linux_old1/arch/blackfin/mach-bf561/include/mach/irq.h

423 lines
15 KiB
C
Raw Normal View History

blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
/*
* Copyright 2005-2008 Analog Devices Inc.
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
*
* Licensed under the GPL-2 or later.
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
*/
#ifndef _BF561_IRQ_H_
#define _BF561_IRQ_H_
/***********************************************************************
* Interrupt source definitions:
Event Source Core Event Name IRQ No
(highest priority)
Emulation Events EMU 0
Reset RST 1
NMI NMI 2
Exception EVX 3
Reserved -- 4
Hardware Error IVHW 5
Core Timer IVTMR 6 *
PLL Wakeup Interrupt IVG7 7
DMA1 Error (generic) IVG7 8
DMA2 Error (generic) IVG7 9
IMDMA Error (generic) IVG7 10
PPI1 Error Interrupt IVG7 11
PPI2 Error Interrupt IVG7 12
SPORT0 Error Interrupt IVG7 13
SPORT1 Error Interrupt IVG7 14
SPI Error Interrupt IVG7 15
UART Error Interrupt IVG7 16
Reserved Interrupt IVG7 17
DMA1 0 Interrupt(PPI1) IVG8 18
DMA1 1 Interrupt(PPI2) IVG8 19
DMA1 2 Interrupt IVG8 20
DMA1 3 Interrupt IVG8 21
DMA1 4 Interrupt IVG8 22
DMA1 5 Interrupt IVG8 23
DMA1 6 Interrupt IVG8 24
DMA1 7 Interrupt IVG8 25
DMA1 8 Interrupt IVG8 26
DMA1 9 Interrupt IVG8 27
DMA1 10 Interrupt IVG8 28
DMA1 11 Interrupt IVG8 29
DMA2 0 (SPORT0 RX) IVG9 30
DMA2 1 (SPORT0 TX) IVG9 31
DMA2 2 (SPORT1 RX) IVG9 32
DMA2 3 (SPORT2 TX) IVG9 33
DMA2 4 (SPI) IVG9 34
DMA2 5 (UART RX) IVG9 35
DMA2 6 (UART TX) IVG9 36
DMA2 7 Interrupt IVG9 37
DMA2 8 Interrupt IVG9 38
DMA2 9 Interrupt IVG9 39
DMA2 10 Interrupt IVG9 40
DMA2 11 Interrupt IVG9 41
TIMER 0 Interrupt IVG10 42
TIMER 1 Interrupt IVG10 43
TIMER 2 Interrupt IVG10 44
TIMER 3 Interrupt IVG10 45
TIMER 4 Interrupt IVG10 46
TIMER 5 Interrupt IVG10 47
TIMER 6 Interrupt IVG10 48
TIMER 7 Interrupt IVG10 49
TIMER 8 Interrupt IVG10 50
TIMER 9 Interrupt IVG10 51
TIMER 10 Interrupt IVG10 52
TIMER 11 Interrupt IVG10 53
Programmable Flags0 A (8) IVG11 54
Programmable Flags0 B (8) IVG11 55
Programmable Flags1 A (8) IVG11 56
Programmable Flags1 B (8) IVG11 57
Programmable Flags2 A (8) IVG11 58
Programmable Flags2 B (8) IVG11 59
MDMA1 0 write/read INT IVG8 60
MDMA1 1 write/read INT IVG8 61
MDMA2 0 write/read INT IVG9 62
MDMA2 1 write/read INT IVG9 63
IMDMA 0 write/read INT IVG12 64
IMDMA 1 write/read INT IVG12 65
Watch Dog Timer IVG13 66
Reserved interrupt IVG7 67
Reserved interrupt IVG7 68
Supplemental interrupt 0 IVG7 69
supplemental interrupt 1 IVG7 70
Softirq IVG14
System Call --
(lowest priority) IVG15
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
**********************************************************************/
#define SYS_IRQS 71
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
#define NR_PERI_INTS 64
/*
* The ABSTRACT IRQ definitions
* the first seven of the following are fixed,
* the rest you change if you need to.
