linux_old1/drivers/irqchip/irq-gic-v2m.c

527 lines
13 KiB
C
Raw Normal View History

/*
* ARM GIC v2m MSI(-X) support
* Support for Message Signaled Interrupts for systems that
* implement ARM Generic Interrupt Controller: GICv2m.
*
* Copyright (C) 2014 Advanced Micro Devices, Inc.
* Authors: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
* Harish Kasiviswanathan <harish.kasiviswanathan@amd.com>
* Brandon Anderson <brandon.anderson@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#define pr_fmt(fmt) "GICv2m: " fmt
#include <linux/acpi.h>
#include <linux/dma-iommu.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/msi.h>
#include <linux/of_address.h>
#include <linux/of_pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/irqchip/arm-gic.h>
/*
* MSI_TYPER:
* [31:26] Reserved
* [25:16] lowest SPI assigned to MSI
* [15:10] Reserved
* [9:0] Numer of SPIs assigned to MSI
*/
#define V2M_MSI_TYPER 0x008
#define V2M_MSI_TYPER_BASE_SHIFT 16
#define V2M_MSI_TYPER_BASE_MASK 0x3FF
#define V2M_MSI_TYPER_NUM_MASK 0x3FF
#define V2M_MSI_SETSPI_NS 0x040
#define V2M_MIN_SPI 32
#define V2M_MAX_SPI 1019
#define V2M_MSI_IIDR 0xFCC
#define V2M_MSI_TYPER_BASE_SPI(x) \
(((x) >> V2M_MSI_TYPER_BASE_SHIFT) & V2M_MSI_TYPER_BASE_MASK)
#define V2M_MSI_TYPER_NUM_SPI(x) ((x) & V2M_MSI_TYPER_NUM_MASK)
/* APM X-Gene with GICv2m MSI_IIDR register value */
#define XGENE_GICV2M_MSI_IIDR 0x06000170
/* Broadcom NS2 GICv2m MSI_IIDR register value */
#define BCM_NS2_GICV2M_MSI_IIDR 0x0000013f
/* List of flags for specific v2m implementation */
#define GICV2M_NEEDS_SPI_OFFSET 0x00000001
static LIST_HEAD(v2m_nodes);
static DEFINE_SPINLOCK(v2m_lock);
struct v2m_data {
struct list_head entry;
struct fwnode_handle *fwnode;
struct resource res; /* GICv2m resource */
void __iomem *base; /* GICv2m virt address */
u32 spi_start; /* The SPI number that MSIs start */
u32 nr_spis; /* The number of SPIs for MSIs */
u32 spi_offset; /* offset to be subtracted from SPI number */
unsigned long *bm; /* MSI vector bitmap */
u32 flags; /* v2m flags for specific implementation */
};
static void gicv2m_mask_msi_irq(struct irq_data *d)
{
pci_msi_mask_irq(d);
irq_chip_mask_parent(d);
}
static void gicv2m_unmask_msi_irq(struct irq_data *d)
{
pci_msi_unmask_irq(d);
irq_chip_unmask_parent(d);
}
static struct irq_chip gicv2m_msi_irq_chip = {
.name = "MSI",
.irq_mask = gicv2m_mask_msi_irq,
.irq_unmask = gicv2m_unmask_msi_irq,
.irq_eoi = irq_chip_eoi_parent,
.irq_write_msi_msg = pci_msi_domain_write_msg,
};
static struct msi_domain_info gicv2m_msi_domain_info = {
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_PCI_MSIX | MSI_FLAG_MULTI_PCI_MSI),
.chip = &gicv2m_msi_irq_chip,
};
static void gicv2m_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct v2m_data *v2m = irq_data_get_irq_chip_data(data);
