linux_old1/arch/powerpc/mm/mem.c

484 lines
13 KiB
C
Raw Normal View History

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
* PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <asm/pgalloc.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/btext.h>
#include <asm/tlb.h>
#include <asm/prom.h>
#include <asm/lmb.h>
#include <asm/sections.h>
#ifdef CONFIG_PPC64
#include <asm/vdso.h>
#endif
#include "mmu_decl.h"
#ifndef CPU_FTR_COHERENT_ICACHE
#define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
#define CPU_FTR_NOEXECUTE 0
#endif
int init_bootmem_done;
int mem_init_done;
/*
* This is called by /dev/mem to know if a given address has to
* be mapped non-cacheable or not
*/
int page_is_ram(unsigned long pfn)
{
unsigned long paddr = (pfn << PAGE_SHIFT);
#ifndef CONFIG_PPC64 /* XXX for now */
return paddr < __pa(high_memory);
#else
int i;
for (i=0; i < lmb.memory.cnt; i++) {
unsigned long base;
base = lmb.memory.region[i].base;
if ((paddr >= base) &&
(paddr < (base + lmb.memory.region[i].size))) {
return 1;
}
}
return 0;
#endif
}
EXPORT_SYMBOL(page_is_ram);
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
if (ppc_md.phys_mem_access_prot)
return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
if (!page_is_ram(pfn))
vma_prot = __pgprot(pgprot_val(vma_prot)
| _PAGE_GUARDED | _PAGE_NO_CACHE);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
void show_mem(void)
{
unsigned long total = 0, reserved = 0;
unsigned long shared = 0, cached = 0;
unsigned long highmem = 0;
struct page *page;
pg_data_t *pgdat;
unsigned long i;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
page = pgdat_page_nr(pgdat, i);
total++;
if (PageHighMem(page))
highmem++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
}
}
printk("%ld pages of RAM\n", total);
#ifdef CONFIG_HIGHMEM
printk("%ld pages of HIGHMEM\n", highmem);
#endif
printk("%ld reserved pages\n", reserved);
printk("%ld pages shared\n", shared);
printk("%ld pages swap cached\n", cached);
}
/*
* Initialize the bootmem system and give it all the memory we
* have available. If we are using highmem, we only put the
* lowmem into the bootmem system.
*/
#ifndef CONFIG_NEED_MULTIPLE_NODES
void __init do_init_bootmem(void)
{
unsigned long i;
unsigned long start, bootmap_pages;
unsigned long total_pages;
int boot_mapsize;
max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
total_pages = total_lowmem >> PAGE_SHIFT;
#endif
/*
* Find an area to use for the bootmem bitmap. Calculate the size of
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
* Add 1 additional page in case the address isn't page-aligned.
*/
bootmap_pages = bootmem_bootmap_pages(total_pages);
start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
BUG_ON(!start);
boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
/* Add all physical memory to the bootmem map, mark each area
* present.
*/
for (i = 0; i < lmb.memory.cnt; i++) {
unsigned long base = lmb.memory.region[i].base;
unsigned long size = lmb_size_bytes(&lmb.memory, i);
#ifdef CONFIG_HIGHMEM
if (base >= total_lowmem)
continue;
if (base + size > total_lowmem)
size = total_lowmem - base;
#endif
free_bootmem(base, size);
}
/* reserve the sections we're already using */
for (i = 0; i < lmb.reserved.cnt; i++)
reserve_bootmem(lmb.reserved.region[i].base,
lmb_size_bytes(&lmb.reserved, i));
/* XXX need to clip this if using highmem? */
for (i = 0; i < lmb.memory.cnt; i++)
memory_present(0, lmb_start_pfn(&lmb.memory, i),
lmb_end_pfn(&lmb.memory, i));
init_bootmem_done = 1;
}
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long total_ram = lmb_phys_mem_size();
unsigned long top_of_ram = lmb_end_of_DRAM();
#ifdef CONFIG_HIGHMEM
map_page(PKMAP_BASE, 0, 0); /* XXX gross */
pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
kmap_prot = PAGE_KERNEL;
#endif /* CONFIG_HIGHMEM */
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
top_of_ram, total_ram);
printk(KERN_INFO "Memory hole size: %ldMB\n",
(top_of_ram - total_ram) >> 20);
/*
* All pages are DMA-able so we put them all in the DMA zone.
