linux_old1/arch/powerpc/sysdev/fsl_rio.c

1582 lines
42 KiB
C
Raw Normal View History

/*
* Freescale MPC85xx/MPC86xx RapidIO support
*
* Copyright 2009 Sysgo AG
* Thomas Moll <thomas.moll@sysgo.com>
* - fixed maintenance access routines, check for aligned access
*
* Copyright 2009 Integrated Device Technology, Inc.
* Alex Bounine <alexandre.bounine@idt.com>
* - Added Port-Write message handling
* - Added Machine Check exception handling
*
* Copyright (C) 2007, 2008 Freescale Semiconductor, Inc.
* Zhang Wei <wei.zhang@freescale.com>
*
* Copyright 2005 MontaVista Software, Inc.
* Matt Porter <mporter@kernel.crashing.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/rio.h>
#include <linux/rio_drv.h>
#include <linux/of_platform.h>
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/kfifo.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#undef DEBUG_PW /* Port-Write debugging */
/* RapidIO definition irq, which read from OF-tree */
#define IRQ_RIO_BELL(m) (((struct rio_priv *)(m->priv))->bellirq)
#define IRQ_RIO_TX(m) (((struct rio_priv *)(m->priv))->txirq)
#define IRQ_RIO_RX(m) (((struct rio_priv *)(m->priv))->rxirq)
#define IRQ_RIO_PW(m) (((struct rio_priv *)(m->priv))->pwirq)
#define RIO_ATMU_REGS_OFFSET 0x10c00
#define RIO_P_MSG_REGS_OFFSET 0x11000
#define RIO_S_MSG_REGS_OFFSET 0x13000
#define RIO_ESCSR 0x158
#define RIO_CCSR 0x15c
#define RIO_LTLEDCSR 0x0608
#define RIO_LTLEDCSR_IER 0x80000000
#define RIO_LTLEDCSR_PRT 0x01000000
#define RIO_LTLEECSR 0x060c
#define RIO_EPWISR 0x10010
#define RIO_ISR_AACR 0x10120
#define RIO_ISR_AACR_AA 0x1 /* Accept All ID */
#define RIO_MAINT_WIN_SIZE 0x400000
#define RIO_DBELL_WIN_SIZE 0x1000
#define RIO_MSG_OMR_MUI 0x00000002
#define RIO_MSG_OSR_TE 0x00000080
#define RIO_MSG_OSR_QOI 0x00000020
#define RIO_MSG_OSR_QFI 0x00000010
#define RIO_MSG_OSR_MUB 0x00000004
#define RIO_MSG_OSR_EOMI 0x00000002
#define RIO_MSG_OSR_QEI 0x00000001
#define RIO_MSG_IMR_MI 0x00000002
#define RIO_MSG_ISR_TE 0x00000080
#define RIO_MSG_ISR_QFI 0x00000010
#define RIO_MSG_ISR_DIQI 0x00000001
#define RIO_IPWMR_SEN 0x00100000
#define RIO_IPWMR_QFIE 0x00000100
#define RIO_IPWMR_EIE 0x00000020
#define RIO_IPWMR_CQ 0x00000002
#define RIO_IPWMR_PWE 0x00000001
#define RIO_IPWSR_QF 0x00100000
#define RIO_IPWSR_TE 0x00000080
#define RIO_IPWSR_QFI 0x00000010
#define RIO_IPWSR_PWD 0x00000008
#define RIO_IPWSR_PWB 0x00000004
#define RIO_MSG_DESC_SIZE 32
#define RIO_MSG_BUFFER_SIZE 4096
#define RIO_MIN_TX_RING_SIZE 2
#define RIO_MAX_TX_RING_SIZE 2048
#define RIO_MIN_RX_RING_SIZE 2
#define RIO_MAX_RX_RING_SIZE 2048
#define DOORBELL_DMR_DI 0x00000002
#define DOORBELL_DSR_TE 0x00000080
#define DOORBELL_DSR_QFI 0x00000010
#define DOORBELL_DSR_DIQI 0x00000001
#define DOORBELL_TID_OFFSET 0x02
#define DOORBELL_SID_OFFSET 0x04
#define DOORBELL_INFO_OFFSET 0x06
#define DOORBELL_MESSAGE_SIZE 0x08
#define DBELL_SID(x) (*(u16 *)(x + DOORBELL_SID_OFFSET))
#define DBELL_TID(x) (*(u16 *)(x + DOORBELL_TID_OFFSET))
#define DBELL_INF(x) (*(u16 *)(x + DOORBELL_INFO_OFFSET))
struct rio_atmu_regs {
u32 rowtar;
u32 rowtear;
u32 rowbar;
u32 pad2;
u32 rowar;
u32 pad3[3];
};
struct rio_msg_regs {
u32 omr;
u32 osr;
u32 pad1;
u32 odqdpar;
u32 pad2;
u32 osar;
u32 odpr;
u32 odatr;
u32 odcr;
u32 pad3;
u32 odqepar;
u32 pad4[13];
u32 imr;
u32 isr;
u32 pad5;
u32 ifqdpar;
u32 pad6;
u32 ifqepar;
u32 pad7[226];
u32 odmr;
u32 odsr;
u32 res0[4];
u32 oddpr;
u32 oddatr;
u32 res1[3];
u32 odretcr;
u32 res2[12];
u32 dmr;
u32 dsr;
u32 pad8;
u32 dqdpar;
u32 pad9;
u32 dqepar;
u32 pad10[26];
u32 pwmr;
u32 pwsr;
u32 epwqbar;
u32 pwqbar;
};
struct rio_tx_desc {
u32 res1;
u32 saddr;
u32 dport;
u32 dattr;
u32 res2;
u32 res3;
u32 dwcnt;
u32 res4;
};
struct rio_dbell_ring {
void *virt;
dma_addr_t phys;
};
struct rio_msg_tx_ring {
void *virt;
dma_addr_t phys;
void *virt_buffer[RIO_MAX_TX_RING_SIZE];
dma_addr_t phys_buffer[RIO_MAX_TX_RING_SIZE];
int tx_slot;
int size;
void *dev_id;
};
struct rio_msg_rx_ring {
void *virt;
dma_addr_t phys;
void *virt_buffer[RIO_MAX_RX_RING_SIZE];
int rx_slot;
int size;
void *dev_id;
};
struct rio_port_write_msg {
void *virt;
dma_addr_t phys;
u32 msg_count;
u32 err_count;
u32 discard_count;
};
struct rio_priv {
struct device *dev;
void __iomem *regs_win;
struct rio_atmu_regs __iomem *atmu_regs;
struct rio_atmu_regs __iomem *maint_atmu_regs;
struct rio_atmu_regs __iomem *dbell_atmu_regs;
void __iomem *dbell_win;
void __iomem *maint_win;
struct rio_msg_regs __iomem *msg_regs;
struct rio_dbell_ring dbell_ring;
struct rio_msg_tx_ring msg_tx_ring;
struct rio_msg_rx_ring msg_rx_ring;
struct rio_port_write_msg port_write_msg;
int bellirq;
int txirq;
int rxirq;
int pwirq;
struct work_struct pw_work;
struct kfifo pw_fifo;
spinlock_t pw_fifo_lock;
};
#define __fsl_read_rio_config(x, addr, err, op) \
__asm__ __volatile__( \
"1: "op" %1,0(%2)\n" \
" eieio\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %1,-1\n" \
" li %0,%3\n" \
" b 2b\n" \
".section __ex_table,\"a\"\n" \
" .align 2\n" \
" .long 1b,3b\n" \
".text" \
: "=r" (err), "=r" (x) \
: "b" (addr), "i" (-EFAULT), "0" (err))
static void __iomem *rio_regs_win;
#ifdef CONFIG_E500
