linux_old1/lib/strncpy_from_user.c

124 lines
3.1 KiB
C
Raw Normal View History

#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/kasan-checks.h>
#include <linux/thread_info.h>
#include <linux/uaccess.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
word-at-a-time: make the interfaces truly generic This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-27 01:43:17 +08:00
#include <asm/word-at-a-time.h>
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
#define IS_UNALIGNED(src, dst) 0
#else
#define IS_UNALIGNED(src, dst) \
(((long) dst | (long) src) & (sizeof(long) - 1))
#endif
/*
* Do a strncpy, return length of string without final '\0'.
* 'count' is the user-supplied count (return 'count' if we
* hit it), 'max' is the address space maximum (and we return
* -EFAULT if we hit it).
*/
static inline long do_strncpy_from_user(char *dst, const char __user *src, long count, unsigned long max)
{
word-at-a-time: make the interfaces truly generic This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-27 01:43:17 +08:00
const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
long res = 0;
/*
* Truncate 'max' to the user-specified limit, so that
* we only have one limit we need to check in the loop
*/
if (max > count)
max = count;
if (IS_UNALIGNED(src, dst))
goto byte_at_a_time;
while (max >= sizeof(unsigned long)) {
word-at-a-time: make the interfaces truly generic This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-27 01:43:17 +08:00
unsigned long c, data;
/* Fall back to byte-at-a-time if we get a page fault */
unsafe_[get|put]_user: change interface to use a error target label When I initially added the unsafe_[get|put]_user() helpers in commit 5b24a7a2aa20 ("Add 'unsafe' user access functions for batched accesses"), I made the mistake of modeling the interface on our traditional __[get|put]_user() functions, which return zero on success, or -EFAULT on failure. That interface is fairly easy to use, but it's actually fairly nasty for good code generation, since it essentially forces the caller to check the error value for each access. In particular, since the error handling is already internally implemented with an exception handler, and we already use "asm goto" for various other things, we could fairly easily make the error cases just jump directly to an error label instead, and avoid the need for explicit checking after each operation. So switch the interface to pass in an error label, rather than checking the error value in the caller. Best do it now before we start growing more users (the signal handling code in particular would be a good place to use the new interface). So rather than if (unsafe_get_user(x, ptr)) ... handle error .. the interface is now unsafe_get_user(x, ptr, label); where an error during the user mode fetch will now just cause a jump to 'label' in the caller. Right now the actual _implementation_ of this all still ends up being a "if (err) goto label", and does not take advantage of any exception label tricks, but for "unsafe_put_user()" in particular it should be fairly straightforward to convert to using the exception table model. Note that "unsafe_get_user()" is much harder to convert to a clever exception table model, because current versions of gcc do not allow the use of "asm goto" (for the exception) with output values (for the actual value to be fetched). But that is hopefully not a limitation in the long term. [ Also note that it might be a good idea to switch unsafe_get_user() to actually _return_ the value it fetches from user space, but this commit only changes the error handling semantics ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-09 04:02:01 +08:00
unsafe_get_user(c, (unsigned long __user *)(src+res), byte_at_a_time);
*(unsigned long *)(dst+res) = c;
word-at-a-time: make the interfaces truly generic This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-27 01:43:17 +08:00
if (has_zero(c, &data, &constants)) {
data = prep_zero_mask(c, data, &constants);
data = create_zero_mask(data);
return res + find_zero(data);
}
res += sizeof(unsigned long);
max -= sizeof(unsigned long);
}
byte_at_a_time:
while (max) {
char c;
unsafe_[get|put]_user: change interface to use a error target label When I initially added the unsafe_[get|put]_user() helpers in commit 5b24a7a2aa20 ("Add 'unsafe' user access functions for batched accesses"), I made the mistake of modeling the interface on our traditional __[get|put]_user() functions, which return zero on success, or -EFAULT on failure. That interface is fairly easy to use, but it's actually fairly nasty for good code generation, since it essentially forces the caller to check the error value for each access. In particular, since the error handling is already internally implemented with an exception handler, and we already use "asm goto" for various other things, we could fairly easily make the error cases just jump directly to an error label instead, and avoid the need for explicit checking after each operation. So switch the interface to pass in an error label, rather than checking the error value in the caller. Best do it now before we start growing more users (the signal handling code in particular would be a good place to use the new interface). So rather than if (unsafe_get_user(x, ptr)) ... handle error .. the interface is now unsafe_get_user(x, ptr, label); where an error during the user mode fetch will now just cause a jump to 'label' in the caller. Right now the actual _implementation_ of this all still ends up being a "if (err) goto label", and does not take advantage of any exception label tricks, but for "unsafe_put_user()" in particular it should be fairly straightforward to convert to using the exception table model. Note that "unsafe_get_user()" is much harder to convert to a clever exception table model, because current versions of gcc do not allow the use of "asm goto" (for the exception) with output values (for the actual value to be fetched). But that is hopefully not a limitation in the long term. [ Also note that it might be a good idea to switch unsafe_get_user() to actually _return_ the value it fetches from user space, but this commit only changes the error handling semantics ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-09 04:02:01 +08:00
unsafe_get_user(c,src+res, efault);
dst[res] = c;
if (!c)
return res;
res++;
max--;
}
/*
* Uhhuh. We hit 'max'. But was that the user-specified maximum
* too? If so, that's ok - we got as much as the user asked for.
