linux_old1/include/linux/iomap.h

176 lines
5.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef LINUX_IOMAP_H
#define LINUX_IOMAP_H 1
#include <linux/atomic.h>
#include <linux/bitmap.h>
#include <linux/mm.h>
#include <linux/types.h>
struct address_space;
struct fiemap_extent_info;
struct inode;
struct iov_iter;
struct kiocb;
struct page;
struct vm_area_struct;
struct vm_fault;
/*
* Types of block ranges for iomap mappings:
*/
#define IOMAP_HOLE 0x01 /* no blocks allocated, need allocation */
#define IOMAP_DELALLOC 0x02 /* delayed allocation blocks */
#define IOMAP_MAPPED 0x03 /* blocks allocated at @addr */
#define IOMAP_UNWRITTEN 0x04 /* blocks allocated at @addr in unwritten state */
#define IOMAP_INLINE 0x05 /* data inline in the inode */
/*
* Flags for all iomap mappings:
libnvdimm for 4.15 * Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable 'userspace flush' of persistent memory updates via filesystem-dax mappings. It arranges for any filesystem metadata updates that may be required to satisfy a write fault to also be flushed ("on disk") before the kernel returns to userspace from the fault handler. Effectively every write-fault that dirties metadata completes an fsync() before returning from the fault handler. The new MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag is validated as supported by the filesystem's ->mmap() file operation. * Add support for the standard ACPI 6.2 label access methods that replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This enables interoperability with environments that only implement the standardized methods. * Add support for the ACPI 6.2 NVDIMM media error injection methods. * Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch last shutdown status, firmware update, SMART error injection, and SMART alarm threshold control. * Cleanup physical address information disclosures to be root-only. * Fix revalidation of the DIMM "locked label area" status to support dynamic unlock of the label area. * Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA (system-physical-address) command and error injection commands. Acknowledgements that came after the commits were pushed to -next: 957ac8c421ad dax: fix PMD faults on zero-length files Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> a39e596baa07 xfs: support for synchronous DAX faults Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> 7b565c9f965b xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault() Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJaDfvcAAoJEB7SkWpmfYgCk7sP/2qJhBH+VTTdg2osDnhAdAhI co/AGEmsHFlUCMBb/Ek7UnMAmhBYiJU2q4ywPsNFBpusXpMlqNy5Iwo7k4/wQHE/ SJcIM0g4zg0ViFuUhwV+C2T0R5UzFR8JLd9EYWj/YS6aJpurtotm5l4UStaM0Hzo AhxSXJLrBDuqCpbOxbctfiGEmdRL7aRfBEAARTNRKBn/iXxJUcYHlp62rtXQS+t4 I6LC/URCWTNTTMGmzW6TRsgSD9WMfd19xKcGzN3qL6ee0KFccxN4ctFqHA/sFGOh iYLeR0XJUjJxyp+PkWGteXPVZL0Kj3bD/lSTG+Co5bm/ra8a/sh3TSFfgFyoBZD1 EqMN8Ryf80hGp3FabeH2Iw2SviYPZpHSWgjddjxLD0RA6OmpzINc+Wm8eqApjMME sbZDTOijiab4QMQ0XamF4GuDHyQtawv5Y/w2Ehhl1tmiqW+5tKhsKqxkQt+/V3Yt RTVSRe2Pkway66b+cD64IdQ6L2tyonPnmi5IzgkKOhlOEGomy+4/U2Jt2bMbhzq6 ymszKmXp2XI8P06wU8sHrIUeXO5I9qoKn/fZA73Eb8aIzgJe3tBE/5+Ab7RG6HB9 1OVfcMWoXU1gNgNktTs63X1Lsg4aW9kt/K4fPHHcqUcaliEJpJTlAbg9GLF2buoW nQ+0fTRgMRihE3ZA0Fs3 =h2vZ -----END PGP SIGNATURE----- Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm and dax updates from Dan Williams: "Save for a few late fixes, all of these commits have shipped in -next releases since before the merge window opened, and 0day has given a build success notification. The ext4 touches came from Jan, and the xfs touches have Darrick's reviewed-by. An xfstest for the MAP_SYNC feature has been through a few round of reviews and is on track to be merged. - Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable 'userspace flush' of persistent memory updates via filesystem-dax mappings. It arranges for any filesystem metadata updates that may be required to satisfy a write fault to also be flushed ("on disk") before