static int (*saved_mcheck_exception)(struct pt_regs *regs);
static int fsl_rio_mcheck_exception(struct pt_regs *regs)
{
const struct exception_table_entry *entry = NULL;
unsigned long reason = mfspr(SPRN_MCSR);
if (reason & MCSR_BUS_RBERR) {
reason = in_be32((u32 *)(rio_regs_win + RIO_LTLEDCSR));
if (reason & (RIO_LTLEDCSR_IER | RIO_LTLEDCSR_PRT)) {
/* Check if we are prepared to handle this fault */
entry = search_exception_tables(regs->nip);
if (entry) {
pr_debug("RIO: %s - MC Exception handled\n",
__func__);
out_be32((u32 *)(rio_regs_win + RIO_LTLEDCSR),
0);
regs->msr |= MSR_RI;
regs->nip = entry->fixup;
return 1;
}
}
}
if (saved_mcheck_exception)
return saved_mcheck_exception(regs);
else
return cur_cpu_spec->machine_check(regs);
}
#endif
/**
* fsl_rio_doorbell_send - Send a MPC85xx doorbell message
* @mport: RapidIO master port info
* @index: ID of RapidIO interface
* @destid: Destination ID of target device
* @data: 16-bit info field of RapidIO doorbell message
*
* Sends a MPC85xx doorbell message. Returns %0 on success or
* %-EINVAL on failure.
*/
static int fsl_rio_doorbell_send(struct rio_mport *mport,
int index, u16 destid, u16 data)
{
struct rio_priv *priv = mport->priv;
pr_debug("fsl_doorbell_send: index %d destid %4.4x data %4.4x\n",
index, destid, data);
switch (mport->phy_type) {
case RIO_PHY_PARALLEL:
out_be32(&priv->dbell_atmu_regs->rowtar, destid << 22);
out_be16(priv->dbell_win, data);
break;
case RIO_PHY_SERIAL:
/* In the serial version silicons, such as MPC8548, MPC8641,
* below operations is must be.
*/
out_be32(&priv->msg_regs->odmr, 0x00000000);
out_be32(&priv->msg_regs->odretcr, 0x00000004);
out_be32(&priv->msg_regs->oddpr, destid << 16);
out_be32(&priv->msg_regs->oddatr, data);
out_be32(&priv->msg_regs->odmr, 0x00000001);
break;
}
return 0;
}
/**
* fsl_local_config_read - Generate a MPC85xx local config space read
* @mport: RapidIO master port info
* @index: ID of RapdiIO interface
* @offset: Offset into configuration space
* @len: Length (in bytes) of the maintenance transaction
* @data: Value to be read into
*
* Generates a MPC85xx local configuration space read. Returns %0 on
* success or %-EINVAL on failure.
*/
static int fsl_local_config_read(struct rio_mport *mport,
int index, u32 offset, int len, u32 *data)
{
struct rio_priv *priv = mport->priv;
pr_debug("fsl_local_config_read: index %d offset %8.8x\n", index,
offset);
*data = in_be32(priv->regs_win + offset);
return 0;
}
/**
* fsl_local_config_write - Generate a MPC85xx local config space write
* @mport: RapidIO master port info
* @index: ID of RapdiIO interface
* @offset: Offset into configuration space
* @len: Length (in bytes) of the maintenance transaction
* @data: Value to be written
*
* Generates a MPC85xx local configuration space write. Returns %0 on
* success or %-EINVAL on failure.
*/
static int fsl_local_config_write(struct rio_mport *mport,
int index, u32 offset, int len, u32 data)
{
struct rio_priv *priv = mport->priv;
pr_debug
("fsl_local_config_write: index %d offset %8.8x data %8.8x\n",
index, offset, data);
out_be32(priv->regs_win + offset, data);
return 0;
}
/**
* fsl_rio_config_read - Generate a MPC85xx read maintenance transaction
* @mport: RapidIO master port info
* @index: ID of RapdiIO interface
* @destid: Destination ID of transaction
* @hopcount: Number of hops to target device
* @offset: Offset into configuration space
* @len: Length (in bytes) of the maintenance transaction
* @val: Location to be read into
*
* Generates a MPC85xx read maintenance transaction. Returns %0 on
* success or %-EINVAL on failure.
*/
static int
fsl_rio_config_read(struct rio_mport *mport, int index, u16 destid,
u8 hopcount, u32 offset, int len, u32 *val)
{
struct rio_priv *priv = mport->priv;
u8 *data;
u32 rval, err = 0;
pr_debug
("fsl_rio_config_read: index %d destid %d hopcount %d offset %8.8x len %d\n",
index, destid, hopcount, offset, len);
/* 16MB maintenance window possible */
/* allow only aligned access to maintenance registers */
if (offset > (0x1000000 - len) || !IS_ALIGNED(offset, len))
return -EINVAL;
out_be32(&priv->maint_atmu_regs->rowtar,
(destid << 22) | (hopcount << 12) | (offset >> 12));
out_be32(&priv->maint_atmu_regs->rowtear, (destid >> 10));
data = (u8 *) priv->maint_win + (offset & (RIO_MAINT_WIN_SIZE - 1));
switch (len) {
case 1:
__fsl_read_rio_config(rval, data, err, "lbz");
break;
case 2:
__fsl_read_rio_config(rval, data, err, "lhz");
break;
case 4:
__fsl_read_rio_config(rval, data, err, "lwz");
break;
default:
return -EINVAL;
}
if (err) {
pr_debug("RIO: cfg_read error %d for %x:%x:%x\n",
err, destid, hopcount, offset);
}
*val = rval;
return err;
}
/**
* fsl_rio_config_write - Generate a MPC85xx write maintenance transaction
* @mport: RapidIO master port info
* @index: ID of RapdiIO interface
* @destid: Destination ID of transaction
* @hopcount: Number of hops to target device
* @offset: Offset into configuration space
* @len: Length (in bytes) of the maintenance transaction
* @val: Value to be written
*
* Generates an MPC85xx write maintenance transaction. Returns %0 on
* success or %-EINVAL on failure.