*/
if (res >= count)
return res;
/*
* Nope: we hit the address space limit, and we still had more
* characters the caller would have wanted. That's an EFAULT.
*/
unsafe_[get|put]_user: change interface to use a error target label When I initially added the unsafe_[get|put]_user() helpers in commit 5b24a7a2aa20 ("Add 'unsafe' user access functions for batched accesses"), I made the mistake of modeling the interface on our traditional __[get|put]_user() functions, which return zero on success, or -EFAULT on failure. That interface is fairly easy to use, but it's actually fairly nasty for good code generation, since it essentially forces the caller to check the error value for each access. In particular, since the error handling is already internally implemented with an exception handler, and we already use "asm goto" for various other things, we could fairly easily make the error cases just jump directly to an error label instead, and avoid the need for explicit checking after each operation. So switch the interface to pass in an error label, rather than checking the error value in the caller. Best do it now before we start growing more users (the signal handling code in particular would be a good place to use the new interface). So rather than if (unsafe_get_user(x, ptr)) ... handle error .. the interface is now unsafe_get_user(x, ptr, label); where an error during the user mode fetch will now just cause a jump to 'label' in the caller. Right now the actual _implementation_ of this all still ends up being a "if (err) goto label", and does not take advantage of any exception label tricks, but for "unsafe_put_user()" in particular it should be fairly straightforward to convert to using the exception table model. Note that "unsafe_get_user()" is much harder to convert to a clever exception table model, because current versions of gcc do not allow the use of "asm goto" (for the exception) with output values (for the actual value to be fetched). But that is hopefully not a limitation in the long term. [ Also note that it might be a good idea to switch unsafe_get_user() to actually _return_ the value it fetches from user space, but this commit only changes the error handling semantics ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-09 04:02:01 +08:00
efault:
return -EFAULT;
}
/**
* strncpy_from_user: - Copy a NUL terminated string from userspace.
* @dst: Destination address, in kernel space. This buffer must be at
* least @count bytes long.
* @src: Source address, in user space.
* @count: Maximum number of bytes to copy, including the trailing NUL.
*
* Copies a NUL-terminated string from userspace to kernel space.
*
* On success, returns the length of the string (not including the trailing
* NUL).
*
* If access to userspace fails, returns -EFAULT (some data may have been
* copied).
*
* If @count is smaller than the length of the string, copies @count bytes
* and returns @count.
*/
long strncpy_from_user(char *dst, const char __user *src, long count)
{
unsigned long max_addr, src_addr;
if (unlikely(count <= 0))
return 0;
max_addr = user_addr_max();
src_addr = (unsigned long)src;
if (likely(src_addr < max_addr)) {
unsigned long max = max_addr - src_addr;
long retval;
kasan_check_write(dst, count);
check_object_size(dst, count, false);
user_access_begin();
retval = do_strncpy_from_user(dst, src, count, max);
user_access_end();
return retval;
}
return -EFAULT;
}
EXPORT_SYMBOL(strncpy_from_user);