph_osd_data osd_data;
} extent;
struct {
const char *class_name;
const char *method_name;
struct ceph_osd_data request_info;
struct ceph_osd_data request_data;
struct ceph_osd_data response_data;
__u8 class_len;
__u8 method_len;
__u8 argc;
} cls;
struct {
u64 cookie;
u64 ver;
u32 prot_ver;
u32 timeout;
__u8 flag;
} watch;
};
};
/* an in-flight request */
struct ceph_osd_request {
u64 r_tid; /* unique for this client */
struct rb_node r_node;
struct list_head r_req_lru_item;
struct list_head r_osd_item;
struct list_head r_linger_item;
struct list_head r_linger_osd;
struct ceph_osd *r_osd;
struct ceph_pg r_pgid;
int r_pg_osds[CEPH_PG_MAX_SIZE];
int r_num_pg_osds;
struct ceph_msg *r_request, *r_reply;
int r_flags; /* any additional flags for the osd */
u32 r_sent; /* >0 if r_request is sending/sent */
/* request osd ops array */
unsigned int r_num_ops;
struct ceph_osd_req_op r_ops[CEPH_OSD_MAX_OP];
/* these are updated on each send */
__le32 *r_request_osdmap_epoch;
__le32 *r_request_flags;
__le64 *r_request_pool;
void *r_request_pgid;
__le32 *r_request_attempts;
2013-12-03 11:11:48 +08:00
bool r_paused;
struct ceph_eversion *r_request_reassert_version;
int r_result;
int r_reply_op_len[CEPH_OSD_MAX_OP];
s32 r_reply_op_result[CEPH_OSD_MAX_OP];
int r_got_reply;
int r_linger;
struct ceph_osd_client *r_osdc;
struct kref r_kref;
bool r_mempool;
struct completion r_completion, r_safe_completion;
libceph: change how "safe" callback is used An osd request currently has two callbacks. They inform the initiator of the request when we've received confirmation for the target osd that a request was received, and when the osd indicates all changes described by the request are durable. The only time the second callback is used is in the ceph file system for a synchronous write. There's a race that makes some handling of this case unsafe. This patch addresses this problem. The error handling for this callback is also kind of gross, and this patch changes that as well. In ceph_sync_write(), if a safe callback is requested we want to add the request on the ceph inode's unsafe items list. Because items on this list must have their tid set (by ceph_osd_start_request()), the request added *after* the call to that function returns. The problem with this is that there's a race between starting the request and adding it to the unsafe items list; the request may already be complete before ceph_sync_write() even begins to put it on the list. To address this, we change the way the "safe" callback is used. Rather than just calling it when the request is "safe", we use it to notify the initiator the bounds (start and end) of the period during which the request is *unsafe*. So the initiator gets notified just before the request gets sent to the osd (when it is "unsafe"), and again when it's known the results are durable (it's no longer unsafe). The first call will get made in __send_request(), just before the request message gets sent to the messenger for the first time. That function is only called by __send_queued(), which is always called with the osd client's request mutex held. We then have this callback function insert the request on the ceph inode's unsafe list when we're told the request is unsafe. This will avoid the race because this call will be made under protection of the osd client's request mutex. It also nicely groups the setup and cleanup of the state associated with managing unsafe requests. The name of the "safe" callback field is changed to "unsafe" to better reflect its new purpose. It has a Boolean "unsafe" parameter to indicate whether the request is becoming unsafe or is now safe. Because the "msg" parameter wasn't used, we drop that. This resolves the original problem reportedin: http://tracker.ceph.com/issues/4706 Reported-by: Yan, Zheng <zheng.z.yan@intel.com> Signed-off-by: Alex Elder <elder@inktank.com> Reviewed-by: Yan, Zheng <zheng.z.yan@intel.com> Reviewed-by: Sage Weil <sage@inktank.com>
2013-04-16 00:20:42 +08:00
ceph_osdc_callback_t r_callback;
ceph_osdc_unsafe_callback_t r_unsafe_callback;
struct ceph_eversion r_reassert_version;
struct list_head r_unsafe_item;
struct inode *r_inode; /* for use by callbacks */
void *r_priv; /* ditto */
struct ceph_object_locator r_base_oloc;
struct ceph_object_id r_base_oid;
struct ceph_object_locator r_target_oloc;
struct ceph_object_id r_target_oid;
u64 r_snapid;
unsigned long r_stamp; /* send OR check time */
struct ceph_snap_context *r_snapc; /* snap context for writes */
};
struct ceph_request_redirect {
struct ceph_object_locator oloc;
};