the kernel returns to userspace from the fault handler. Effectively every write-fault that dirties metadata completes an fsync() before returning from the fault handler. The new MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag is validated as supported by the filesystem's ->mmap() file operation. - Add support for the standard ACPI 6.2 label access methods that replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This enables interoperability with environments that only implement the standardized methods. - Add support for the ACPI 6.2 NVDIMM media error injection methods. - Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch last shutdown status, firmware update, SMART error injection, and SMART alarm threshold control. - Cleanup physical address information disclosures to be root-only. - Fix revalidation of the DIMM "locked label area" status to support dynamic unlock of the label area. - Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA (system-physical-address) command and error injection commands. Acknowledgements that came after the commits were pushed to -next: - 957ac8c421ad ("dax: fix PMD faults on zero-length files"): Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> - a39e596baa07 ("xfs: support for synchronous DAX faults") and 7b565c9f965b ("xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()") Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>" * tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (49 commits) acpi, nfit: add 'Enable Latch System Shutdown Status' command support dax: fix general protection fault in dax_alloc_inode dax: fix PMD faults on zero-length files dax: stop requiring a live device for dax_flush() brd: remove dax support dax: quiet bdev_dax_supported() fs, dax: unify IOMAP_F_DIRTY read vs write handling policy in the dax core tools/testing/nvdimm: unit test clear-error commands acpi, nfit: validate commands against the device type tools/testing/nvdimm: stricter bounds checking for error injection commands xfs: support for synchronous DAX faults xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault() ext4: Support for synchronous DAX faults ext4: Simplify error handling in ext4_dax_huge_fault() dax: Implement dax_finish_sync_fault() dax, iomap: Add support for synchronous faults mm: Define MAP_SYNC and VM_SYNC flags dax: Allow tuning whether dax_insert_mapping_entry() dirties entry dax: Allow dax_iomap_fault() to return pfn dax: Fix comment describing dax_iomap_fault() ...
2017-11-18 01:51:57 +08:00
*
* IOMAP_F_DIRTY indicates the inode has uncommitted metadata needed to access
* written data and requires fdatasync to commit them to persistent storage.
*/
#define IOMAP_F_NEW 0x01 /* blocks have been newly allocated */
#define IOMAP_F_DIRTY 0x02 /* uncommitted metadata */
#define IOMAP_F_BUFFER_HEAD 0x04 /* file system requires buffer heads */
/*
* Flags that only need to be reported for IOMAP_REPORT requests:
*/
#define IOMAP_F_MERGED 0x10 /* contains multiple blocks/extents */
#define IOMAP_F_SHARED 0x20 /* block shared with another file */
/*
* Flags from 0x1000 up are for file system specific usage:
*/
#define IOMAP_F_PRIVATE 0x1000
/*
* Magic value for addr:
*/
#define IOMAP_NULL_ADDR -1ULL /* addr is not valid */
struct iomap {
u64 addr; /* disk offset of mapping, bytes */
loff_t offset; /* file offset of mapping, bytes */
u64 length; /* length of mapping, bytes */
u16 type; /* type of mapping */
u16 flags; /* flags for mapping */
struct block_device *bdev; /* block device for I/O */
struct dax_device *dax_dev; /* dax_dev for dax operations */
void *inline_data;
void *private; /* filesystem private */
/*
* Called when finished processing a page in the mapping returned in
* this iomap. At least for now this is only supported in the buffered
* write path.
*/
void (*page_done)(struct inode *inode, loff_t pos, unsigned copied,
struct page *page, struct iomap *iomap);
};
/*
* Flags for iomap_begin / iomap_end. No flag implies a read.
