402 lines
12 KiB
C
402 lines
12 KiB
C
|
/*
|
||
|
* Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
|
||
|
*
|
||
|
* This software is available to you under a choice of one of two
|
||
|
* licenses. You may choose to be licensed under the terms of the GNU
|
||
|
* General Public License (GPL) Version 2, available from the file
|
||
|
* COPYING in the main directory of this source tree, or the
|
||
|
* OpenIB.org BSD license below:
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or
|
||
|
* without modification, are permitted provided that the following
|
||
|
* conditions are met:
|
||
|
*
|
||
|
* - Redistributions of source code must retain the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer.
|
||
|
*
|
||
|
* - Redistributions in binary form must reproduce the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer in the documentation and/or other materials
|
||
|
* provided with the distribution.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*
|
||
|
* $Id: iser_memory.c 6964 2006-05-07 11:11:43Z ogerlitz $
|
||
|
*/
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/scatterlist.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
|
||
|
#include "iscsi_iser.h"
|
||
|
|
||
|
#define ISER_KMALLOC_THRESHOLD 0x20000 /* 128K - kmalloc limit */
|
||
|
/**
|
||
|
* Decrements the reference count for the
|
||
|
* registered buffer & releases it
|
||
|
*
|
||
|
* returns 0 if released, 1 if deferred
|
||
|
*/
|
||
|
int iser_regd_buff_release(struct iser_regd_buf *regd_buf)
|
||
|
{
|
||
|
struct device *dma_device;
|
||
|
|
||
|
if ((atomic_read(®d_buf->ref_count) == 0) ||
|
||
|
atomic_dec_and_test(®d_buf->ref_count)) {
|
||
|
/* if we used the dma mr, unreg is just NOP */
|
||
|
if (regd_buf->reg.rkey != 0)
|
||
|
iser_unreg_mem(®d_buf->reg);
|
||
|
|
||
|
if (regd_buf->dma_addr) {
|
||
|
dma_device = regd_buf->device->ib_device->dma_device;
|
||
|
dma_unmap_single(dma_device,
|
||
|
regd_buf->dma_addr,
|
||
|
regd_buf->data_size,
|
||
|
regd_buf->direction);
|
||
|
}
|
||
|
/* else this regd buf is associated with task which we */
|
||
|
/* dma_unmap_single/sg later */
|
||
|
return 0;
|
||
|
} else {
|
||
|
iser_dbg("Release deferred, regd.buff: 0x%p\n", regd_buf);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iser_reg_single - fills registered buffer descriptor with
|
||
|
* registration information
|
||
|
*/
|
||
|
void iser_reg_single(struct iser_device *device,
|
||
|
struct iser_regd_buf *regd_buf,
|
||
|
enum dma_data_direction direction)
|
||
|
{
|
||
|
dma_addr_t dma_addr;
|
||
|
|
||
|
dma_addr = dma_map_single(device->ib_device->dma_device,
|
||
|
regd_buf->virt_addr,
|
||
|
regd_buf->data_size, direction);
|
||
|
BUG_ON(dma_mapping_error(dma_addr));
|
||
|
|
||
|
regd_buf->reg.lkey = device->mr->lkey;
|
||
|
regd_buf->reg.rkey = 0; /* indicate there's no need to unreg */
|
||
|
regd_buf->reg.len = regd_buf->data_size;
|
||
|
regd_buf->reg.va = dma_addr;
|
||
|
|
||
|
regd_buf->dma_addr = dma_addr;
|
||
|
regd_buf->direction = direction;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iser_start_rdma_unaligned_sg
|
||
|
*/
|
||
|
int iser_start_rdma_unaligned_sg(struct iscsi_iser_cmd_task *iser_ctask,
|
||
|
enum iser_data_dir cmd_dir)
|
||
|
{
|
||
|
int dma_nents;
|
||
|
struct device *dma_device;
|
||
|
char *mem = NULL;
|
||
|
struct iser_data_buf *data = &iser_ctask->data[cmd_dir];
|
||
|
unsigned long cmd_data_len = data->data_len;
|
||
|
|
||
|
if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
|
||
|
mem = (void *)__get_free_pages(GFP_NOIO,