*/
/* IVG 0-6*/
#define IRQ_EMU 0 /* Emulation */
#define IRQ_RST 1 /* Reset */
#define IRQ_NMI 2 /* Non Maskable Interrupt */
#define IRQ_EVX 3 /* Exception */
#define IRQ_UNUSED 4 /* Reserved interrupt */
#define IRQ_HWERR 5 /* Hardware Error */
#define IRQ_CORETMR 6 /* Core timer */
#define IVG_BASE 7
/* IVG 7 */
#define IRQ_PLL_WAKEUP (IVG_BASE + 0) /* PLL Wakeup Interrupt */
#define IRQ_DMA1_ERROR (IVG_BASE + 1) /* DMA1 Error (general) */
#define IRQ_DMA_ERROR IRQ_DMA1_ERROR /* DMA1 Error (general) */
#define IRQ_DMA2_ERROR (IVG_BASE + 2) /* DMA2 Error (general) */
#define IRQ_IMDMA_ERROR (IVG_BASE + 3) /* IMDMA Error Interrupt */
#define IRQ_PPI1_ERROR (IVG_BASE + 4) /* PPI1 Error Interrupt */
#define IRQ_PPI_ERROR IRQ_PPI1_ERROR /* PPI1 Error Interrupt */
#define IRQ_PPI2_ERROR (IVG_BASE + 5) /* PPI2 Error Interrupt */
#define IRQ_SPORT0_ERROR (IVG_BASE + 6) /* SPORT0 Error Interrupt */
#define IRQ_SPORT1_ERROR (IVG_BASE + 7) /* SPORT1 Error Interrupt */
#define IRQ_SPI_ERROR (IVG_BASE + 8) /* SPI Error Interrupt */
#define IRQ_UART_ERROR (IVG_BASE + 9) /* UART Error Interrupt */
#define IRQ_RESERVED_ERROR (IVG_BASE + 10) /* Reversed Interrupt */
/* IVG 8 */
#define IRQ_DMA1_0 (IVG_BASE + 11) /* DMA1 0 Interrupt(PPI1) */
#define IRQ_PPI IRQ_DMA1_0 /* DMA1 0 Interrupt(PPI1) */
#define IRQ_PPI0 IRQ_DMA1_0 /* DMA1 0 Interrupt(PPI1) */
#define IRQ_DMA1_1 (IVG_BASE + 12) /* DMA1 1 Interrupt(PPI2) */
#define IRQ_PPI1 IRQ_DMA1_1 /* DMA1 1 Interrupt(PPI2) */
#define IRQ_DMA1_2 (IVG_BASE + 13) /* DMA1 2 Interrupt */
#define IRQ_DMA1_3 (IVG_BASE + 14) /* DMA1 3 Interrupt */
#define IRQ_DMA1_4 (IVG_BASE + 15) /* DMA1 4 Interrupt */
#define IRQ_DMA1_5 (IVG_BASE + 16) /* DMA1 5 Interrupt */
#define IRQ_DMA1_6 (IVG_BASE + 17) /* DMA1 6 Interrupt */
#define IRQ_DMA1_7 (IVG_BASE + 18) /* DMA1 7 Interrupt */
#define IRQ_DMA1_8 (IVG_BASE + 19) /* DMA1 8 Interrupt */
#define IRQ_DMA1_9 (IVG_BASE + 20) /* DMA1 9 Interrupt */
#define IRQ_DMA1_10 (IVG_BASE + 21) /* DMA1 10 Interrupt */
#define IRQ_DMA1_11 (IVG_BASE + 22) /* DMA1 11 Interrupt */
/* IVG 9 */
#define IRQ_DMA2_0 (IVG_BASE + 23) /* DMA2 0 (SPORT0 RX) */
#define IRQ_SPORT0_RX IRQ_DMA2_0 /* DMA2 0 (SPORT0 RX) */
#define IRQ_DMA2_1 (IVG_BASE + 24) /* DMA2 1 (SPORT0 TX) */
#define IRQ_SPORT0_TX IRQ_DMA2_1 /* DMA2 1 (SPORT0 TX) */
#define IRQ_DMA2_2 (IVG_BASE + 25) /* DMA2 2 (SPORT1 RX) */
#define IRQ_SPORT1_RX IRQ_DMA2_2 /* DMA2 2 (SPORT1 RX) */
#define IRQ_DMA2_3 (IVG_BASE + 26) /* DMA2 3 (SPORT2 TX) */
#define IRQ_SPORT1_TX IRQ_DMA2_3 /* DMA2 3 (SPORT2 TX) */
#define IRQ_DMA2_4 (IVG_BASE + 27) /* DMA2 4 (SPI) */
#define IRQ_SPI IRQ_DMA2_4 /* DMA2 4 (SPI) */
#define IRQ_DMA2_5 (IVG_BASE + 28) /* DMA2 5 (UART RX) */