*/
static int
fsl_rio_config_write(struct rio_mport *mport, int index, u16 destid,
u8 hopcount, u32 offset, int len, u32 val)
{
struct rio_priv *priv = mport->priv;
u8 *data;
pr_debug
("fsl_rio_config_write: index %d destid %d hopcount %d offset %8.8x len %d val %8.8x\n",
index, destid, hopcount, offset, len, val);
/* 16MB maintenance windows possible */
/* allow only aligned access to maintenance registers */
if (offset > (0x1000000 - len) || !IS_ALIGNED(offset, len))
return -EINVAL;
out_be32(&priv->maint_atmu_regs->rowtar,
(destid << 22) | (hopcount << 12) | (offset >> 12));
out_be32(&priv->maint_atmu_regs->rowtear, (destid >> 10));
data = (u8 *) priv->maint_win + (offset & (RIO_MAINT_WIN_SIZE - 1));
switch (len) {
case 1:
out_8((u8 *) data, val);
break;
case 2:
out_be16((u16 *) data, val);
break;
case 4:
out_be32((u32 *) data, val);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* rio_hw_add_outb_message - Add message to the MPC85xx outbound message queue
* @mport: Master port with outbound message queue
* @rdev: Target of outbound message
* @mbox: Outbound mailbox
* @buffer: Message to add to outbound queue
* @len: Length of message
*
* Adds the @buffer message to the MPC85xx outbound message queue. Returns
* %0 on success or %-EINVAL on failure.
*/
int
rio_hw_add_outb_message(struct rio_mport *mport, struct rio_dev *rdev, int mbox,
void *buffer, size_t len)
{
struct rio_priv *priv = mport->priv;
u32 omr;
struct rio_tx_desc *desc = (struct rio_tx_desc *)priv->msg_tx_ring.virt
+ priv->msg_tx_ring.tx_slot;
int ret = 0;
pr_debug
("RIO: rio_hw_add_outb_message(): destid %4.4x mbox %d buffer %8.8x len %8.8x\n",
rdev->destid, mbox, (int)buffer, len);
if ((len < 8) || (len > RIO_MAX_MSG_SIZE)) {
ret = -EINVAL;
goto out;
}
/* Copy and clear rest of buffer */
memcpy(priv->msg_tx_ring.virt_buffer[priv->msg_tx_ring.tx_slot], buffer,
len);
if (len < (RIO_MAX_MSG_SIZE - 4))
memset(priv->msg_tx_ring.virt_buffer[priv->msg_tx_ring.tx_slot]
+ len, 0, RIO_MAX_MSG_SIZE - len);
switch (mport->phy_type) {
case RIO_PHY_PARALLEL:
/* Set mbox field for message */
desc->dport = mbox & 0x3;
/* Enable EOMI interrupt, set priority, and set destid */
desc->dattr = 0x28000000 | (rdev->destid << 2);
break;
case RIO_PHY_SERIAL:
/* Set mbox field for message, and set destid */
desc->dport = (rdev->destid << 16) | (mbox & 0x3);
/* Enable EOMI interrupt and priority */
desc->dattr = 0x28000000;
break;
}
/* Set transfer size aligned to next power of 2 (in double words) */
desc->dwcnt = is_power_of_2(len) ? len : 1 << get_bitmask_order(len);
/* Set snooping and source buffer address */
desc->saddr = 0x00000004
| priv->msg_tx_ring.phys_buffer[priv->msg_tx_ring.tx_slot];
/* Increment enqueue pointer */
omr = in_be32(&priv->msg_regs->omr);
out_be32(&priv->msg_regs->omr, omr | RIO_MSG_OMR_MUI);
/* Go to next descriptor */
if (++priv->msg_tx_ring.tx_slot == priv->msg_tx_ring.size)
priv->msg_tx_ring.tx_slot = 0;
out:
return ret;
}
EXPORT_SYMBOL_GPL(rio_hw_add_outb_message);
/**
* fsl_rio_tx_handler - MPC85xx outbound message interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles outbound message interrupts. Executes a register outbound
* mailbox event handler and acks the interrupt occurrence.
*/
static irqreturn_t
fsl_rio_tx_handler(int irq, void *dev_instance)
{
int osr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct rio_priv *priv = port->priv;
osr = in_be32(&priv->msg_regs->osr);
if (osr & RIO_MSG_OSR_TE) {
pr_info("RIO: outbound message transmission error\n");
out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_TE);
goto out;
}
if (osr & RIO_MSG_OSR_QOI) {
pr_info("RIO: outbound message queue overflow\n");
out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_QOI);
goto out;
}
if (osr & RIO_MSG_OSR_EOMI) {
u32 dqp = in_be32(&priv->msg_regs->odqdpar);
int slot = (dqp - priv->msg_tx_ring.phys) >> 5;
port->outb_msg[0].mcback(port, priv->msg_tx_ring.dev_id, -1,
slot);
/* Ack the end-of-message interrupt */
out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_EOMI);
}
out:
return IRQ_HANDLED;
}
/**
* rio_open_outb_mbox - Initialize MPC85xx outbound mailbox
* @mport: Master port implementing the outbound message unit
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox to open
* @entries: Number of entries in the outbound mailbox ring
*
* Initializes buffer ring, request the outbound message interrupt,
* and enables the outbound message unit. Returns %0 on success and
* %-EINVAL or %-ENOMEM on failure.