*/
memset(zones_size, 0, sizeof(zones_size));
memset(zholes_size, 0, sizeof(zholes_size));
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
#else
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
#endif /* CONFIG_HIGHMEM */
free_area_init_node(0, NODE_DATA(0), zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
}
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
void __init mem_init(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
int nid;
#endif
pg_data_t *pgdat;
unsigned long i;
struct page *page;
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
num_physpages = max_pfn; /* RAM is assumed contiguous */
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
#ifdef CONFIG_NEED_MULTIPLE_NODES
for_each_online_node(nid) {
if (NODE_DATA(nid)->node_spanned_pages != 0) {
printk("freeing bootmem node %x\n", nid);
totalram_pages +=
free_all_bootmem_node(NODE_DATA(nid));
}
}
#else
max_mapnr = num_physpages;
totalram_pages += free_all_bootmem();
#endif
for_each_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; i++) {
page = pgdat_page_nr(pgdat, i);
if (PageReserved(page))
reservedpages++;
}
}
codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
datasize = (unsigned long)&__init_begin - (unsigned long)&_sdata;
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
#ifdef CONFIG_HIGHMEM
{
unsigned long pfn, highmem_mapnr;
highmem_mapnr = total_lowmem >> PAGE_SHIFT;
for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
struct page *page = pfn_to_page(pfn);
ClearPageReserved(page);
set_page_count(page, 1);
__free_page(page);
totalhigh_pages++;
}
totalram_pages += totalhigh_pages;
printk(KERN_INFO "High memory: %luk\n",
totalhigh_pages << (PAGE_SHIFT-10));
}
#endif /* CONFIG_HIGHMEM */
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
"%luk reserved, %luk data, %luk bss, %luk init)\n",
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
bsssize >> 10,
initsize >> 10);
mem_init_done = 1;
#ifdef CONFIG_PPC64
/* Initialize the vDSO */
vdso_init();
#endif
}
/*
* This is called when a page has been modified by the kernel.
* It just marks the page as not i-cache clean. We do the i-cache
* flush later when the page is given to a user process, if necessary.
*/
void flush_dcache_page(struct page *page)
{
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &page->flags))
clear_bit(PG_arch_1, &page->flags);
}
EXPORT_SYMBOL(flush_dcache_page);
void flush_dcache_icache_page(struct page *page)
{
#ifdef CONFIG_BOOKE
void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
__flush_dcache_icache(start);
kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
/* On 8xx there is no need to kmap since highmem is not supported */
__flush_dcache_icache(page_address(page));
#else
__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
#endif
}
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
{
clear_page(page);
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/*
* We shouldnt have to do this, but some versions of glibc
* require it (ld.so assumes zero filled pages are icache clean)
* - Anton
*/
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &pg->flags))
clear_bit(PG_arch_1, &pg->flags);
}
EXPORT_SYMBOL(clear_user_page);
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
struct page *pg)
{
copy_page(vto, vfrom);
/*
* We should be able to use the following optimisation, however
* there are two problems.
* Firstly a bug in some versions of binutils meant PLT sections
* were not marked executable.
* Secondly the first word in the GOT section is blrl, used
* to establish the GOT address. Until recently the GOT was
* not marked executable.
* - Anton
*/
#if 0
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
return;
#endif
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
return;
/* avoid an atomic op if possible */
if (test_bit(PG_arch_1, &pg->flags))
clear_bit(PG_arch_1, &pg->flags);
}
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
unsigned long addr, int len)
{
unsigned long maddr;
maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
flush_icache_range(maddr, maddr + len);
kunmap(page);
}
EXPORT_SYMBOL(flush_icache_user_range);
/*
* This is called at the end of handling a user page fault, when the
* fault has been handled by updating a PTE in the linux page tables.
* We use it to preload an HPTE into the hash table corresponding to
* the updated linux PTE.
*
* This must always be called with the mm->page_table_lock held
*/
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
pte_t pte)
{
/* handle i-cache coherency */
unsigned long pfn = pte_pfn(pte);
#ifdef CONFIG_PPC32
pmd_t *pmd;
#else
unsigned long vsid;
void *pgdir;
pte_t *ptep;
int local = 0;
cpumask_t tmp;
unsigned long flags;
#endif
/* handle i-cache coherency */
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
!cpu_has_feature(CPU_FTR_NOEXECUTE) &&
pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!PageReserved(page)
&& !test_bit(PG_arch_1, &page->flags)) {
if (vma->vm_mm == current->active_mm) {
#ifdef CONFIG_8xx
/* On 8xx, cache control instructions (particularly
* "dcbst" from flush_dcache_icache) fault as write
* operation if there is an unpopulated TLB entry
* for the address in question. To workaround that,
* we invalidate the TLB here, thus avoiding dcbst
* misbehaviour.
*/
_tlbie(address);
#endif
__flush_dcache_icache((void *) address);
} else
flush_dcache_icache_page(page);
set_bit(PG_arch_1, &page->flags);
}
}
#ifdef CONFIG_PPC_STD_MMU
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
if (!pte_young(pte) || address >= TASK_SIZE)
return;
#ifdef CONFIG_PPC32
if (Hash == 0)
return;
pmd = pmd_offset(pgd_offset(vma->vm_mm, address), address);
if (!pmd_none(*pmd))
add_hash_page(vma->vm_mm->context, address, pmd_val(*pmd));
#else
pgdir = vma->vm_mm->pgd;
if (pgdir == NULL)
return;
ptep = find_linux_pte(pgdir, address);
if (!ptep)
return;
vsid = get_vsid(vma->vm_mm->context.id, address);
local_irq_save(flags);
tmp = cpumask_of_cpu(smp_processor_id());
if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
local = 1;
2005-10-22 14:51:34 +08:00
__hash_page(address, 0, vsid, ptep, 0x300, local);
local_irq_restore(flags);
#endif
#endif
}