#define IRQ_UART_RX IRQ_DMA2_5 /* DMA2 5 (UART RX) */
#define IRQ_DMA2_6 (IVG_BASE + 29) /* DMA2 6 (UART TX) */
#define IRQ_UART_TX IRQ_DMA2_6 /* DMA2 6 (UART TX) */
#define IRQ_DMA2_7 (IVG_BASE + 30) /* DMA2 7 Interrupt */
#define IRQ_DMA2_8 (IVG_BASE + 31) /* DMA2 8 Interrupt */
#define IRQ_DMA2_9 (IVG_BASE + 32) /* DMA2 9 Interrupt */
#define IRQ_DMA2_10 (IVG_BASE + 33) /* DMA2 10 Interrupt */
#define IRQ_DMA2_11 (IVG_BASE + 34) /* DMA2 11 Interrupt */
/* IVG 10 */
#define IRQ_TIMER0 (IVG_BASE + 35) /* TIMER 0 Interrupt */
#define IRQ_TIMER1 (IVG_BASE + 36) /* TIMER 1 Interrupt */
#define IRQ_TIMER2 (IVG_BASE + 37) /* TIMER 2 Interrupt */
#define IRQ_TIMER3 (IVG_BASE + 38) /* TIMER 3 Interrupt */
#define IRQ_TIMER4 (IVG_BASE + 39) /* TIMER 4 Interrupt */
#define IRQ_TIMER5 (IVG_BASE + 40) /* TIMER 5 Interrupt */
#define IRQ_TIMER6 (IVG_BASE + 41) /* TIMER 6 Interrupt */
#define IRQ_TIMER7 (IVG_BASE + 42) /* TIMER 7 Interrupt */
#define IRQ_TIMER8 (IVG_BASE + 43) /* TIMER 8 Interrupt */
#define IRQ_TIMER9 (IVG_BASE + 44) /* TIMER 9 Interrupt */
#define IRQ_TIMER10 (IVG_BASE + 45) /* TIMER 10 Interrupt */
#define IRQ_TIMER11 (IVG_BASE + 46) /* TIMER 11 Interrupt */
/* IVG 11 */
#define IRQ_PROG0_INTA (IVG_BASE + 47) /* Programmable Flags0 A (8) */
#define IRQ_PROG_INTA IRQ_PROG0_INTA /* Programmable Flags0 A (8) */
#define IRQ_PROG0_INTB (IVG_BASE + 48) /* Programmable Flags0 B (8) */
#define IRQ_PROG_INTB IRQ_PROG0_INTB /* Programmable Flags0 B (8) */
#define IRQ_PROG1_INTA (IVG_BASE + 49) /* Programmable Flags1 A (8) */
#define IRQ_PROG1_INTB (IVG_BASE + 50) /* Programmable Flags1 B (8) */
#define IRQ_PROG2_INTA (IVG_BASE + 51) /* Programmable Flags2 A (8) */
#define IRQ_PROG2_INTB (IVG_BASE + 52) /* Programmable Flags2 B (8) */
/* IVG 8 */
#define IRQ_DMA1_WRRD0 (IVG_BASE + 53) /* MDMA1 0 write/read INT */
#define IRQ_DMA_WRRD0 IRQ_DMA1_WRRD0 /* MDMA1 0 write/read INT */
#define IRQ_MEM_DMA0 IRQ_DMA1_WRRD0
#define IRQ_DMA1_WRRD1 (IVG_BASE + 54) /* MDMA1 1 write/read INT */
#define IRQ_DMA_WRRD1 IRQ_DMA1_WRRD1 /* MDMA1 1 write/read INT */
#define IRQ_MEM_DMA1 IRQ_DMA1_WRRD1
/* IVG 9 */
#define IRQ_DMA2_WRRD0 (IVG_BASE + 55) /* MDMA2 0 write/read INT */
#define IRQ_MEM_DMA2 IRQ_DMA2_WRRD0
#define IRQ_DMA2_WRRD1 (IVG_BASE + 56) /* MDMA2 1 write/read INT */
#define IRQ_MEM_DMA3 IRQ_DMA2_WRRD1
/* IVG 12 */
#define IRQ_IMDMA_WRRD0 (IVG_BASE + 57) /* IMDMA 0 write/read INT */
#define IRQ_IMEM_DMA0 IRQ_IMDMA_WRRD0
#define IRQ_IMDMA_WRRD1 (IVG_BASE + 58) /* IMDMA 1 write/read INT */
#define IRQ_IMEM_DMA1 IRQ_IMDMA_WRRD1
/* IVG 13 */
#define IRQ_WATCH (IVG_BASE + 59) /* Watch Dog Timer */
/* IVG 7 */
#define IRQ_RESERVED_1 (IVG_BASE + 60) /* Reserved interrupt */