*/
int rio_open_outb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries)
{
int i, j, rc = 0;
struct rio_priv *priv = mport->priv;
if ((entries < RIO_MIN_TX_RING_SIZE) ||
(entries > RIO_MAX_TX_RING_SIZE) || (!is_power_of_2(entries))) {
rc = -EINVAL;
goto out;
}
/* Initialize shadow copy ring */
priv->msg_tx_ring.dev_id = dev_id;
priv->msg_tx_ring.size = entries;
for (i = 0; i < priv->msg_tx_ring.size; i++) {
priv->msg_tx_ring.virt_buffer[i] =
dma_alloc_coherent(priv->dev, RIO_MSG_BUFFER_SIZE,
&priv->msg_tx_ring.phys_buffer[i], GFP_KERNEL);
if (!priv->msg_tx_ring.virt_buffer[i]) {
rc = -ENOMEM;
for (j = 0; j < priv->msg_tx_ring.size; j++)
if (priv->msg_tx_ring.virt_buffer[j])
dma_free_coherent(priv->dev,
RIO_MSG_BUFFER_SIZE,
priv->msg_tx_ring.
virt_buffer[j],
priv->msg_tx_ring.
phys_buffer[j]);
goto out;
}
}
/* Initialize outbound message descriptor ring */
priv->msg_tx_ring.virt = dma_alloc_coherent(priv->dev,
priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
&priv->msg_tx_ring.phys, GFP_KERNEL);
if (!priv->msg_tx_ring.virt) {
rc = -ENOMEM;
goto out_dma;
}
memset(priv->msg_tx_ring.virt, 0,
priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE);
priv->msg_tx_ring.tx_slot = 0;
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&priv->msg_regs->odqdpar, priv->msg_tx_ring.phys);
out_be32(&priv->msg_regs->odqepar, priv->msg_tx_ring.phys);
/* Configure for snooping */
out_be32(&priv->msg_regs->osar, 0x00000004);
/* Clear interrupt status */
out_be32(&priv->msg_regs->osr, 0x000000b3);
/* Hook up outbound message handler */
rc = request_irq(IRQ_RIO_TX(mport), fsl_rio_tx_handler, 0,
"msg_tx", (void *)mport);
if (rc < 0)
goto out_irq;
/*
* Configure outbound message unit
* Snooping
* Interrupts (all enabled, except QEIE)
* Chaining mode
* Disable
*/
out_be32(&priv->msg_regs->omr, 0x00100220);
/* Set number of entries */
out_be32(&priv->msg_regs->omr,
in_be32(&priv->msg_regs->omr) |
((get_bitmask_order(entries) - 2) << 12));
/* Now enable the unit */
out_be32(&priv->msg_regs->omr, in_be32(&priv->msg_regs->omr) | 0x1);
out:
return rc;
out_irq:
dma_free_coherent(priv->dev,
priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
priv->msg_tx_ring.virt, priv->msg_tx_ring.phys);
out_dma:
for (i = 0; i < priv->msg_tx_ring.size; i++)
dma_free_coherent(priv->dev, RIO_MSG_BUFFER_SIZE,
priv->msg_tx_ring.virt_buffer[i],
priv->msg_tx_ring.phys_buffer[i]);
return rc;
}
/**
* rio_close_outb_mbox - Shut down MPC85xx outbound mailbox
* @mport: Master port implementing the outbound message unit
* @mbox: Mailbox to close
*
* Disables the outbound message unit, free all buffers, and
* frees the outbound message interrupt.
*/
void rio_close_outb_mbox(struct rio_mport *mport, int mbox)
{
struct rio_priv *priv = mport->priv;
/* Disable inbound message unit */
out_be32(&priv->msg_regs->omr, 0);
/* Free ring */
dma_free_coherent(priv->dev,
priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
priv->msg_tx_ring.virt, priv->msg_tx_ring.phys);
/* Free interrupt */
free_irq(IRQ_RIO_TX(mport), (void *)mport);
}
/**
* fsl_rio_rx_handler - MPC85xx inbound message interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles inbound message interrupts. Executes a registered inbound
* mailbox event handler and acks the interrupt occurrence.
*/
static irqreturn_t
fsl_rio_rx_handler(int irq, void *dev_instance)
{
int isr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct rio_priv *priv = port->priv;
isr = in_be32(&priv->msg_regs->isr);
if (isr & RIO_MSG_ISR_TE) {
pr_info("RIO: inbound message reception error\n");
out_be32((void *)&priv->msg_regs->isr, RIO_MSG_ISR_TE);
goto out;
}
/* XXX Need to check/dispatch until queue empty */
if (isr & RIO_MSG_ISR_DIQI) {
/*
* We implement *only* mailbox 0, but can receive messages
* for any mailbox/letter to that mailbox destination. So,
* make the callback with an unknown/invalid mailbox number
* argument.
*/
port->inb_msg[0].mcback(port, priv->msg_rx_ring.dev_id, -1, -1);
/* Ack the queueing interrupt */
out_be32(&priv->msg_regs->isr, RIO_MSG_ISR_DIQI);
}
out:
return IRQ_HANDLED;
}
/**
* rio_open_inb_mbox - Initialize MPC85xx inbound mailbox
* @mport: Master port implementing the inbound message unit
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox to open
* @entries: Number of entries in the inbound mailbox ring
*
* Initializes buffer ring, request the inbound message interrupt,
* and enables the inbound message unit. Returns %0 on success
* and %-EINVAL or %-ENOMEM on failure.
*/
int rio_open_inb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries)
{
int i, rc = 0;
struct rio_priv *priv = mport->priv;
if ((entries < RIO_MIN_RX_RING_SIZE) ||
(entries > RIO_MAX_RX_RING_SIZE) || (!is_power_of_2(entries))) {
rc = -EINVAL;
goto out;
}
/* Initialize client buffer ring */
priv->msg_rx_ring.dev_id = dev_id;
priv->msg_rx_ring.size = entries;
priv->msg_rx_ring.rx_slot = 0;
for (i = 0; i < priv->msg_rx_ring.size; i++)
priv->msg_rx_ring.virt_buffer[i] = NULL;
/* Initialize inbound message ring */
priv->msg_rx_ring.virt = dma_alloc_coherent(priv->dev,
priv->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
&priv->msg_rx_ring.phys, GFP_KERNEL);
if (!priv->msg_rx_ring.virt) {
rc = -ENOMEM;
goto out;
}
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&priv->msg_regs->ifqdpar, (u32) priv->msg_rx_ring.phys);
out_be32(&priv->msg_regs->ifqepar, (u32) priv->msg_rx_ring.phys);
/* Clear interrupt status */
out_be32(&priv->msg_regs->isr, 0x00000091);
/* Hook up inbound message handler */
rc = request_irq(IRQ_RIO_RX(mport), fsl_rio_rx_handler, 0,
"msg_rx", (void *)mport);
if (rc < 0) {
dma_free_coherent(priv->dev, RIO_MSG_BUFFER_SIZE,
priv->msg_tx_ring.virt_buffer[i],
priv->msg_tx_ring.phys_buffer[i]);
goto out;
}
/*
* Configure inbound message unit:
* Snooping
* 4KB max message size
* Unmask all interrupt sources
* Disable
*/
out_be32(&priv->msg_regs->imr, 0x001b0060);
/* Set number of queue entries */
setbits32(&priv->msg_regs->imr, (get_bitmask_order(entries) - 2) << 12);
/* Now enable the unit */
setbits32(&priv->msg_regs->imr, 0x1);
out:
return rc;
}
/**
* rio_close_inb_mbox - Shut down MPC85xx inbound mailbox
* @mport: Master port implementing the inbound message unit
* @mbox: Mailbox to close
*
* Disables the inbound message unit, free all buffers, and
* frees the inbound message interrupt.