|
||
|
long_log2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
|
||
|
else
|
||
|
mem = kmalloc(cmd_data_len, GFP_NOIO);
|
||
|
|
||
|
if (mem == NULL) {
|
||
|
iser_err("Failed to allocate mem size %d %d for copying sglist\n",
|
||
|
data->size,(int)cmd_data_len);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
if (cmd_dir == ISER_DIR_OUT) {
|
||
|
/* copy the unaligned sg the buffer which is used for RDMA */
|
||
|
struct scatterlist *sg = (struct scatterlist *)data->buf;
|
||
|
int i;
|
||
|
char *p, *from;
|
||
|
|
||
|
for (p = mem, i = 0; i < data->size; i++) {
|
||
|
from = kmap_atomic(sg[i].page, KM_USER0);
|
||
|
memcpy(p,
|
||
|
from + sg[i].offset,
|
||
|
sg[i].length);
|
||
|
kunmap_atomic(from, KM_USER0);
|
||
|
p += sg[i].length;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sg_init_one(&iser_ctask->data_copy[cmd_dir].sg_single, mem, cmd_data_len);
|
||
|
iser_ctask->data_copy[cmd_dir].buf =
|
||
|
&iser_ctask->data_copy[cmd_dir].sg_single;
|
||
|
iser_ctask->data_copy[cmd_dir].size = 1;
|
||
|
|
||
|
iser_ctask->data_copy[cmd_dir].copy_buf = mem;
|
||
|
|
||
|
dma_device = iser_ctask->iser_conn->ib_conn->device->ib_device->dma_device;
|
||
|
|
||
|
if (cmd_dir == ISER_DIR_OUT)
|
||
|
dma_nents = dma_map_sg(dma_device,
|
||
|
&iser_ctask->data_copy[cmd_dir].sg_single,
|
||
|
1, DMA_TO_DEVICE);
|
||
|
else
|
||
|
dma_nents = dma_map_sg(dma_device,
|
||
|
&iser_ctask->data_copy[cmd_dir].sg_single,
|
||
|
1, DMA_FROM_DEVICE);
|
||
|
|
||
|
BUG_ON(dma_nents == 0);
|
||
|
|
||
|
iser_ctask->data_copy[cmd_dir].dma_nents = dma_nents;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iser_finalize_rdma_unaligned_sg
|
||
|
*/
|
||
|
void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_cmd_task *iser_ctask,
|
||
|
enum iser_data_dir cmd_dir)
|
||
|
{
|
||
|
struct device *dma_device;
|
||
|
struct iser_data_buf *mem_copy;
|
||
|
unsigned long cmd_data_len;
|
||
|
|
||
|
dma_device = iser_ctask->iser_conn->ib_conn->device->ib_device->dma_device;
|
||
|
mem_copy = &iser_ctask->data_copy[cmd_dir];
|
||
|
|
||
|
if (cmd_dir == ISER_DIR_OUT)
|
||
|
dma_unmap_sg(dma_device, &mem_copy->sg_single, 1,
|
||
|
DMA_TO_DEVICE);
|
||
|
else
|
||
|
dma_unmap_sg(dma_device, &mem_copy->sg_single, 1,
|
||
|
DMA_FROM_DEVICE);
|
||
|
|
||
|
if (cmd_dir == ISER_DIR_IN) {
|
||
|
char *mem;
|
||
|
struct scatterlist *sg;
|
||
|
unsigned char *p, *to;
|
||
|
unsigned int sg_size;
|
||
|
int i;
|
||
|
|
||
|
/* copy back read RDMA to unaligned sg */
|
||
|
mem = mem_copy->copy_buf;
|
||
|
|
||
|
sg = (struct scatterlist *)iser_ctask->data[ISER_DIR_IN].buf;
|
||
|
sg_size = iser_ctask->data[ISER_DIR_IN].size;
|
||
|
|
||
|
for (p = mem, i = 0; i < sg_size; i++){
|
||
|
to = kmap_atomic(sg[i].page, KM_SOFTIRQ0);
|
||
|
memcpy(to + sg[i].offset,
|
||
|
p,
|
||
|
sg[i].length);
|
||
|
kunmap_atomic(to, KM_SOFTIRQ0);
|
||
|
p += sg[i].length;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cmd_data_len = iser_ctask->data[cmd_dir].data_len;
|
||
|
|
||
|
if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
|
||
|
free_pages((unsigned long)mem_copy->copy_buf,
|
||
|
long_log2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
|
||
|
else
|
||
|
kfree(mem_copy->copy_buf);
|
||
|
|
||
|
mem_copy->copy_buf = NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iser_sg_to_page_vec - Translates scatterlist entries to physical addresses
|
||
|
* and returns the length of resulting physical address array (may be less than
|
||
|
* the original due to possible compaction).