struct ceph_osd_event {
u64 cookie;
int one_shot;
struct ceph_osd_client *osdc;
void (*cb)(u64, u64, u8, void *);
void *data;
struct rb_node node;
struct list_head osd_node;
struct kref kref;
};
struct ceph_osd_event_work {
struct work_struct work;
struct ceph_osd_event *event;
u64 ver;
u64 notify_id;
u8 opcode;
};
struct ceph_osd_client {
struct ceph_client *client;
struct ceph_osdmap *osdmap; /* current map */
struct rw_semaphore map_sem;
struct completion map_waiters;
u64 last_requested_map;
struct mutex request_mutex;
struct rb_root osds; /* osds */
struct list_head osd_lru; /* idle osds */
u64 timeout_tid; /* tid of timeout triggering rq */
u64 last_tid; /* tid of last request */
struct rb_root requests; /* pending requests */
struct list_head req_lru; /* in-flight lru */
struct list_head req_unsent; /* unsent/need-resend queue */
struct list_head req_notarget; /* map to no osd */
struct list_head req_linger; /* lingering requests */
int num_requests;
struct delayed_work timeout_work;
struct delayed_work osds_timeout_work;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs_file;
#endif
mempool_t *req_mempool;
struct ceph_msgpool msgpool_op;
struct ceph_msgpool msgpool_op_reply;
spinlock_t event_lock;
struct rb_root event_tree;
u64 event_count;
struct workqueue_struct *notify_wq;
};
extern int ceph_osdc_setup(void);
extern void ceph_osdc_cleanup(void);
extern int ceph_osdc_init(struct ceph_osd_client *osdc,
struct ceph_client *client);
extern void ceph_osdc_stop(struct ceph_osd_client *osdc);
extern void ceph_osdc_handle_reply(struct ceph_osd_client *osdc,
struct ceph_msg *msg);
extern void ceph_osdc_handle_map(struct ceph_osd_client *osdc,
struct ceph_msg *msg);
extern void osd_req_op_init(struct ceph_osd_request *osd_req,
unsigned int which, u16 opcode);
extern void osd_req_op_raw_data_in_pages(struct ceph_osd_request *,
unsigned int which,
struct page **pages, u64 length,
u32 alignment, bool pages_from_pool,
bool own_pages);
extern void osd_req_op_extent_init(struct ceph_osd_request *osd_req,
unsigned int which, u16 opcode,
libceph: define source request op functions The rbd code has a function that allocates and populates a ceph_osd_req_op structure (the in-core version of an osd request operation). When reviewed, Josh suggested two things: that the big varargs function might be better split into type-specific functions; and that this functionality really belongs in the osd client rather than rbd. This patch implements both of Josh's suggestions. It breaks up the rbd function into separate functions and defines them in the osd client module as exported interfaces. Unlike the rbd version, however, the functions don't allocate an osd_req_op structure; they are provided the address of one and that is initialized instead. The rbd function has been eliminated and calls to it have been replaced by calls to the new routines. The rbd code now now use a stack (struct) variable to hold the op rather than allocating and freeing it each time. For now only the capabilities used by rbd are implemented. Implementing all the other osd op types, and making the rest of the code use it will be done separately, in the next few patches. Note that only the extent, cls, and watch portions of the ceph_osd_req_op structure are currently used. Delete the others (xattr, pgls, and snap) from its definition so nobody thinks it's actually implemented or needed. We can add it back again later if needed, when we know it's been tested. This (and a few follow-on patches) resolves: http://tracker.ceph.com/issues/3861 Signed-off-by: Alex Elder <elder@inktank.com> Reviewed-by: Josh Durgin <josh.durgin@inktank.com>
2013-03-14 09:50:00 +08:00
u64 offset, u64 length,
u64 truncate_size, u32 truncate_seq);
extern void osd_req_op_extent_update(struct ceph_osd_request *osd_req,
unsigned int which, u64 length);
extern struct ceph_osd_data *osd_req_op_extent_osd_data(
struct ceph_osd_request *osd_req,
unsigned int which);
extern struct ceph_osd_data *osd_req_op_cls_response_data(
struct ceph_osd_request *osd_req,
unsigned int which);
extern void osd_req_op_extent_osd_data_pages(struct ceph_osd_request *,
unsigned int which,
struct page **pages, u64 length,
u32 alignment, bool pages_from_pool,
bool own_pages);
extern void osd_req_op_extent_osd_data_pagelist(struct ceph_osd_request *,
unsigned int which,
struct ceph_pagelist *pagelist);
#ifdef CONFIG_BLOCK
extern void osd_req_op_extent_osd_data_bio(struct ceph_osd_request *,
unsigned int which,
struct bio *bio, size_t bio_length);
#endif /* CONFIG_BLOCK */