*/
void rio_close_inb_mbox(struct rio_mport *mport, int mbox)
{
struct rio_priv *priv = mport->priv;
/* Disable inbound message unit */
out_be32(&priv->msg_regs->imr, 0);
/* Free ring */
dma_free_coherent(priv->dev, priv->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
priv->msg_rx_ring.virt, priv->msg_rx_ring.phys);
/* Free interrupt */
free_irq(IRQ_RIO_RX(mport), (void *)mport);
}
/**
* rio_hw_add_inb_buffer - Add buffer to the MPC85xx inbound message queue
* @mport: Master port implementing the inbound message unit
* @mbox: Inbound mailbox number
* @buf: Buffer to add to inbound queue
*
* Adds the @buf buffer to the MPC85xx inbound message queue. Returns
* %0 on success or %-EINVAL on failure.
*/
int rio_hw_add_inb_buffer(struct rio_mport *mport, int mbox, void *buf)
{
int rc = 0;
struct rio_priv *priv = mport->priv;
pr_debug("RIO: rio_hw_add_inb_buffer(), msg_rx_ring.rx_slot %d\n",
priv->msg_rx_ring.rx_slot);
if (priv->msg_rx_ring.virt_buffer[priv->msg_rx_ring.rx_slot]) {
printk(KERN_ERR
"RIO: error adding inbound buffer %d, buffer exists\n",
priv->msg_rx_ring.rx_slot);
rc = -EINVAL;
goto out;
}
priv->msg_rx_ring.virt_buffer[priv->msg_rx_ring.rx_slot] = buf;
if (++priv->msg_rx_ring.rx_slot == priv->msg_rx_ring.size)
priv->msg_rx_ring.rx_slot = 0;
out:
return rc;
}
EXPORT_SYMBOL_GPL(rio_hw_add_inb_buffer);
/**
* rio_hw_get_inb_message - Fetch inbound message from the MPC85xx message unit
* @mport: Master port implementing the inbound message unit
* @mbox: Inbound mailbox number
*
* Gets the next available inbound message from the inbound message queue.
* A pointer to the message is returned on success or NULL on failure.
*/
void *rio_hw_get_inb_message(struct rio_mport *mport, int mbox)
{
struct rio_priv *priv = mport->priv;
u32 phys_buf, virt_buf;
void *buf = NULL;
int buf_idx;
phys_buf = in_be32(&priv->msg_regs->ifqdpar);
/* If no more messages, then bail out */
if (phys_buf == in_be32(&priv->msg_regs->ifqepar))
goto out2;
virt_buf = (u32) priv->msg_rx_ring.virt + (phys_buf
- priv->msg_rx_ring.phys);
buf_idx = (phys_buf - priv->msg_rx_ring.phys) / RIO_MAX_MSG_SIZE;
buf = priv->msg_rx_ring.virt_buffer[buf_idx];
if (!buf) {
printk(KERN_ERR
"RIO: inbound message copy failed, no buffers\n");
goto out1;
}
/* Copy max message size, caller is expected to allocate that big */
memcpy(buf, (void *)virt_buf, RIO_MAX_MSG_SIZE);
/* Clear the available buffer */
priv->msg_rx_ring.virt_buffer[buf_idx] = NULL;
out1:
setbits32(&priv->msg_regs->imr, RIO_MSG_IMR_MI);
out2:
return buf;
}
EXPORT_SYMBOL_GPL(rio_hw_get_inb_message);
/**
* fsl_rio_dbell_handler - MPC85xx doorbell interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles doorbell interrupts. Parses a list of registered
* doorbell event handlers and executes a matching event handler.
*/
static irqreturn_t
fsl_rio_dbell_handler(int irq, void *dev_instance)
{
int dsr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct rio_priv *priv = port->priv;
dsr = in_be32(&priv->msg_regs->dsr);
if (dsr & DOORBELL_DSR_TE) {
pr_info("RIO: doorbell reception error\n");
out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_TE);
goto out;
}
if (dsr & DOORBELL_DSR_QFI) {
pr_info("RIO: doorbell queue full\n");
out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_QFI);
goto out;
}
/* XXX Need to check/dispatch until queue empty */
if (dsr & DOORBELL_DSR_DIQI) {
u32 dmsg =
(u32) priv->dbell_ring.virt +
(in_be32(&priv->msg_regs->dqdpar) & 0xfff);
struct rio_dbell *dbell;
int found = 0;
pr_debug
("RIO: processing doorbell, sid %2.2x tid %2.2x info %4.4x\n",
DBELL_SID(dmsg), DBELL_TID(dmsg), DBELL_INF(dmsg));
list_for_each_entry(dbell, &port->dbells, node) {
if ((dbell->res->start <= DBELL_INF(dmsg)) &&
(dbell->res->end >= DBELL_INF(dmsg))) {
found = 1;
break;
}
}
if (found) {
dbell->dinb(port, dbell->dev_id, DBELL_SID(dmsg), DBELL_TID(dmsg),
DBELL_INF(dmsg));
} else {
pr_debug
("RIO: spurious doorbell, sid %2.2x tid %2.2x info %4.4x\n",
DBELL_SID(dmsg), DBELL_TID(dmsg), DBELL_INF(dmsg));
}
setbits32(&priv->msg_regs->dmr, DOORBELL_DMR_DI);
out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_DIQI);
}
out:
return IRQ_HANDLED;
}
/**
* fsl_rio_doorbell_init - MPC85xx doorbell interface init
* @mport: Master port implementing the inbound doorbell unit
*
* Initializes doorbell unit hardware and inbound DMA buffer
* ring. Called from fsl_rio_setup(). Returns %0 on success
* or %-ENOMEM on failure.
