linux_old1/arch/x86/include/asm/checksum_64.h

199 lines
5.4 KiB
C
Raw Normal View History

#ifndef _ASM_X86_CHECKSUM_64_H
#define _ASM_X86_CHECKSUM_64_H
/*
* Checksums for x86-64
* Copyright 2002 by Andi Kleen, SuSE Labs
* with some code from asm-x86/checksum.h
*/
#include <linux/compiler.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
/**
* csum_fold - Fold and invert a 32bit checksum.
* sum: 32bit unfolded sum
*
* Fold a 32bit running checksum to 16bit and invert it. This is usually
* the last step before putting a checksum into a packet.
* Make sure not to mix with 64bit checksums.
*/
static inline __sum16 csum_fold(__wsum sum)
{
asm(" addl %1,%0\n"
" adcl $0xffff,%0"
: "=r" (sum)
: "r" ((__force u32)sum << 16),
"0" ((__force u32)sum & 0xffff0000));
return (__force __sum16)(~(__force u32)sum >> 16);
}
/*
* This is a version of ip_compute_csum() optimized for IP headers,
* which always checksum on 4 octet boundaries.
*
* By Jorge Cwik <jorge@laser.satlink.net>, adapted for linux by
* Arnt Gulbrandsen.
*/
/**
* ip_fast_csum - Compute the IPv4 header checksum efficiently.
* iph: ipv4 header
* ihl: length of header / 4
*/
static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
{
unsigned int sum;
asm(" movl (%1), %0\n"
" subl $4, %2\n"
" jbe 2f\n"
" addl 4(%1), %0\n"
" adcl 8(%1), %0\n"
" adcl 12(%1), %0\n"
"1: adcl 16(%1), %0\n"
" lea 4(%1), %1\n"
" decl %2\n"
" jne 1b\n"
" adcl $0, %0\n"
" movl %0, %2\n"
" shrl $16, %0\n"
" addw %w2, %w0\n"
" adcl $0, %0\n"
" notl %0\n"
"2:"
/* Since the input registers which are loaded with iph and ihl
are modified, we must also specify them as outputs, or gcc
will assume they contain their original values. */
: "=r" (sum), "=r" (iph), "=r" (ihl)
: "1" (iph), "2" (ihl)
: "memory");
return (__force __sum16)sum;
}
/**
* csum_tcpup_nofold - Compute an IPv4 pseudo header checksum.
* @saddr: source address
* @daddr: destination address
* @len: length of packet
* @proto: ip protocol of packet
* @sum: initial sum to be added in (32bit unfolded)
*
* Returns the pseudo header checksum the input data. Result is
* 32bit unfolded.
*/
static inline __wsum
ipv4: Update parameters for csum_tcpudp_magic to their original types This patch updates all instances of csum_tcpudp_magic and csum_tcpudp_nofold to reflect the types that are usually used as the source inputs. For example the protocol field is populated based on nexthdr which is actually an unsigned 8 bit value. The length is usually populated based on skb->len which is an unsigned integer. This addresses an issue in which the IPv6 function csum_ipv6_magic was generating a checksum using the full 32b of skb->len while csum_tcpudp_magic was only using the lower 16 bits. As a result we could run into issues when attempting to adjust the checksum as there was no protocol agnostic way to update it. With this change the value is still truncated as many architectures use "(len + proto) << 8", however this truncation only occurs for values greater than 16776960 in length and as such is unlikely to occur as we stop the inner headers at ~64K in size. I did have to make a few minor changes in the arm, mn10300, nios2, and score versions of the function in order to support these changes as they were either using things such as an OR to combine the protocol and length, or were using ntohs to convert the length which would have truncated the value. I also updated a few spots in terms of whitespace and type differences for the addresses. Most of this was just to make sure all of the definitions were in sync going forward. Signed-off-by: Alexander Duyck <aduyck@mirantis.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-12 06:05:34 +08:00
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
asm(" addl %1, %0\n"
" adcl %2, %0\n"
" adcl %3, %0\n"
" adcl $0, %0\n"
: "=r" (sum)
: "g" (daddr), "g" (saddr),
"g" ((len + proto)<<8), "0" (sum));
return sum;
}
/**
* csum_tcpup_magic - Compute an IPv4 pseudo header checksum.