phys_addr_t addr = v2m->res.start + V2M_MSI_SETSPI_NS;
msg->address_hi = upper_32_bits(addr);
msg->address_lo = lower_32_bits(addr);
msg->data = data->hwirq;
if (v2m->flags & GICV2M_NEEDS_SPI_OFFSET)
msg->data -= v2m->spi_offset;
iommu_dma_map_msi_msg(data->irq, msg);
}
static struct irq_chip gicv2m_irq_chip = {
.name = "GICv2m",
.irq_mask = irq_chip_mask_parent,
.irq_unmask = irq_chip_unmask_parent,
.irq_eoi = irq_chip_eoi_parent,
.irq_set_affinity = irq_chip_set_affinity_parent,
.irq_compose_msi_msg = gicv2m_compose_msi_msg,
};
static int gicv2m_irq_gic_domain_alloc(struct irq_domain *domain,
unsigned int virq,
irq_hw_number_t hwirq)
{
struct irq_fwspec fwspec;
struct irq_data *d;
int err;
if (is_of_node(domain->parent->fwnode)) {
fwspec.fwnode = domain->parent->fwnode;
fwspec.param_count = 3;
fwspec.param[0] = 0;
fwspec.param[1] = hwirq - 32;
fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
fwspec.fwnode = domain->parent->fwnode;
fwspec.param_count = 2;
fwspec.param[0] = hwirq;
fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
} else {
return -EINVAL;
}
err = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
if (err)
return err;
/* Configure the interrupt line to be edge */
d = irq_domain_get_irq_data(domain->parent, virq);
d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
return 0;
}
static void gicv2m_unalloc_msi(struct v2m_data *v2m, unsigned int hwirq,
int nr_irqs)
{
spin_lock(&v2m_lock);
bitmap_release_region(v2m->bm, hwirq - v2m->spi_start,
get_count_order(nr_irqs));
spin_unlock(&v2m_lock);
}
static int gicv2m_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct v2m_data *v2m = NULL, *tmp;
int hwirq, offset, i, err = 0;
spin_lock(&v2m_lock);
list_for_each_entry(tmp, &v2m_nodes, entry) {
offset = bitmap_find_free_region(tmp->bm, tmp->nr_spis,
get_count_order(nr_irqs));
if (offset >= 0) {
v2m = tmp;
break;
}
}
spin_unlock(&v2m_lock);
if (!v2m)
return -ENOSPC;
hwirq = v2m->spi_start + offset;
for (i = 0; i < nr_irqs; i++) {
err = gicv2m_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
if (err)
goto fail;
irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
&gicv2m_irq_chip, v2m);
}
return 0;
fail:
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
gicv2m_unalloc_msi(v2m, hwirq, nr_irqs);
return err;
}
static void gicv2m_irq_domain_free(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct v2m_data *v2m = irq_data_get_irq_chip_data(d);
gicv2m_unalloc_msi(v2m, d->hwirq, nr_irqs);
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
}
static const struct irq_domain_ops gicv2m_domain_ops = {
.alloc = gicv2m_irq_domain_alloc,
.free = gicv2m_irq_domain_free,
};
static bool is_msi_spi_valid(u32 base, u32 num)
{
if (base < V2M_MIN_SPI) {
pr_err("Invalid MSI base SPI (base:%u)\n", base);
return false;
}
if ((num == 0) || (base + num > V2M_MAX_SPI)) {