*/
static int fsl_rio_doorbell_init(struct rio_mport *mport)
{
struct rio_priv *priv = mport->priv;
int rc = 0;
/* Map outbound doorbell window immediately after maintenance window */
priv->dbell_win = ioremap(mport->iores.start + RIO_MAINT_WIN_SIZE,
RIO_DBELL_WIN_SIZE);
if (!priv->dbell_win) {
printk(KERN_ERR
"RIO: unable to map outbound doorbell window\n");
rc = -ENOMEM;
goto out;
}
/* Initialize inbound doorbells */
priv->dbell_ring.virt = dma_alloc_coherent(priv->dev, 512 *
DOORBELL_MESSAGE_SIZE, &priv->dbell_ring.phys, GFP_KERNEL);
if (!priv->dbell_ring.virt) {
printk(KERN_ERR "RIO: unable allocate inbound doorbell ring\n");
rc = -ENOMEM;
iounmap(priv->dbell_win);
goto out;
}
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&priv->msg_regs->dqdpar, (u32) priv->dbell_ring.phys);
out_be32(&priv->msg_regs->dqepar, (u32) priv->dbell_ring.phys);
/* Clear interrupt status */
out_be32(&priv->msg_regs->dsr, 0x00000091);
/* Hook up doorbell handler */
rc = request_irq(IRQ_RIO_BELL(mport), fsl_rio_dbell_handler, 0,
"dbell_rx", (void *)mport);
if (rc < 0) {
iounmap(priv->dbell_win);
dma_free_coherent(priv->dev, 512 * DOORBELL_MESSAGE_SIZE,
priv->dbell_ring.virt, priv->dbell_ring.phys);
printk(KERN_ERR
"MPC85xx RIO: unable to request inbound doorbell irq");
goto out;
}
/* Configure doorbells for snooping, 512 entries, and enable */
out_be32(&priv->msg_regs->dmr, 0x00108161);
out:
return rc;
}
/**
* fsl_rio_port_write_handler - MPC85xx port write interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles port write interrupts. Parses a list of registered
* port write event handlers and executes a matching event handler.
*/
static irqreturn_t
fsl_rio_port_write_handler(int irq, void *dev_instance)
{
u32 ipwmr, ipwsr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct rio_priv *priv = port->priv;
u32 epwisr, tmp;
ipwmr = in_be32(&priv->msg_regs->pwmr);
ipwsr = in_be32(&priv->msg_regs->pwsr);
epwisr = in_be32(priv->regs_win + RIO_EPWISR);
if (epwisr & 0x80000000) {
tmp = in_be32(priv->regs_win + RIO_LTLEDCSR);
pr_info("RIO_LTLEDCSR = 0x%x\n", tmp);
out_be32(priv->regs_win + RIO_LTLEDCSR, 0);
}
if (!(epwisr & 0x00000001))
return IRQ_HANDLED;
#ifdef DEBUG_PW
pr_debug("PW Int->IPWMR: 0x%08x IPWSR: 0x%08x (", ipwmr, ipwsr);
if (ipwsr & RIO_IPWSR_QF)
pr_debug(" QF");
if (ipwsr & RIO_IPWSR_TE)
pr_debug(" TE");
if (ipwsr & RIO_IPWSR_QFI)
pr_debug(" QFI");
if (ipwsr & RIO_IPWSR_PWD)
pr_debug(" PWD");
if (ipwsr & RIO_IPWSR_PWB)
pr_debug(" PWB");
pr_debug(" )\n");
#endif
out_be32(&priv->msg_regs->pwsr,
ipwsr & (RIO_IPWSR_TE | RIO_IPWSR_QFI | RIO_IPWSR_PWD));
if ((ipwmr & RIO_IPWMR_EIE) && (ipwsr & RIO_IPWSR_TE)) {
priv->port_write_msg.err_count++;
pr_info("RIO: Port-Write Transaction Err (%d)\n",
priv->port_write_msg.err_count);
}
if (ipwsr & RIO_IPWSR_PWD) {
priv->port_write_msg.discard_count++;
pr_info("RIO: Port Discarded Port-Write Msg(s) (%d)\n",
priv->port_write_msg.discard_count);
}
/* Schedule deferred processing if PW was received */
if (ipwsr & RIO_IPWSR_QFI) {
/* Save PW message (if there is room in FIFO),
* otherwise discard it.
*/
if (kfifo_avail(&priv->pw_fifo) >= RIO_PW_MSG_SIZE) {
priv->port_write_msg.msg_count++;
kfifo_in(&priv->pw_fifo, priv->port_write_msg.virt,
RIO_PW_MSG_SIZE);
} else {
priv->port_write_msg.discard_count++;
pr_info("RIO: ISR Discarded Port-Write Msg(s) (%d)\n",
priv->port_write_msg.discard_count);
}
schedule_work(&priv->pw_work);
}
/* Issue Clear Queue command. This allows another
* port-write to be received.
*/
out_be32(&priv->msg_regs->pwmr, ipwmr | RIO_IPWMR_CQ);
return IRQ_HANDLED;
}
static void fsl_pw_dpc(struct work_struct *work)
{
struct rio_priv *priv = container_of(work, struct rio_priv, pw_work);
unsigned long flags;
u32 msg_buffer[RIO_PW_MSG_SIZE/sizeof(u32)];
/*
* Process port-write messages
*/
spin_lock_irqsave(&priv->pw_fifo_lock, flags);
while (kfifo_out(&priv->pw_fifo, (unsigned char *)msg_buffer,
RIO_PW_MSG_SIZE)) {
/* Process one message */
spin_unlock_irqrestore(&priv->pw_fifo_lock, flags);
#ifdef DEBUG_PW
{
u32 i;
pr_debug("%s : Port-Write Message:", __func__);
for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32); i++) {
if ((i%4) == 0)
pr_debug("\n0x%02x: 0x%08x", i*4,
msg_buffer[i]);
else
pr_debug(" 0x%08x", msg_buffer[i]);
}
pr_debug("\n");
}
#endif
/* Pass the port-write message to RIO core for processing */
rio_inb_pwrite_handler((union rio_pw_msg *)msg_buffer);
spin_lock_irqsave(&priv->pw_fifo_lock, flags);
}
spin_unlock_irqrestore(&priv->pw_fifo_lock, flags);
}
/**
* fsl_rio_pw_enable - enable/disable port-write interface init
* @mport: Master port implementing the port write unit
* @enable: 1=enable; 0=disable port-write message handling
*/
static int fsl_rio_pw_enable(struct rio_mport *mport, int enable)
{
struct rio_priv *priv = mport->priv;
u32 rval;
rval = in_be32(&priv->msg_regs->pwmr);
if (enable)
rval |= RIO_IPWMR_PWE;
else
rval &= ~RIO_IPWMR_PWE;
out_be32(&priv->msg_regs->pwmr, rval);
return 0;
}
/**
* fsl_rio_port_write_init - MPC85xx port write interface init
* @mport: Master port implementing the port write unit
*
* Initializes port write unit hardware and DMA buffer
* ring. Called from fsl_rio_setup(). Returns %0 on success
* or %-ENOMEM on failure.
