linux_old1/drivers/bcma/driver_chipcommon_pmu.c

504 lines
15 KiB
C
Raw Normal View History

bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
/*
* Broadcom specific AMBA
* ChipCommon Power Management Unit driver
*
* Copyright 2009, Michael Buesch <m@bues.ch>
* Copyright 2007, 2011, Broadcom Corporation
* Copyright 2011, 2012, Hauke Mehrtens <hauke@hauke-m.de>
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include "bcma_private.h"
#include <linux/export.h>
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
#include <linux/bcma/bcma.h>
static u32 bcma_chipco_pll_read(struct bcma_drv_cc *cc, u32 offset)
{
bcma_cc_write32(cc, BCMA_CC_PLLCTL_ADDR, offset);
bcma_cc_read32(cc, BCMA_CC_PLLCTL_ADDR);
return bcma_cc_read32(cc, BCMA_CC_PLLCTL_DATA);
}
void bcma_chipco_pll_write(struct bcma_drv_cc *cc, u32 offset, u32 value)
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
{
bcma_cc_write32(cc, BCMA_CC_PLLCTL_ADDR, offset);
bcma_cc_read32(cc, BCMA_CC_PLLCTL_ADDR);
bcma_cc_write32(cc, BCMA_CC_PLLCTL_DATA, value);
}
EXPORT_SYMBOL_GPL(bcma_chipco_pll_write);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
void bcma_chipco_pll_maskset(struct bcma_drv_cc *cc, u32 offset, u32 mask,
u32 set)
{
bcma_cc_write32(cc, BCMA_CC_PLLCTL_ADDR, offset);
bcma_cc_read32(cc, BCMA_CC_PLLCTL_ADDR);
bcma_cc_maskset32(cc, BCMA_CC_PLLCTL_DATA, mask, set);
}
EXPORT_SYMBOL_GPL(bcma_chipco_pll_maskset);
void bcma_chipco_chipctl_maskset(struct bcma_drv_cc *cc,
u32 offset, u32 mask, u32 set)
{
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
bcma_cc_write32(cc, BCMA_CC_CHIPCTL_ADDR, offset);
bcma_cc_read32(cc, BCMA_CC_CHIPCTL_ADDR);
bcma_cc_maskset32(cc, BCMA_CC_CHIPCTL_DATA, mask, set);
}
EXPORT_SYMBOL_GPL(bcma_chipco_chipctl_maskset);
void bcma_chipco_regctl_maskset(struct bcma_drv_cc *cc, u32 offset, u32 mask,
u32 set)
{
bcma_cc_write32(cc, BCMA_CC_REGCTL_ADDR, offset);
bcma_cc_read32(cc, BCMA_CC_REGCTL_ADDR);
bcma_cc_maskset32(cc, BCMA_CC_REGCTL_DATA, mask, set);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
}
EXPORT_SYMBOL_GPL(bcma_chipco_regctl_maskset);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
static void bcma_pmu_resources_init(struct bcma_drv_cc *cc)
{
struct bcma_bus *bus = cc->core->bus;
u32 min_msk = 0, max_msk = 0;
switch (bus->chipinfo.id) {
case BCMA_CHIP_ID_BCM4313:
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
min_msk = 0x200D;
max_msk = 0xFFFF;
break;
default:
bcma_debug(bus, "PMU resource config unknown or not needed for device 0x%04X\n",
bus->chipinfo.id);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
}
/* Set the resource masks. */
if (min_msk)
bcma_cc_write32(cc, BCMA_CC_PMU_MINRES_MSK, min_msk);
if (max_msk)
bcma_cc_write32(cc, BCMA_CC_PMU_MAXRES_MSK, max_msk);
/*
* Add some delay; allow resources to come up and settle.
* Delay is required for SoC (early init).