#define IRQ_RESERVED_2 (IVG_BASE + 61) /* Reserved interrupt */
#define IRQ_SUPPLE_0 (IVG_BASE + 62) /* Supplemental interrupt 0 */
#define IRQ_SUPPLE_1 (IVG_BASE + 63) /* supplemental interrupt 1 */
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
#define IRQ_PF0 73
#define IRQ_PF1 74
#define IRQ_PF2 75
#define IRQ_PF3 76
#define IRQ_PF4 77
#define IRQ_PF5 78
#define IRQ_PF6 79
#define IRQ_PF7 80
#define IRQ_PF8 81
#define IRQ_PF9 82
#define IRQ_PF10 83
#define IRQ_PF11 84
#define IRQ_PF12 85
#define IRQ_PF13 86
#define IRQ_PF14 87
#define IRQ_PF15 88
#define IRQ_PF16 89
#define IRQ_PF17 90
#define IRQ_PF18 91
#define IRQ_PF19 92
#define IRQ_PF20 93
#define IRQ_PF21 94
#define IRQ_PF22 95
#define IRQ_PF23 96
#define IRQ_PF24 97
#define IRQ_PF25 98
#define IRQ_PF26 99
#define IRQ_PF27 100
#define IRQ_PF28 101
#define IRQ_PF29 102
#define IRQ_PF30 103
#define IRQ_PF31 104
#define IRQ_PF32 105
#define IRQ_PF33 106
#define IRQ_PF34 107
#define IRQ_PF35 108
#define IRQ_PF36 109
#define IRQ_PF37 110
#define IRQ_PF38 111
#define IRQ_PF39 112
#define IRQ_PF40 113
#define IRQ_PF41 114
#define IRQ_PF42 115
#define IRQ_PF43 116
#define IRQ_PF44 117
#define IRQ_PF45 118
#define IRQ_PF46 119
#define IRQ_PF47 120
#define GPIO_IRQ_BASE IRQ_PF0
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
#define NR_IRQS (IRQ_PF47 + 1)
#define IVG7 7
#define IVG8 8
#define IVG9 9
#define IVG10 10
#define IVG11 11
#define IVG12 12
#define IVG13 13
#define IVG14 14
#define IVG15 15
/*
* DEFAULT PRIORITIES:
*/
#define CONFIG_DEF_PLL_WAKEUP 7
#define CONFIG_DEF_DMA1_ERROR 7
#define CONFIG_DEF_DMA2_ERROR 7
#define CONFIG_DEF_IMDMA_ERROR 7
#define CONFIG_DEF_PPI1_ERROR 7
#define CONFIG_DEF_PPI2_ERROR 7
#define CONFIG_DEF_SPORT0_ERROR 7
#define CONFIG_DEF_SPORT1_ERROR 7
#define CONFIG_DEF_SPI_ERROR 7
#define CONFIG_DEF_UART_ERROR 7
#define CONFIG_DEF_RESERVED_ERROR 7
#define CONFIG_DEF_DMA1_0 8
#define CONFIG_DEF_DMA1_1 8
#define CONFIG_DEF_DMA1_2 8
#define CONFIG_DEF_DMA1_3 8
#define CONFIG_DEF_DMA1_4 8
#define CONFIG_DEF_DMA1_5 8
#define CONFIG_DEF_DMA1_6 8
#define CONFIG_DEF_DMA1_7 8
#define CONFIG_DEF_DMA1_8 8
#define CONFIG_DEF_DMA1_9 8
#define CONFIG_DEF_DMA1_10 8
#define CONFIG_DEF_DMA1_11 8
#define CONFIG_DEF_DMA2_0 9
#define CONFIG_DEF_DMA2_1 9
#define CONFIG_DEF_DMA2_2 9
#define CONFIG_DEF_DMA2_3 9
#define CONFIG_DEF_DMA2_4 9
#define CONFIG_DEF_DMA2_5 9
#define CONFIG_DEF_DMA2_6 9
#define CONFIG_DEF_DMA2_7 9
#define CONFIG_DEF_DMA2_8 9
#define CONFIG_DEF_DMA2_9 9
#define CONFIG_DEF_DMA2_10 9
#define CONFIG_DEF_DMA2_11 9
#define CONFIG_DEF_TIMER0 10
#define CONFIG_DEF_TIMER1 10
#define CONFIG_DEF_TIMER2 10
#define CONFIG_DEF_TIMER3 10
#define CONFIG_DEF_TIMER4 10