|
||
|
*
|
||
|
* we build a "page vec" under the assumption that the SG meets the RDMA
|
||
|
* alignment requirements. Other then the first and last SG elements, all
|
||
|
* the "internal" elements can be compacted into a list whose elements are
|
||
|
* dma addresses of physical pages. The code supports also the weird case
|
||
|
* where --few fragments of the same page-- are present in the SG as
|
||
|
* consecutive elements. Also, it handles one entry SG.
|
||
|
*/
|
||
|
static int iser_sg_to_page_vec(struct iser_data_buf *data,
|
||
|
struct iser_page_vec *page_vec)
|
||
|
{
|
||
|
struct scatterlist *sg = (struct scatterlist *)data->buf;
|
||
|
dma_addr_t first_addr, last_addr, page;
|
||
|
int start_aligned, end_aligned;
|
||
|
unsigned int cur_page = 0;
|
||
|
unsigned long total_sz = 0;
|
||
|
int i;
|
||
|
|
||
|
/* compute the offset of first element */
|
||
|
page_vec->offset = (u64) sg[0].offset;
|
||
|
|
||
|
for (i = 0; i < data->dma_nents; i++) {
|
||
|
total_sz += sg_dma_len(&sg[i]);
|
||
|
|
||
|
first_addr = sg_dma_address(&sg[i]);
|
||
|
last_addr = first_addr + sg_dma_len(&sg[i]);
|
||
|
|
||
|
start_aligned = !(first_addr & ~PAGE_MASK);
|
||
|
end_aligned = !(last_addr & ~PAGE_MASK);
|
||
|
|
||
|
/* continue to collect page fragments till aligned or SG ends */
|
||
|
while (!end_aligned && (i + 1 < data->dma_nents)) {
|
||
|
i++;
|
||
|
total_sz += sg_dma_len(&sg[i]);
|
||
|
last_addr = sg_dma_address(&sg[i]) + sg_dma_len(&sg[i]);
|
||
|
end_aligned = !(last_addr & ~PAGE_MASK);
|
||
|
}
|
||
|
|
||
|
first_addr = first_addr & PAGE_MASK;
|
||
|
|
||
|
for (page = first_addr; page < last_addr; page += PAGE_SIZE)
|
||
|
page_vec->pages[cur_page++] = page;
|
||
|
|
||
|
}
|
||
|
page_vec->data_size = total_sz;
|
||
|
iser_dbg("page_vec->data_size:%d cur_page %d\n", page_vec->data_size,cur_page);
|
||
|
return cur_page;
|
||
|
}
|
||
|
|
||
|
#define MASK_4K ((1UL << 12) - 1) /* 0xFFF */
|
||
|
#define IS_4K_ALIGNED(addr) ((((unsigned long)addr) & MASK_4K) == 0)
|
||
|
|
||
|
/**
|
||
|
* iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned
|
||
|
* for RDMA sub-list of a scatter-gather list of memory buffers, and returns
|
||
|
* the number of entries which are aligned correctly. Supports the case where
|
||
|
* consecutive SG elements are actually fragments of the same physcial page.