*/
mdelay(2);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
}
/* Disable to allow reading SPROM. Don't know the adventages of enabling it. */
void bcma_chipco_bcm4331_ext_pa_lines_ctl(struct bcma_drv_cc *cc, bool enable)
{
struct bcma_bus *bus = cc->core->bus;
u32 val;
val = bcma_cc_read32(cc, BCMA_CC_CHIPCTL);
if (enable) {
val |= BCMA_CHIPCTL_4331_EXTPA_EN;
if (bus->chipinfo.pkg == 9 || bus->chipinfo.pkg == 11)
val |= BCMA_CHIPCTL_4331_EXTPA_ON_GPIO2_5;
else if (bus->chipinfo.rev > 0)
val |= BCMA_CHIPCTL_4331_EXTPA_EN2;
} else {
val &= ~BCMA_CHIPCTL_4331_EXTPA_EN;
val &= ~BCMA_CHIPCTL_4331_EXTPA_EN2;
val &= ~BCMA_CHIPCTL_4331_EXTPA_ON_GPIO2_5;
}
bcma_cc_write32(cc, BCMA_CC_CHIPCTL, val);
}
static void bcma_pmu_workarounds(struct bcma_drv_cc *cc)
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
{
struct bcma_bus *bus = cc->core->bus;
switch (bus->chipinfo.id) {
case BCMA_CHIP_ID_BCM4313:
/* enable 12 mA drive strenth for 4313 and set chipControl
register bit 1 */
bcma_chipco_chipctl_maskset(cc, 0,
~BCMA_CCTRL_4313_12MA_LED_DRIVE,
BCMA_CCTRL_4313_12MA_LED_DRIVE);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
break;
case BCMA_CHIP_ID_BCM4331:
case BCMA_CHIP_ID_BCM43431:
/* Ext PA lines must be enabled for tx on BCM4331 */
bcma_chipco_bcm4331_ext_pa_lines_ctl(cc, true);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
break;
case BCMA_CHIP_ID_BCM43224:
case BCMA_CHIP_ID_BCM43421:
/* enable 12 mA drive strenth for 43224 and set chipControl
register bit 15 */
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
if (bus->chipinfo.rev == 0) {
bcma_cc_maskset32(cc, BCMA_CC_CHIPCTL,
~BCMA_CCTRL_43224_GPIO_TOGGLE,
BCMA_CCTRL_43224_GPIO_TOGGLE);
bcma_chipco_chipctl_maskset(cc, 0,
~BCMA_CCTRL_43224A0_12MA_LED_DRIVE,
BCMA_CCTRL_43224A0_12MA_LED_DRIVE);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
} else {
bcma_chipco_chipctl_maskset(cc, 0,
~BCMA_CCTRL_43224B0_12MA_LED_DRIVE,
BCMA_CCTRL_43224B0_12MA_LED_DRIVE);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
}
break;
default:
bcma_debug(bus, "Workarounds unknown or not needed for device 0x%04X\n",
bus->chipinfo.id);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
}
}
void bcma_pmu_init(struct bcma_drv_cc *cc)
{
u32 pmucap;
pmucap = bcma_cc_read32(cc, BCMA_CC_PMU_CAP);
cc->pmu.rev = (pmucap & BCMA_CC_PMU_CAP_REVISION);
bcma_debug(cc->core->bus, "Found rev %u PMU (capabilities 0x%08X)\n",
cc->pmu.rev, pmucap);
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-10 00:56:46 +08:00
if (cc->pmu.rev == 1)
bcma_cc_mask32(cc, BCMA_CC_PMU_CTL,
~BCMA_CC_PMU_CTL_NOILPONW);
else
bcma_cc_set32(cc, BCMA_CC_PMU_CTL,
BCMA_CC_PMU_CTL_NOILPONW);
bcma_pmu_resources_init(cc);
bcma_pmu_workarounds(cc);
}
u32 bcma_pmu_alp_clock(struct bcma_drv_cc *cc)
{
struct bcma_bus *bus = cc->core->bus;
switch (bus->chipinfo.id) {
case BCMA_CHIP_ID_BCM4716:
case BCMA_CHIP_ID_BCM4748:
case BCMA_CHIP_ID_BCM47162:
case BCMA_CHIP_ID_BCM4313:
case BCMA_CHIP_ID_BCM5357:
case BCMA_CHIP_ID_BCM4749:
case BCMA_CHIP_ID_BCM53572:
/* always 20Mhz */
return 20000 * 1000;
case BCMA_CHIP_ID_BCM5356:
case BCMA_CHIP_ID_BCM4706:
/* always 25Mhz */
return 25000 * 1000;
default:
bcma_warn(bus, "No ALP clock specified for %04X device, pmu rev. %d, using default %d Hz\n",
bus->chipinfo.id, cc->pmu.rev, BCMA_CC_PMU_ALP_CLOCK);
}
return BCMA_CC_PMU_ALP_CLOCK;
}
/* Find the output of the "m" pll divider given pll controls that start with
* pllreg "pll0" i.e. 12 for main 6 for phy, 0 for misc.