pr_err("Number of SPIs (%u) exceed maximum (%u)\n",
num, V2M_MAX_SPI - V2M_MIN_SPI + 1);
return false;
}
return true;
}
static struct irq_chip gicv2m_pmsi_irq_chip = {
.name = "pMSI",
};
static struct msi_domain_ops gicv2m_pmsi_ops = {
};
static struct msi_domain_info gicv2m_pmsi_domain_info = {
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS),
.ops = &gicv2m_pmsi_ops,
.chip = &gicv2m_pmsi_irq_chip,
};
static void gicv2m_teardown(void)
{
struct v2m_data *v2m, *tmp;
list_for_each_entry_safe(v2m, tmp, &v2m_nodes, entry) {
list_del(&v2m->entry);
kfree(v2m->bm);
iounmap(v2m->base);
of_node_put(to_of_node(v2m->fwnode));
if (is_fwnode_irqchip(v2m->fwnode))
irq_domain_free_fwnode(v2m->fwnode);
kfree(v2m);
}
}
static int gicv2m_allocate_domains(struct irq_domain *parent)
{
struct irq_domain *inner_domain, *pci_domain, *plat_domain;
struct v2m_data *v2m;
v2m = list_first_entry_or_null(&v2m_nodes, struct v2m_data, entry);
if (!v2m)
return 0;
inner_domain = irq_domain_create_tree(v2m->fwnode,
&gicv2m_domain_ops, v2m);
if (!inner_domain) {
pr_err("Failed to create GICv2m domain\n");
return -ENOMEM;
}
irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
inner_domain->parent = parent;
pci_domain = pci_msi_create_irq_domain(v2m->fwnode,
&gicv2m_msi_domain_info,
inner_domain);
plat_domain = platform_msi_create_irq_domain(v2m->fwnode,
&gicv2m_pmsi_domain_info,
inner_domain);
if (!pci_domain || !plat_domain) {
pr_err("Failed to create MSI domains\n");
if (plat_domain)
irq_domain_remove(plat_domain);
if (pci_domain)
irq_domain_remove(pci_domain);
irq_domain_remove(inner_domain);
return -ENOMEM;
}
return 0;
}
static int __init gicv2m_init_one(struct fwnode_handle *fwnode,
u32 spi_start, u32 nr_spis,
struct resource *res)
{
int ret;
struct v2m_data *v2m;
v2m = kzalloc(sizeof(struct v2m_data), GFP_KERNEL);
if (!v2m) {
pr_err("Failed to allocate struct v2m_data.\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&v2m->entry);
v2m->fwnode = fwnode;
memcpy(&v2m->res, res, sizeof(struct resource));
v2m->base = ioremap(v2m->res.start, resource_size(&v2m->res));
if (!v2m->base) {
pr_err("Failed to map GICv2m resource\n");
ret = -ENOMEM;
goto err_free_v2m;
}
if (spi_start && nr_spis) {
v2m->spi_start = spi_start;
v2m->nr_spis = nr_spis;
} else {
u32 typer = readl_relaxed(v2m->base + V2M_MSI_TYPER);
v2m->spi_start = V2M_MSI_TYPER_BASE_SPI(typer);
v2m->nr_spis = V2M_MSI_TYPER_NUM_SPI(typer);
}
if (!is_msi_spi_valid(v2m->spi_start, v2m->nr_spis)) {
ret = -EINVAL;
goto err_iounmap;
}
/*
* APM X-Gene GICv2m implementation has an erratum where
* the MSI data needs to be the offset from the spi_start
* in order to trigger the correct MSI interrupt. This is
* different from the standard GICv2m implementation where
* the MSI data is the absolute value within the range from
* spi_start to (spi_start + num_spis).