*/
static int fsl_rio_port_write_init(struct rio_mport *mport)
{
struct rio_priv *priv = mport->priv;
int rc = 0;
/* Following configurations require a disabled port write controller */
out_be32(&priv->msg_regs->pwmr,
in_be32(&priv->msg_regs->pwmr) & ~RIO_IPWMR_PWE);
/* Initialize port write */
priv->port_write_msg.virt = dma_alloc_coherent(priv->dev,
RIO_PW_MSG_SIZE,
&priv->port_write_msg.phys, GFP_KERNEL);
if (!priv->port_write_msg.virt) {
pr_err("RIO: unable allocate port write queue\n");
return -ENOMEM;
}
priv->port_write_msg.err_count = 0;
priv->port_write_msg.discard_count = 0;
/* Point dequeue/enqueue pointers at first entry */
out_be32(&priv->msg_regs->epwqbar, 0);
out_be32(&priv->msg_regs->pwqbar, (u32) priv->port_write_msg.phys);
pr_debug("EIPWQBAR: 0x%08x IPWQBAR: 0x%08x\n",
in_be32(&priv->msg_regs->epwqbar),
in_be32(&priv->msg_regs->pwqbar));
/* Clear interrupt status IPWSR */
out_be32(&priv->msg_regs->pwsr,
(RIO_IPWSR_TE | RIO_IPWSR_QFI | RIO_IPWSR_PWD));
/* Configure port write contoller for snooping enable all reporting,
clear queue full */
out_be32(&priv->msg_regs->pwmr,
RIO_IPWMR_SEN | RIO_IPWMR_QFIE | RIO_IPWMR_EIE | RIO_IPWMR_CQ);
/* Hook up port-write handler */
rc = request_irq(IRQ_RIO_PW(mport), fsl_rio_port_write_handler, 0,
"port-write", (void *)mport);
if (rc < 0) {
pr_err("MPC85xx RIO: unable to request inbound doorbell irq");
goto err_out;
}
INIT_WORK(&priv->pw_work, fsl_pw_dpc);
spin_lock_init(&priv->pw_fifo_lock);
if (kfifo_alloc(&priv->pw_fifo, RIO_PW_MSG_SIZE * 32, GFP_KERNEL)) {
pr_err("FIFO allocation failed\n");
rc = -ENOMEM;
goto err_out_irq;
}
pr_debug("IPWMR: 0x%08x IPWSR: 0x%08x\n",
in_be32(&priv->msg_regs->pwmr),
in_be32(&priv->msg_regs->pwsr));
return rc;
err_out_irq:
free_irq(IRQ_RIO_PW(mport), (void *)mport);
err_out:
dma_free_coherent(priv->dev, RIO_PW_MSG_SIZE,
priv->port_write_msg.virt,
priv->port_write_msg.phys);
return rc;
}
static char *cmdline = NULL;
static int fsl_rio_get_hdid(int index)
{
/* XXX Need to parse multiple entries in some format */
if (!cmdline)
return -1;
return simple_strtol(cmdline, NULL, 0);
}
static int fsl_rio_get_cmdline(char *s)
{
if (!s)
return 0;
cmdline = s;
return 1;
}
__setup("riohdid=", fsl_rio_get_cmdline);
static inline void fsl_rio_info(struct device *dev, u32 ccsr)
{
const char *str;
if (ccsr & 1) {
/* Serial phy */
switch (ccsr >> 30) {
case 0:
str = "1";
break;
case 1:
str = "4";
break;
default:
str = "Unknown";
break;
}
dev_info(dev, "Hardware port width: %s\n", str);
switch ((ccsr >> 27) & 7) {
case 0:
str = "Single-lane 0";
break;
case 1:
str = "Single-lane 2";
break;
case 2:
str = "Four-lane";
break;
default:
str = "Unknown";
break;
}
dev_info(dev, "Training connection status: %s\n", str);
} else {
/* Parallel phy */
if (!(ccsr & 0x80000000))
dev_info(dev, "Output port operating in 8-bit mode\n");
if (!(ccsr & 0x08000000))
dev_info(dev, "Input port operating in 8-bit mode\n");
}
}
/**
* fsl_rio_setup - Setup Freescale PowerPC RapidIO interface
* @dev: platform_device pointer
*
* Initializes MPC85xx RapidIO hardware interface, configures
* master port with system-specific info, and registers the
* master port with the RapidIO subsystem.
*/
int fsl_rio_setup(struct platform_device *dev)
{
struct rio_ops *ops;
struct rio_mport *port;
struct rio_priv *priv;
int rc = 0;
const u32 *dt_range, *cell;
struct resource regs;
int rlen;
u32 ccsr;
u64 law_start, law_size;
int paw, aw, sw;
if (!dev->dev.of_node) {
dev_err(&dev->dev, "Device OF-Node is NULL");
return -EFAULT;
}
rc = of_address_to_resource(dev->dev.of_node, 0, &regs);
if (rc) {
dev_err(&dev->dev, "Can't get %s property 'reg'\n",
dev->dev.of_node->full_name);
return -EFAULT;
}
dev_info(&dev->dev, "Of-device full name %s\n", dev->dev.of_node->full_name);
dev_info(&dev->dev, "Regs: %pR\n", &regs);
dt_range = of_get_property(dev->dev.of_node, "ranges", &rlen);
if (!dt_range) {
dev_err(&dev->dev, "Can't get %s property 'ranges'\n",
dev->dev.of_node->full_name);
return -EFAULT;
}
/* Get node address wide */
cell = of_get_property(dev->dev.of_node, "#address-cells", NULL);
if (cell)
aw = *cell;
else
aw = of_n_addr_cells(dev->dev.of_node);
/* Get node size wide */
cell = of_get_property(dev->dev.of_node, "#size-cells", NULL);
if (cell)
sw = *cell;
else
sw = of_n_size_cells(dev->dev.of_node);
/* Get parent address wide wide */
paw = of_n_addr_cells(dev->dev.of_node);
law_start = of_read_number(dt_range + aw, paw);
law_size = of_read_number(dt_range + aw + paw, sw);
dev_info(&dev->dev, "LAW start 0x%016llx, size 0x%016llx.\n",
law_start, law_size);
ops = kzalloc(sizeof(struct rio_ops), GFP_KERNEL);
if (!ops) {
rc = -ENOMEM;
goto err_ops;
}
ops->lcread = fsl_local_config_read;
ops->lcwrite = fsl_local_config_write;
ops->cread = fsl_rio_config_read;
ops->cwrite = fsl_rio_config_write;