*/
static u32 bcma_pmu_clock(struct bcma_drv_cc *cc, u32 pll0, u32 m)
{
u32 tmp, div, ndiv, p1, p2, fc;
struct bcma_bus *bus = cc->core->bus;
BUG_ON((pll0 & 3) || (pll0 > BCMA_CC_PMU4716_MAINPLL_PLL0));
BUG_ON(!m || m > 4);
if (bus->chipinfo.id == BCMA_CHIP_ID_BCM5357 ||
bus->chipinfo.id == BCMA_CHIP_ID_BCM4749) {
/* Detect failure in clock setting */
tmp = bcma_cc_read32(cc, BCMA_CC_CHIPSTAT);
if (tmp & 0x40000)
return 133 * 1000000;
}
tmp = bcma_chipco_pll_read(cc, pll0 + BCMA_CC_PPL_P1P2_OFF);
p1 = (tmp & BCMA_CC_PPL_P1_MASK) >> BCMA_CC_PPL_P1_SHIFT;
p2 = (tmp & BCMA_CC_PPL_P2_MASK) >> BCMA_CC_PPL_P2_SHIFT;
tmp = bcma_chipco_pll_read(cc, pll0 + BCMA_CC_PPL_M14_OFF);
div = (tmp >> ((m - 1) * BCMA_CC_PPL_MDIV_WIDTH)) &
BCMA_CC_PPL_MDIV_MASK;
tmp = bcma_chipco_pll_read(cc, pll0 + BCMA_CC_PPL_NM5_OFF);
ndiv = (tmp & BCMA_CC_PPL_NDIV_MASK) >> BCMA_CC_PPL_NDIV_SHIFT;
/* Do calculation in Mhz */
fc = bcma_pmu_alp_clock(cc) / 1000000;
fc = (p1 * ndiv * fc) / p2;
/* Return clock in Hertz */
return (fc / div) * 1000000;
}
static u32 bcma_pmu_clock_bcm4706(struct bcma_drv_cc *cc, u32 pll0, u32 m)
{
u32 tmp, ndiv, p1div, p2div;
u32 clock;
BUG_ON(!m || m > 4);
/* Get N, P1 and P2 dividers to determine CPU clock */
tmp = bcma_chipco_pll_read(cc, pll0 + BCMA_CC_PMU6_4706_PROCPLL_OFF);
ndiv = (tmp & BCMA_CC_PMU6_4706_PROC_NDIV_INT_MASK)
>> BCMA_CC_PMU6_4706_PROC_NDIV_INT_SHIFT;
p1div = (tmp & BCMA_CC_PMU6_4706_PROC_P1DIV_MASK)
>> BCMA_CC_PMU6_4706_PROC_P1DIV_SHIFT;
p2div = (tmp & BCMA_CC_PMU6_4706_PROC_P2DIV_MASK)
>> BCMA_CC_PMU6_4706_PROC_P2DIV_SHIFT;
tmp = bcma_cc_read32(cc, BCMA_CC_CHIPSTAT);
if (tmp & BCMA_CC_CHIPST_4706_PKG_OPTION)
/* Low cost bonding: Fixed reference clock 25MHz and m = 4 */
clock = (25000000 / 4) * ndiv * p2div / p1div;
else
/* Fixed reference clock 25MHz and m = 2 */
clock = (25000000 / 2) * ndiv * p2div / p1div;
if (m == BCMA_CC_PMU5_MAINPLL_SSB)
clock = clock / 4;
return clock;
}
/* query bus clock frequency for PMU-enabled chipcommon */
static u32 bcma_pmu_get_clockcontrol(struct bcma_drv_cc *cc)
{
struct bcma_bus *bus = cc->core->bus;
switch (bus->chipinfo.id) {
case BCMA_CHIP_ID_BCM4716:
case BCMA_CHIP_ID_BCM4748:
case BCMA_CHIP_ID_BCM47162:
return bcma_pmu_clock(cc, BCMA_CC_PMU4716_MAINPLL_PLL0,
BCMA_CC_PMU5_MAINPLL_SSB);
case BCMA_CHIP_ID_BCM5356:
return bcma_pmu_clock(cc, BCMA_CC_PMU5356_MAINPLL_PLL0,
BCMA_CC_PMU5_MAINPLL_SSB);
case BCMA_CHIP_ID_BCM5357:
case BCMA_CHIP_ID_BCM4749:
return bcma_pmu_clock(cc, BCMA_CC_PMU5357_MAINPLL_PLL0,
BCMA_CC_PMU5_MAINPLL_SSB);
case BCMA_CHIP_ID_BCM4706:
return bcma_pmu_clock_bcm4706(cc, BCMA_CC_PMU4706_MAINPLL_PLL0,
BCMA_CC_PMU5_MAINPLL_SSB);
case BCMA_CHIP_ID_BCM53572:
return 75000000;
default:
bcma_warn(bus, "No backplane clock specified for %04X device, pmu rev. %d, using default %d Hz\n",
bus->chipinfo.id, cc->pmu.rev, BCMA_CC_PMU_HT_CLOCK);
}
return BCMA_CC_PMU_HT_CLOCK;
}
/* query cpu clock frequency for PMU-enabled chipcommon */