*
* Broadom NS2 GICv2m implementation has an erratum where the MSI data
* is 'spi_number - 32'
*/
switch (readl_relaxed(v2m->base + V2M_MSI_IIDR)) {
case XGENE_GICV2M_MSI_IIDR:
v2m->flags |= GICV2M_NEEDS_SPI_OFFSET;
v2m->spi_offset = v2m->spi_start;
break;
case BCM_NS2_GICV2M_MSI_IIDR:
v2m->flags |= GICV2M_NEEDS_SPI_OFFSET;
v2m->spi_offset = 32;
break;
}
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
v2m->bm = kcalloc(BITS_TO_LONGS(v2m->nr_spis), sizeof(long),
GFP_KERNEL);
if (!v2m->bm) {
ret = -ENOMEM;
goto err_iounmap;
}
list_add_tail(&v2m->entry, &v2m_nodes);
pr_info("range%pR, SPI[%d:%d]\n", res,
v2m->spi_start, (v2m->spi_start + v2m->nr_spis - 1));
return 0;
err_iounmap:
iounmap(v2m->base);
err_free_v2m:
kfree(v2m);
return ret;
}
static struct of_device_id gicv2m_device_id[] = {
{ .compatible = "arm,gic-v2m-frame", },
{},
};
static int __init gicv2m_of_init(struct fwnode_handle *parent_handle,
struct irq_domain *parent)
{
int ret = 0;
struct device_node *node = to_of_node(parent_handle);
struct device_node *child;
for (child = of_find_matching_node(node, gicv2m_device_id); child;
child = of_find_matching_node(child, gicv2m_device_id)) {
u32 spi_start = 0, nr_spis = 0;
struct resource res;
if (!of_find_property(child, "msi-controller", NULL))
continue;
ret = of_address_to_resource(child, 0, &res);
if (ret) {
pr_err("Failed to allocate v2m resource.\n");
break;
}
if (!of_property_read_u32(child, "arm,msi-base-spi",
&spi_start) &&
!of_property_read_u32(child, "arm,msi-num-spis", &nr_spis))
pr_info("DT overriding V2M MSI_TYPER (base:%u, num:%u)\n",
spi_start, nr_spis);
ret = gicv2m_init_one(&child->fwnode, spi_start, nr_spis, &res);
if (ret) {
of_node_put(child);
break;
}
}
if (!ret)
ret = gicv2m_allocate_domains(parent);
if (ret)
gicv2m_teardown();
return ret;
}
#ifdef CONFIG_ACPI
static int acpi_num_msi;
static struct fwnode_handle *gicv2m_get_fwnode(struct device *dev)
{
struct v2m_data *data;
if (WARN_ON(acpi_num_msi <= 0))
return NULL;
/* We only return the fwnode of the first MSI frame. */
data = list_first_entry_or_null(&v2m_nodes, struct v2m_data, entry);
if (!data)
return NULL;
return data->fwnode;
}
static int __init
acpi_parse_madt_msi(struct acpi_subtable_header *header,
const unsigned long end)
{
int ret;
struct resource res;
u32 spi_start = 0, nr_spis = 0;
struct acpi_madt_generic_msi_frame *m;
struct fwnode_handle *fwnode;
m = (struct acpi_madt_generic_msi_frame *)header;
if (BAD_MADT_ENTRY(m, end))
return -EINVAL;
res.start = m->base_address;
res.end = m->base_address + SZ_4K - 1;
res.flags = IORESOURCE_MEM;
if (m->flags & ACPI_MADT_OVERRIDE_SPI_VALUES) {
spi_start = m->spi_base;
nr_spis = m->spi_count;
pr_info("ACPI overriding V2M MSI_TYPER (base:%u, num:%u)\n",
spi_start, nr_spis);
}
fwnode = irq_domain_alloc_fwnode((void *)m->base_address);
if (!fwnode) {
pr_err("Unable to allocate GICv2m domain token\n");
return -EINVAL;
}
ret = gicv2m_init_one(fwnode, spi_start, nr_spis, &res);
if (ret)
irq_domain_free_fwnode(fwnode);
return ret;
}
static int __init gicv2m_acpi_init(struct irq_domain *parent)
{
int ret;
if (acpi_num_msi > 0)
return 0;
acpi_num_msi = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_MSI_FRAME,
acpi_parse_madt_msi, 0);
if (acpi_num_msi <= 0)
goto err_out;
ret = gicv2m_allocate_domains(parent);
if (ret)
goto err_out;
pci_msi_register_fwnode_provider(&gicv2m_get_fwnode);
return 0;
err_out:
gicv2m_teardown();
return -EINVAL;
}
#else /* CONFIG_ACPI */
static int __init gicv2m_acpi_init(struct irq_domain *parent)
{
return -EINVAL;
}
#endif /* CONFIG_ACPI */
int __init gicv2m_init(struct fwnode_handle *parent_handle,
struct irq_domain *parent)
{
if (is_of_node(parent_handle))
return gicv2m_of_init(parent_handle, parent);
return gicv2m_acpi_init(parent);
}