*/
#define IOMAP_WRITE (1 << 0) /* writing, must allocate blocks */
#define IOMAP_ZERO (1 << 1) /* zeroing operation, may skip holes */
#define IOMAP_REPORT (1 << 2) /* report extent status, e.g. FIEMAP */
#define IOMAP_FAULT (1 << 3) /* mapping for page fault */
#define IOMAP_DIRECT (1 << 4) /* direct I/O */
#define IOMAP_NOWAIT (1 << 5) /* do not block */
struct iomap_ops {
/*
* Return the existing mapping at pos, or reserve space starting at
* pos for up to length, as long as we can do it as a single mapping.
* The actual length is returned in iomap->length.
*/
int (*iomap_begin)(struct inode *inode, loff_t pos, loff_t length,
unsigned flags, struct iomap *iomap);
/*
* Commit and/or unreserve space previous allocated using iomap_begin.
* Written indicates the length of the successful write operation which
* needs to be commited, while the rest needs to be unreserved.
* Written might be zero if no data was written.
*/
int (*iomap_end)(struct inode *inode, loff_t pos, loff_t length,
ssize_t written, unsigned flags, struct iomap *iomap);
};
/*
* Structure allocate for each page when block size < PAGE_SIZE to track
* sub-page uptodate status and I/O completions.
*/
struct iomap_page {
atomic_t read_count;
atomic_t write_count;
DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
};
static inline struct iomap_page *to_iomap_page(struct page *page)
{
if (page_has_private(page))
return (struct iomap_page *)page_private(page);
return NULL;
}
ssize_t iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *from,
const struct iomap_ops *ops);
int iomap_readpage(struct page *page, const struct iomap_ops *ops);
int iomap_readpages(struct address_space *mapping, struct list_head *pages,
unsigned nr_pages, const struct iomap_ops *ops);
int iomap_set_page_dirty(struct page *page);
int iomap_is_partially_uptodate(struct page *page, unsigned long from,
unsigned long count);
int iomap_releasepage(struct page *page, gfp_t gfp_mask);
void iomap_invalidatepage(struct page *page, unsigned int offset,
unsigned int len);
#ifdef CONFIG_MIGRATION
int iomap_migrate_page(struct address_space *mapping, struct page *newpage,
struct page *page, enum migrate_mode mode);
#else
#define iomap_migrate_page NULL
#endif
int iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
const struct iomap_ops *ops);
int iomap_zero_range(struct inode *inode, loff_t pos, loff_t len,
bool *did_zero, const struct iomap_ops *ops);
int iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
const struct iomap_ops *ops);
int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops);
int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
loff_t start, loff_t len, const struct iomap_ops *ops);
loff_t iomap_seek_hole(struct inode *inode, loff_t offset,
const struct iomap_ops *ops);
loff_t iomap_seek_data(struct inode *inode, loff_t offset,
const struct iomap_ops *ops);
sector_t iomap_bmap(struct address_space *mapping, sector_t bno,
const struct iomap_ops *ops);
/*
* Flags for direct I/O ->end_io:
*/
#define IOMAP_DIO_UNWRITTEN (1 << 0) /* covers unwritten extent(s) */
#define IOMAP_DIO_COW (1 << 1) /* covers COW extent(s) */
typedef int (iomap_dio_end_io_t)(struct kiocb *iocb, ssize_t ret,
unsigned flags);
ssize_t iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
const struct iomap_ops *ops, iomap_dio_end_io_t end_io);
#ifdef CONFIG_SWAP
struct file;
struct swap_info_struct;
int iomap_swapfile_activate(struct swap_info_struct *sis,
struct file *swap_file, sector_t *pagespan,
const struct iomap_ops *ops);
#else
# define iomap_swapfile_activate(sis, swapfile, pagespan, ops) (-EIO)
#endif /* CONFIG_SWAP */
#endif /* LINUX_IOMAP_H */