* @saddr: source address
* @daddr: destination address
* @len: length of packet
* @proto: ip protocol of packet
* @sum: initial sum to be added in (32bit unfolded)
*
* Returns the 16bit pseudo header checksum the input data already
* complemented and ready to be filled in.
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
ipv4: Update parameters for csum_tcpudp_magic to their original types This patch updates all instances of csum_tcpudp_magic and csum_tcpudp_nofold to reflect the types that are usually used as the source inputs. For example the protocol field is populated based on nexthdr which is actually an unsigned 8 bit value. The length is usually populated based on skb->len which is an unsigned integer. This addresses an issue in which the IPv6 function csum_ipv6_magic was generating a checksum using the full 32b of skb->len while csum_tcpudp_magic was only using the lower 16 bits. As a result we could run into issues when attempting to adjust the checksum as there was no protocol agnostic way to update it. With this change the value is still truncated as many architectures use "(len + proto) << 8", however this truncation only occurs for values greater than 16776960 in length and as such is unlikely to occur as we stop the inner headers at ~64K in size. I did have to make a few minor changes in the arm, mn10300, nios2, and score versions of the function in order to support these changes as they were either using things such as an OR to combine the protocol and length, or were using ntohs to convert the length which would have truncated the value. I also updated a few spots in terms of whitespace and type differences for the addresses. Most of this was just to make sure all of the definitions were in sync going forward. Signed-off-by: Alexander Duyck <aduyck@mirantis.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-12 06:05:34 +08:00
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
}
/**
* csum_partial - Compute an internet checksum.
* @buff: buffer to be checksummed
* @len: length of buffer.
* @sum: initial sum to be added in (32bit unfolded)
*
* Returns the 32bit unfolded internet checksum of the buffer.
* Before filling it in it needs to be csum_fold()'ed.
* buff should be aligned to a 64bit boundary if possible.
*/
extern __wsum csum_partial(const void *buff, int len, __wsum sum);
#define _HAVE_ARCH_COPY_AND_CSUM_FROM_USER 1
#define HAVE_CSUM_COPY_USER 1
/* Do not call this directly. Use the wrappers below */
extern __visible __wsum csum_partial_copy_generic(const void *src, const void *dst,
int len, __wsum sum,
int *src_err_ptr, int *dst_err_ptr);
extern __wsum csum_partial_copy_from_user(const void __user *src, void *dst,
int len, __wsum isum, int *errp);
extern __wsum csum_partial_copy_to_user(const void *src, void __user *dst,
int len, __wsum isum, int *errp);
extern __wsum csum_partial_copy_nocheck(const void *src, void *dst,
int len, __wsum sum);
/* Old names. To be removed. */
#define csum_and_copy_to_user csum_partial_copy_to_user
#define csum_and_copy_from_user csum_partial_copy_from_user
/**
* ip_compute_csum - Compute an 16bit IP checksum.
* @buff: buffer address.
* @len: length of buffer.
*
* Returns the 16bit folded/inverted checksum of the passed buffer.
* Ready to fill in.
*/
extern __sum16 ip_compute_csum(const void *buff, int len);
/**
* csum_ipv6_magic - Compute checksum of an IPv6 pseudo header.
* @saddr: source address
* @daddr: destination address
* @len: length of packet
* @proto: protocol of packet
* @sum: initial sum (32bit unfolded) to be added in
*
* Computes an IPv6 pseudo header checksum. This sum is added the checksum
* into UDP/TCP packets and contains some link layer information.
* Returns the unfolded 32bit checksum.
*/
struct in6_addr;
#define _HAVE_ARCH_IPV6_CSUM 1
extern __sum16
csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr,
__u32 len, __u8 proto, __wsum sum);
static inline unsigned add32_with_carry(unsigned a, unsigned b)
{
asm("addl %2,%0\n\t"
"adcl $0,%0"
: "=r" (a)
: "0" (a), "rm" (b));
return a;
}
#define HAVE_ARCH_CSUM_ADD
static inline __wsum csum_add(__wsum csum, __wsum addend)
{
return (__force __wsum)add32_with_carry((__force unsigned)csum,
(__force unsigned)addend);
}
#endif /* _ASM_X86_CHECKSUM_64_H */