ops->dsend = fsl_rio_doorbell_send;
ops->pwenable = fsl_rio_pw_enable;
port = kzalloc(sizeof(struct rio_mport), GFP_KERNEL);
if (!port) {
rc = -ENOMEM;
goto err_port;
}
port->id = 0;
port->index = 0;
priv = kzalloc(sizeof(struct rio_priv), GFP_KERNEL);
if (!priv) {
printk(KERN_ERR "Can't alloc memory for 'priv'\n");
rc = -ENOMEM;
goto err_priv;
}
INIT_LIST_HEAD(&port->dbells);
port->iores.start = law_start;
port->iores.end = law_start + law_size - 1;
port->iores.flags = IORESOURCE_MEM;
port->iores.name = "rio_io_win";
priv->pwirq = irq_of_parse_and_map(dev->dev.of_node, 0);
priv->bellirq = irq_of_parse_and_map(dev->dev.of_node, 2);
priv->txirq = irq_of_parse_and_map(dev->dev.of_node, 3);
priv->rxirq = irq_of_parse_and_map(dev->dev.of_node, 4);
dev_info(&dev->dev, "pwirq: %d, bellirq: %d, txirq: %d, rxirq %d\n",
priv->pwirq, priv->bellirq, priv->txirq, priv->rxirq);
rio_init_dbell_res(&port->riores[RIO_DOORBELL_RESOURCE], 0, 0xffff);
rio_init_mbox_res(&port->riores[RIO_INB_MBOX_RESOURCE], 0, 0);
rio_init_mbox_res(&port->riores[RIO_OUTB_MBOX_RESOURCE], 0, 0);
strcpy(port->name, "RIO0 mport");
priv->dev = &dev->dev;
port->ops = ops;
port->host_deviceid = fsl_rio_get_hdid(port->id);
port->priv = priv;
rio_register_mport(port);
priv->regs_win = ioremap(regs.start, regs.end - regs.start + 1);
rio_regs_win = priv->regs_win;
/* Probe the master port phy type */
ccsr = in_be32(priv->regs_win + RIO_CCSR);
port->phy_type = (ccsr & 1) ? RIO_PHY_SERIAL : RIO_PHY_PARALLEL;
dev_info(&dev->dev, "RapidIO PHY type: %s\n",
(port->phy_type == RIO_PHY_PARALLEL) ? "parallel" :
((port->phy_type == RIO_PHY_SERIAL) ? "serial" :
"unknown"));
/* Checking the port training status */
if (in_be32((priv->regs_win + RIO_ESCSR)) & 1) {
dev_err(&dev->dev, "Port is not ready. "
"Try to restart connection...\n");
switch (port->phy_type) {
case RIO_PHY_SERIAL:
/* Disable ports */
out_be32(priv->regs_win + RIO_CCSR, 0);
/* Set 1x lane */
setbits32(priv->regs_win + RIO_CCSR, 0x02000000);
/* Enable ports */
setbits32(priv->regs_win + RIO_CCSR, 0x00600000);
break;
case RIO_PHY_PARALLEL:
/* Disable ports */
out_be32(priv->regs_win + RIO_CCSR, 0x22000000);
/* Enable ports */
out_be32(priv->regs_win + RIO_CCSR, 0x44000000);
break;
}
msleep(100);
if (in_be32((priv->regs_win + RIO_ESCSR)) & 1) {
dev_err(&dev->dev, "Port restart failed.\n");
rc = -ENOLINK;
goto err;
}
dev_info(&dev->dev, "Port restart success!\n");
}
fsl_rio_info(&dev->dev, ccsr);
port->sys_size = (in_be32((priv->regs_win + RIO_PEF_CAR))
& RIO_PEF_CTLS) >> 4;
dev_info(&dev->dev, "RapidIO Common Transport System size: %d\n",
port->sys_size ? 65536 : 256);
priv->atmu_regs = (struct rio_atmu_regs *)(priv->regs_win
+ RIO_ATMU_REGS_OFFSET);
priv->maint_atmu_regs = priv->atmu_regs + 1;
priv->dbell_atmu_regs = priv->atmu_regs + 2;
priv->msg_regs = (struct rio_msg_regs *)(priv->regs_win +
((port->phy_type == RIO_PHY_SERIAL) ?
RIO_S_MSG_REGS_OFFSET : RIO_P_MSG_REGS_OFFSET));
/* Set to receive any dist ID for serial RapidIO controller. */
if (port->phy_type == RIO_PHY_SERIAL)
out_be32((priv->regs_win + RIO_ISR_AACR), RIO_ISR_AACR_AA);
/* Configure maintenance transaction window */
out_be32(&priv->maint_atmu_regs->rowbar, law_start >> 12);
out_be32(&priv->maint_atmu_regs->rowar,
0x80077000 | (ilog2(RIO_MAINT_WIN_SIZE) - 1));
priv->maint_win = ioremap(law_start, RIO_MAINT_WIN_SIZE);
/* Configure outbound doorbell window */
out_be32(&priv->dbell_atmu_regs->rowbar,
(law_start + RIO_MAINT_WIN_SIZE) >> 12);
out_be32(&priv->dbell_atmu_regs->rowar, 0x8004200b); /* 4k */
fsl_rio_doorbell_init(port);
fsl_rio_port_write_init(port);
#ifdef CONFIG_E500
saved_mcheck_exception = ppc_md.machine_check_exception;
ppc_md.machine_check_exception = fsl_rio_mcheck_exception;
#endif
/* Ensure that RFXE is set */
mtspr(SPRN_HID1, (mfspr(SPRN_HID1) | 0x20000));
return 0;
err:
iounmap(priv->regs_win);
kfree(priv);
err_priv:
kfree(port);
err_port:
kfree(ops);
err_ops:
return rc;
}
/* The probe function for RapidIO peer-to-peer network.
*/
static int __devinit fsl_of_rio_rpn_probe(struct platform_device *dev,
const struct of_device_id *match)
{
int rc;
printk(KERN_INFO "Setting up RapidIO peer-to-peer network %s\n",
dev->dev.of_node->full_name);
rc = fsl_rio_setup(dev);
if (rc)
goto out;
/* Enumerate all registered ports */
rc = rio_init_mports();
out:
return rc;
};
static const struct of_device_id fsl_of_rio_rpn_ids[] = {
{
.compatible = "fsl,rapidio-delta",
},
{},
};
static struct of_platform_driver fsl_of_rio_rpn_driver = {
.driver = {
.name = "fsl-of-rio",
.owner = THIS_MODULE,
.of_match_table = fsl_of_rio_rpn_ids,
},
.probe = fsl_of_rio_rpn_probe,
};
static __init int fsl_of_rio_rpn_init(void)
{
return of_register_platform_driver(&fsl_of_rio_rpn_driver);
}
subsys_initcall(fsl_of_rio_rpn_init);