extern void osd_req_op_cls_request_data_pagelist(struct ceph_osd_request *,
unsigned int which,
struct ceph_pagelist *pagelist);
extern void osd_req_op_cls_request_data_pages(struct ceph_osd_request *,
unsigned int which,
struct page **pages, u64 length,
u32 alignment, bool pages_from_pool,
bool own_pages);
extern void osd_req_op_cls_response_data_pages(struct ceph_osd_request *,
unsigned int which,
struct page **pages, u64 length,
u32 alignment, bool pages_from_pool,
bool own_pages);
extern void osd_req_op_cls_init(struct ceph_osd_request *osd_req,
unsigned int which, u16 opcode,
const char *class, const char *method);
extern void osd_req_op_watch_init(struct ceph_osd_request *osd_req,
unsigned int which, u16 opcode,
libceph: define source request op functions The rbd code has a function that allocates and populates a ceph_osd_req_op structure (the in-core version of an osd request operation). When reviewed, Josh suggested two things: that the big varargs function might be better split into type-specific functions; and that this functionality really belongs in the osd client rather than rbd. This patch implements both of Josh's suggestions. It breaks up the rbd function into separate functions and defines them in the osd client module as exported interfaces. Unlike the rbd version, however, the functions don't allocate an osd_req_op structure; they are provided the address of one and that is initialized instead. The rbd function has been eliminated and calls to it have been replaced by calls to the new routines. The rbd code now now use a stack (struct) variable to hold the op rather than allocating and freeing it each time. For now only the capabilities used by rbd are implemented. Implementing all the other osd op types, and making the rest of the code use it will be done separately, in the next few patches. Note that only the extent, cls, and watch portions of the ceph_osd_req_op structure are currently used. Delete the others (xattr, pgls, and snap) from its definition so nobody thinks it's actually implemented or needed. We can add it back again later if needed, when we know it's been tested. This (and a few follow-on patches) resolves: http://tracker.ceph.com/issues/3861 Signed-off-by: Alex Elder <elder@inktank.com> Reviewed-by: Josh Durgin <josh.durgin@inktank.com>
2013-03-14 09:50:00 +08:00
u64 cookie, u64 version, int flag);
extern struct ceph_osd_request *ceph_osdc_alloc_request(struct ceph_osd_client *osdc,
struct ceph_snap_context *snapc,
unsigned int num_ops,
bool use_mempool,
gfp_t gfp_flags);
extern void ceph_osdc_build_request(struct ceph_osd_request *req, u64 off,
struct ceph_snap_context *snapc,
u64 snap_id,
struct timespec *mtime);
extern struct ceph_osd_request *ceph_osdc_new_request(struct ceph_osd_client *,
struct ceph_file_layout *layout,
struct ceph_vino vino,
u64 offset, u64 *len,
int num_ops, int opcode, int flags,
struct ceph_snap_context *snapc,
u32 truncate_seq, u64 truncate_size,
bool use_mempool);
extern void ceph_osdc_set_request_linger(struct ceph_osd_client *osdc,
struct ceph_osd_request *req);
extern void ceph_osdc_unregister_linger_request(struct ceph_osd_client *osdc,
struct ceph_osd_request *req);
static inline void ceph_osdc_get_request(struct ceph_osd_request *req)
{
kref_get(&req->r_kref);
}
extern void ceph_osdc_release_request(struct kref *kref);
static inline void ceph_osdc_put_request(struct ceph_osd_request *req)
{
kref_put(&req->r_kref, ceph_osdc_release_request);
}
extern int ceph_osdc_start_request(struct ceph_osd_client *osdc,
struct ceph_osd_request *req,
bool nofail);
extern int ceph_osdc_wait_request(struct ceph_osd_client *osdc,
struct ceph_osd_request *req);
extern void ceph_osdc_sync(struct ceph_osd_client *osdc);
extern void ceph_osdc_flush_notifies(struct ceph_osd_client *osdc);
extern int ceph_osdc_readpages(struct ceph_osd_client *osdc,
struct ceph_vino vino,
struct ceph_file_layout *layout,
u64 off, u64 *plen,
u32 truncate_seq, u64 truncate_size,
struct page **pages, int nr_pages,
int page_align);
extern int ceph_osdc_writepages(struct ceph_osd_client *osdc,
struct ceph_vino vino,
struct ceph_file_layout *layout,
struct ceph_snap_context *sc,
u64 off, u64 len,
u32 truncate_seq, u64 truncate_size,
struct timespec *mtime,
struct page **pages, int nr_pages);
/* watch/notify events */
extern int ceph_osdc_create_event(struct ceph_osd_client *osdc,
void (*event_cb)(u64, u64, u8, void *),
void *data, struct ceph_osd_event **pevent);
extern void ceph_osdc_cancel_event(struct ceph_osd_event *event);
extern void ceph_osdc_put_event(struct ceph_osd_event *event);
#endif