|
||
|
*/
|
||
|
static unsigned int iser_data_buf_aligned_len(struct iser_data_buf *data)
|
||
|
{
|
||
|
struct scatterlist *sg;
|
||
|
dma_addr_t end_addr, next_addr;
|
||
|
int i, cnt;
|
||
|
unsigned int ret_len = 0;
|
||
|
|
||
|
sg = (struct scatterlist *)data->buf;
|
||
|
|
||
|
for (cnt = 0, i = 0; i < data->dma_nents; i++, cnt++) {
|
||
|
/* iser_dbg("Checking sg iobuf [%d]: phys=0x%08lX "
|
||
|
"offset: %ld sz: %ld\n", i,
|
||
|
(unsigned long)page_to_phys(sg[i].page),
|
||
|
(unsigned long)sg[i].offset,
|
||
|
(unsigned long)sg[i].length); */
|
||
|
end_addr = sg_dma_address(&sg[i]) +
|
||
|
sg_dma_len(&sg[i]);
|
||
|
/* iser_dbg("Checking sg iobuf end address "
|
||
|
"0x%08lX\n", end_addr); */
|
||
|
if (i + 1 < data->dma_nents) {
|
||
|
next_addr = sg_dma_address(&sg[i+1]);
|
||
|
/* are i, i+1 fragments of the same page? */
|
||
|
if (end_addr == next_addr)
|
||
|
continue;
|
||
|
else if (!IS_4K_ALIGNED(end_addr)) {
|
||
|
ret_len = cnt + 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (i == data->dma_nents)
|
||
|
ret_len = cnt; /* loop ended */
|
||
|
iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n",
|
||
|
ret_len, data->dma_nents, data);
|
||
|
return ret_len;
|
||
|
}
|
||
|
|
||
|
static void iser_data_buf_dump(struct iser_data_buf *data)
|
||
|
{
|
||
|
struct scatterlist *sg = (struct scatterlist *)data->buf;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < data->size; i++)
|
||
|
iser_err("sg[%d] dma_addr:0x%lX page:0x%p "
|
||
|
"off:%d sz:%d dma_len:%d\n",
|
||
|
i, (unsigned long)sg_dma_address(&sg[i]),
|
||
|
sg[i].page, sg[i].offset,
|
||
|
sg[i].length,sg_dma_len(&sg[i]));
|
||
|
}
|
||
|
|
||
|
static void iser_dump_page_vec(struct iser_page_vec *page_vec)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
iser_err("page vec length %d data size %d\n",
|
||
|
page_vec->length, page_vec->data_size);
|
||
|
for (i = 0; i < page_vec->length; i++)
|
||
|
iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]);
|
||
|
}
|
||
|
|
||
|
static void iser_page_vec_build(struct iser_data_buf *data,
|
||
|
struct iser_page_vec *page_vec)
|
||
|
{
|
||
|
int page_vec_len = 0;
|
||
|
|
||
|
page_vec->length = 0;
|
||
|
page_vec->offset = 0;
|
||
|
|
||
|
iser_dbg("Translating sg sz: %d\n", data->dma_nents);
|
||
|
page_vec_len = iser_sg_to_page_vec(data,page_vec);
|
||
|
iser_dbg("sg len %d page_vec_len %d\n", data->dma_nents,page_vec_len);
|
||
|
|
||
|
page_vec->length = page_vec_len;
|
||
|
|
||
|
if (page_vec_len * PAGE_SIZE < page_vec->data_size) {
|
||
|
iser_err("page_vec too short to hold this SG\n");
|
||
|
iser_data_buf_dump(data);
|
||
|
iser_dump_page_vec(page_vec);
|
||
|
BUG();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iser_reg_rdma_mem - Registers memory intended for RDMA,
|
||
|
* obtaining rkey and va
|
||
|
*
|
||
|
* returns 0 on success, errno code on failure
|
||
|
*/
|
||
|
int iser_reg_rdma_mem(struct iscsi_iser_cmd_task *iser_ctask,
|
||
|
enum iser_data_dir cmd_dir)
|
||
|
{
|
||
|
struct iser_conn *ib_conn = iser_ctask->iser_conn->ib_conn;
|
||
|
struct iser_data_buf *mem = &iser_ctask->data[cmd_dir];
|
||
|
struct iser_regd_buf *regd_buf;
|
||
|
int aligned_len;
|
||
|
int err;
|
||
|
|
||
|
regd_buf = &iser_ctask->rdma_regd[cmd_dir];
|
||
|
|
||
|
aligned_len = iser_data_buf_aligned_len(mem);
|
||
|
if (aligned_len != mem->size) {
|
||
|
iser_err("rdma alignment violation %d/%d aligned\n",
|
||
|
aligned_len, mem->size);
|
||
|
iser_data_buf_dump(mem);
|
||
|
/* allocate copy buf, if we are writing, copy the */
|
||
|
/* unaligned scatterlist, dma map the copy */
|
||
|
if (iser_start_rdma_unaligned_sg(iser_ctask, cmd_dir) != 0)
|
||
|
return -ENOMEM;
|
||
|
mem = &iser_ctask->data_copy[cmd_dir];
|
||
|
}
|
||
|
|
||
|
iser_page_vec_build(mem, ib_conn->page_vec);
|
||
|
err = iser_reg_page_vec(ib_conn, ib_conn->page_vec, ®d_buf->reg);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
/* take a reference on this regd buf such that it will not be released *
|
||
|
* (eg in send dto completion) before we get the scsi response */
|
||
|
atomic_inc(®d_buf->ref_count);
|
||
|
return 0;
|
||
|
}
|