#define CONFIG_DEF_TIMER5 10
#define CONFIG_DEF_TIMER6 10
#define CONFIG_DEF_TIMER7 10
#define CONFIG_DEF_TIMER8 10
#define CONFIG_DEF_TIMER9 10
#define CONFIG_DEF_TIMER10 10
#define CONFIG_DEF_TIMER11 10
#define CONFIG_DEF_PROG0_INTA 11
#define CONFIG_DEF_PROG0_INTB 11
#define CONFIG_DEF_PROG1_INTA 11
#define CONFIG_DEF_PROG1_INTB 11
#define CONFIG_DEF_PROG2_INTA 11
#define CONFIG_DEF_PROG2_INTB 11
#define CONFIG_DEF_DMA1_WRRD0 8
#define CONFIG_DEF_DMA1_WRRD1 8
#define CONFIG_DEF_DMA2_WRRD0 9
#define CONFIG_DEF_DMA2_WRRD1 9
#define CONFIG_DEF_IMDMA_WRRD0 12
#define CONFIG_DEF_IMDMA_WRRD1 12
#define CONFIG_DEF_WATCH 13
#define CONFIG_DEF_RESERVED_1 7
#define CONFIG_DEF_RESERVED_2 7
#define CONFIG_DEF_SUPPLE_0 7
#define CONFIG_DEF_SUPPLE_1 7
/* IAR0 BIT FIELDS */
#define IRQ_PLL_WAKEUP_POS 0
#define IRQ_DMA1_ERROR_POS 4
#define IRQ_DMA2_ERROR_POS 8
#define IRQ_IMDMA_ERROR_POS 12
#define IRQ_PPI0_ERROR_POS 16
#define IRQ_PPI1_ERROR_POS 20
#define IRQ_SPORT0_ERROR_POS 24
#define IRQ_SPORT1_ERROR_POS 28
/* IAR1 BIT FIELDS */
#define IRQ_SPI_ERROR_POS 0
#define IRQ_UART_ERROR_POS 4
#define IRQ_RESERVED_ERROR_POS 8
#define IRQ_DMA1_0_POS 12
#define IRQ_DMA1_1_POS 16
#define IRQ_DMA1_2_POS 20
#define IRQ_DMA1_3_POS 24
#define IRQ_DMA1_4_POS 28
/* IAR2 BIT FIELDS */
#define IRQ_DMA1_5_POS 0
#define IRQ_DMA1_6_POS 4
#define IRQ_DMA1_7_POS 8
#define IRQ_DMA1_8_POS 12
#define IRQ_DMA1_9_POS 16
#define IRQ_DMA1_10_POS 20
#define IRQ_DMA1_11_POS 24
#define IRQ_DMA2_0_POS 28
/* IAR3 BIT FIELDS */
#define IRQ_DMA2_1_POS 0
#define IRQ_DMA2_2_POS 4
#define IRQ_DMA2_3_POS 8
#define IRQ_DMA2_4_POS 12
#define IRQ_DMA2_5_POS 16
#define IRQ_DMA2_6_POS 20
#define IRQ_DMA2_7_POS 24
#define IRQ_DMA2_8_POS 28
/* IAR4 BIT FIELDS */
#define IRQ_DMA2_9_POS 0
#define IRQ_DMA2_10_POS 4
#define IRQ_DMA2_11_POS 8
#define IRQ_TIMER0_POS 12
#define IRQ_TIMER1_POS 16
#define IRQ_TIMER2_POS 20
#define IRQ_TIMER3_POS 24
#define IRQ_TIMER4_POS 28
/* IAR5 BIT FIELDS */
#define IRQ_TIMER5_POS 0
#define IRQ_TIMER6_POS 4
#define IRQ_TIMER7_POS 8
#define IRQ_TIMER8_POS 12
#define IRQ_TIMER9_POS 16
#define IRQ_TIMER10_POS 20
#define IRQ_TIMER11_POS 24
#define IRQ_PROG0_INTA_POS 28
/* IAR6 BIT FIELDS */
#define IRQ_PROG0_INTB_POS 0
#define IRQ_PROG1_INTA_POS 4
#define IRQ_PROG1_INTB_POS 8
#define IRQ_PROG2_INTA_POS 12
#define IRQ_PROG2_INTB_POS 16
#define IRQ_DMA1_WRRD0_POS 20
#define IRQ_DMA1_WRRD1_POS 24
#define IRQ_DMA2_WRRD0_POS 28
/* IAR7 BIT FIELDS */
#define IRQ_DMA2_WRRD1_POS 0
#define IRQ_IMDMA_WRRD0_POS 4
#define IRQ_IMDMA_WRRD1_POS 8
#define IRQ_WDTIMER_POS 12
#define IRQ_RESERVED_1_POS 16
#define IRQ_RESERVED_2_POS 20
#define IRQ_SUPPLE_0_POS 24
#define IRQ_SUPPLE_1_POS 28
#endif /* _BF561_IRQ_H_ */