u32 bcma_pmu_get_clockcpu(struct bcma_drv_cc *cc)
{
struct bcma_bus *bus = cc->core->bus;
if (bus->chipinfo.id == BCMA_CHIP_ID_BCM53572)
return 300000000;
if (cc->pmu.rev >= 5) {
u32 pll;
switch (bus->chipinfo.id) {
case BCMA_CHIP_ID_BCM4706:
return bcma_pmu_clock_bcm4706(cc,
BCMA_CC_PMU4706_MAINPLL_PLL0,
BCMA_CC_PMU5_MAINPLL_CPU);
case BCMA_CHIP_ID_BCM5356:
pll = BCMA_CC_PMU5356_MAINPLL_PLL0;
break;
case BCMA_CHIP_ID_BCM5357:
case BCMA_CHIP_ID_BCM4749:
pll = BCMA_CC_PMU5357_MAINPLL_PLL0;
break;
default:
pll = BCMA_CC_PMU4716_MAINPLL_PLL0;
break;
}
return bcma_pmu_clock(cc, pll, BCMA_CC_PMU5_MAINPLL_CPU);
}
return bcma_pmu_get_clockcontrol(cc);
}
static void bcma_pmu_spuravoid_pll_write(struct bcma_drv_cc *cc, u32 offset,
u32 value)
{
bcma_cc_write32(cc, BCMA_CC_PLLCTL_ADDR, offset);
bcma_cc_write32(cc, BCMA_CC_PLLCTL_DATA, value);
}
void bcma_pmu_spuravoid_pllupdate(struct bcma_drv_cc *cc, int spuravoid)
{
u32 tmp = 0;
u8 phypll_offset = 0;
u8 bcm5357_bcm43236_p1div[] = {0x1, 0x5, 0x5};
u8 bcm5357_bcm43236_ndiv[] = {0x30, 0xf6, 0xfc};
struct bcma_bus *bus = cc->core->bus;
switch (bus->chipinfo.id) {
case BCMA_CHIP_ID_BCM5357:
case BCMA_CHIP_ID_BCM4749:
case BCMA_CHIP_ID_BCM53572:
/* 5357[ab]0, 43236[ab]0, and 6362b0 */
/* BCM5357 needs to touch PLL1_PLLCTL[02],
so offset PLL0_PLLCTL[02] by 6 */
phypll_offset = (bus->chipinfo.id == BCMA_CHIP_ID_BCM5357 ||
bus->chipinfo.id == BCMA_CHIP_ID_BCM4749 ||
bus->chipinfo.id == BCMA_CHIP_ID_BCM53572) ? 6 : 0;
/* RMW only the P1 divider */
bcma_cc_write32(cc, BCMA_CC_PLLCTL_ADDR,
BCMA_CC_PMU_PLL_CTL0 + phypll_offset);
tmp = bcma_cc_read32(cc, BCMA_CC_PLLCTL_DATA);
tmp &= (~(BCMA_CC_PMU1_PLL0_PC0_P1DIV_MASK));
tmp |= (bcm5357_bcm43236_p1div[spuravoid] << BCMA_CC_PMU1_PLL0_PC0_P1DIV_SHIFT);
bcma_cc_write32(cc, BCMA_CC_PLLCTL_DATA, tmp);
/* RMW only the int feedback divider */
bcma_cc_write32(cc, BCMA_CC_PLLCTL_ADDR,
BCMA_CC_PMU_PLL_CTL2 + phypll_offset);
tmp = bcma_cc_read32(cc, BCMA_CC_PLLCTL_DATA);
tmp &= ~(BCMA_CC_PMU1_PLL0_PC2_NDIV_INT_MASK);
tmp |= (bcm5357_bcm43236_ndiv[spuravoid]) << BCMA_CC_PMU1_PLL0_PC2_NDIV_INT_SHIFT;
bcma_cc_write32(cc, BCMA_CC_PLLCTL_DATA, tmp);
tmp = 1 << 10;
break;
case BCMA_CHIP_ID_BCM4331:
case BCMA_CHIP_ID_BCM43431:
if (spuravoid == 2) {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x11500014);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x0FC00a08);
} else if (spuravoid == 1) {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x11500014);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x0F600a08);
} else {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x11100014);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x03000a08);
}
tmp = 1 << 10;
break;
case BCMA_CHIP_ID_BCM43224:
case BCMA_CHIP_ID_BCM43225:
case BCMA_CHIP_ID_BCM43421:
if (spuravoid == 1) {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x11500010);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL1,
0x000C0C06);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x0F600a08);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL3,
0x00000000);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL4,
0x2001E920);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL5,
0x88888815);
} else {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x11100010);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL1,
0x000c0c06);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x03000a08);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL3,
0x00000000);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL4,
0x200005c0);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL5,
0x88888815);
}
tmp = 1 << 10;
break;
case BCMA_CHIP_ID_BCM4716:
case BCMA_CHIP_ID_BCM4748:
case BCMA_CHIP_ID_BCM47162:
if (spuravoid == 1) {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x11500060);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL1,
0x080C0C06);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x0F600000);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL3,
0x00000000);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL4,
0x2001E924);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL5,
0x88888815);
} else {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x11100060);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL1,
0x080c0c06);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x03000000);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL3,
0x00000000);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL4,
0x200005c0);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL5,
0x88888815);
}
tmp = 3 << 9;
break;
case BCMA_CHIP_ID_BCM43227:
case BCMA_CHIP_ID_BCM43228:
case BCMA_CHIP_ID_BCM43428:
/* LCNXN */
/* PLL Settings for spur avoidance on/off mode,
no on2 support for 43228A0 */
if (spuravoid == 1) {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x01100014);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL1,
0x040C0C06);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x03140A08);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL3,
0x00333333);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL4,
0x202C2820);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL5,
0x88888815);
} else {
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL0,
0x11100014);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL1,
0x040c0c06);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL2,
0x03000a08);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL3,
0x00000000);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL4,
0x200005c0);
bcma_pmu_spuravoid_pll_write(cc, BCMA_CC_PMU_PLL_CTL5,
0x88888815);
}
tmp = 1 << 10;
break;
default:
bcma_err(bus, "Unknown spuravoidance settings for chip 0x%04X, not changing PLL\n",
bus->chipinfo.id);
break;
}
tmp |= bcma_cc_read32(cc, BCMA_CC_PMU_CTL);
bcma_cc_write32(cc, BCMA_CC_PMU_CTL, tmp);
}
EXPORT_SYMBOL_GPL(bcma_pmu_spuravoid_pllupdate);