linux_old1/fs/hfsplus/dir.c

584 lines
14 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/hfsplus/dir.c
*
* Copyright (C) 2001
* Brad Boyer (flar@allandria.com)
* (C) 2003 Ardis Technologies <roman@ardistech.com>
*
* Handling of directories
*/
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/random.h>
hfsplus: fix worst-case unicode to char conversion of file names and attributes This is a series of 3 patches which corrects issues in HFS+ concerning the use of non-english file names and attributes. Names and attributes are stored internally as UTF-16 units up to a fixed maximum size, and convert to and from user-representation by NLS. The code incorrectly assume that NLS string lengths are equal to unicode lengths, which is only true for English ascii usage. This patch (of 3): The HFS Plus Volume Format specification (TN1150) states that file names are stored internally as a maximum of 255 unicode characters, as defined by The Unicode Standard, Version 2.0 [Unicode, Inc. ISBN 0-201-48345-9]. File names are converted by the NLS system on Linux before presented to the user. 255 CJK characters converts to UTF-8 with 1 unicode character to up to 3 bytes, and to GB18030 with 1 unicode character to up to 4 bytes. Thus, trying in a UTF-8 locale to list files with names of more than 85 CJK characters results in: $ ls /mnt ls: reading directory /mnt: File name too long The receiving buffer to hfsplus_uni2asc() needs to be 255 x NLS_MAX_CHARSET_SIZE bytes, not 255 bytes as the code has always been. Similar consideration applies to attributes, which are stored internally as a maximum of 127 UTF-16BE units. See XNU source for an up-to-date reference on attributes. Strictly speaking, the maximum value of NLS_MAX_CHARSET_SIZE = 6 is not attainable in the case of conversion to UTF-8, as going beyond 3 bytes requires the use of surrogate pairs, i.e. consuming two input units. Thanks Anton Altaparmakov for reviewing an earlier version of this change. This patch fixes all callers of hfsplus_uni2asc(), and also enables the use of long non-English file names in HFS+. The getting and setting, and general usage of long non-English attributes requires further forthcoming work, in the following patches of this series. [akpm@linux-foundation.org: fix build] Signed-off-by: Hin-Tak Leung <htl10@users.sourceforge.net> Reviewed-by: Anton Altaparmakov <anton@tuxera.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Sougata Santra <sougata@tuxera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-07 05:36:21 +08:00
#include <linux/nls.h>
#include "hfsplus_fs.h"
#include "hfsplus_raw.h"
#include "xattr.h"
#include "acl.h"
static inline void hfsplus_instantiate(struct dentry *dentry,
struct inode *inode, u32 cnid)
{
dentry->d_fsdata = (void *)(unsigned long)cnid;
d_instantiate(dentry, inode);
}
/* Find the entry inside dir named dentry->d_name */
static struct dentry *hfsplus_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct inode *inode = NULL;
struct hfs_find_data fd;
struct super_block *sb;
hfsplus_cat_entry entry;
int err;
u32 cnid, linkid = 0;
u16 type;
sb = dir->i_sb;
dentry->d_fsdata = NULL;
err = hfs_find_init(HFSPLUS_SB(sb)->cat_tree, &fd);
if (err)
return ERR_PTR(err);
hfsplus: fix longname handling Longname is not correctly handled by hfsplus driver. If an attempt to create a longname(>255) file/directory is made, it succeeds by creating a file/directory with HFSPLUS_MAX_STRLEN and incorrect catalog key. Thus leaving the volume in an inconsistent state. This patch fixes this issue. Although lookup is always called first to create a negative entry, so just doing a check in lookup would probably fix this issue. I choose to propagate error to other iops as well. Please NOTE: I have factored out hfsplus_cat_build_key_with_cnid from hfsplus_cat_build_key, to avoid unncessary branching. Thanks a lot. TEST: ------ dir="TEST_DIR" cdir=`pwd` name255="_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_1234" name256="${name255}5" mkdir $dir cd $dir touch $name255 rm -f $name255 touch $name256 ls -la cd $cdir rm -rf $dir RESULT: ------- [sougata@ultrabook tmp]$ cdir=`pwd` [sougata@ultrabook tmp]$ name255="_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_1234" [sougata@ultrabook tmp]$ name256="${name255}5" [sougata@ultrabook tmp]$ [sougata@ultrabook tmp]$ mkdir $dir [sougata@ultrabook tmp]$ cd $dir [sougata@ultrabook TEST_DIR]$ touch $name255 [sougata@ultrabook TEST_DIR]$ rm -f $name255 [sougata@ultrabook TEST_DIR]$ touch $name256 [sougata@ultrabook TEST_DIR]$ ls -la ls: cannot access _123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234: No such file or directory total 0 drwxrwxr-x 1 sougata sougata 3 Feb 20 19:56 . drwxrwxrwx 1 root root 6 Feb 20 19:56 .. -????????? ? ? ? ? ? _123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234 [sougata@ultrabook TEST_DIR]$ cd $cdir [sougata@ultrabook tmp]$ rm -rf $dir rm: cannot remove `TEST_DIR': Directory not empty -ENAMETOOLONG returned from hfsplus_asc2uni was not propaged to iops. This allowed hfsplus to create files/directories with HFSPLUS_MAX_STRLEN and incorrect keys, leaving the FS in an inconsistent state. This patch fixes this issue. Signed-off-by: Sougata Santra <sougata@tuxera.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-19 08:17:12 +08:00
err = hfsplus_cat_build_key(sb, fd.search_key, dir->i_ino,
&dentry->d_name);
if (unlikely(err < 0))
goto fail;
again:
err = hfs_brec_read(&fd, &entry, sizeof(entry));
if (err) {
if (err == -ENOENT) {
hfs_find_exit(&fd);
/* No such entry */
inode = NULL;
goto out;
}
goto fail;
}
type = be16_to_cpu(entry.type);
if (type == HFSPLUS_FOLDER) {
if (fd.entrylength < sizeof(struct hfsplus_cat_folder)) {
err = -EIO;
goto fail;
}
cnid = be32_to_cpu(entry.folder.id);
dentry->d_fsdata = (void *)(unsigned long)cnid;
} else if (type == HFSPLUS_FILE) {
if (fd.entrylength < sizeof(struct hfsplus_cat_file)) {
err = -EIO;
goto fail;
}
cnid = be32_to_cpu(entry.file.id);
if (entry.file.user_info.fdType ==
cpu_to_be32(HFSP_HARDLINK_TYPE) &&
entry.file.user_info.fdCreator ==
cpu_to_be32(HFSP_HFSPLUS_CREATOR) &&
(entry.file.create_date ==
HFSPLUS_I(HFSPLUS_SB(sb)->hidden_dir)->
create_date ||
entry.file.create_date ==
HFSPLUS_I(d_inode(sb->s_root))->
create_date) &&
HFSPLUS_SB(sb)->hidden_dir) {
struct qstr str;
char name[32];
if (dentry->d_fsdata) {
/*
* We found a link pointing to another link,
* so ignore it and treat it as regular file.
*/
cnid = (unsigned long)dentry->d_fsdata;
linkid = 0;
} else {
dentry->d_fsdata = (void *)(unsigned long)cnid;
linkid =
be32_to_cpu(entry.file.permissions.dev);
str.len = sprintf(name, "iNode%d", linkid);
str.name = name;
hfsplus: fix longname handling Longname is not correctly handled by hfsplus driver. If an attempt to create a longname(>255) file/directory is made, it succeeds by creating a file/directory with HFSPLUS_MAX_STRLEN and incorrect catalog key. Thus leaving the volume in an inconsistent state. This patch fixes this issue. Although lookup is always called first to create a negative entry, so just doing a check in lookup would probably fix this issue. I choose to propagate error to other iops as well. Please NOTE: I have factored out hfsplus_cat_build_key_with_cnid from hfsplus_cat_build_key, to avoid unncessary branching. Thanks a lot. TEST: ------ dir="TEST_DIR" cdir=`pwd` name255="_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_1234" name256="${name255}5" mkdir $dir cd $dir touch $name255 rm -f $name255 touch $name256 ls -la cd $cdir rm -rf $dir RESULT: ------- [sougata@ultrabook tmp]$ cdir=`pwd` [sougata@ultrabook tmp]$ name255="_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_1234" [sougata@ultrabook tmp]$ name256="${name255}5" [sougata@ultrabook tmp]$ [sougata@ultrabook tmp]$ mkdir $dir [sougata@ultrabook tmp]$ cd $dir [sougata@ultrabook TEST_DIR]$ touch $name255 [sougata@ultrabook TEST_DIR]$ rm -f $name255 [sougata@ultrabook TEST_DIR]$ touch $name256 [sougata@ultrabook TEST_DIR]$ ls -la ls: cannot access _123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234: No such file or directory total 0 drwxrwxr-x 1 sougata sougata 3 Feb 20 19:56 . drwxrwxrwx 1 root root 6 Feb 20 19:56 .. -????????? ? ? ? ? ? _123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234 [sougata@ultrabook TEST_DIR]$ cd $cdir [sougata@ultrabook tmp]$ rm -rf $dir rm: cannot remove `TEST_DIR': Directory not empty -ENAMETOOLONG returned from hfsplus_asc2uni was not propaged to iops. This allowed hfsplus to create files/directories with HFSPLUS_MAX_STRLEN and incorrect keys, leaving the FS in an inconsistent state. This patch fixes this issue. Signed-off-by: Sougata Santra <sougata@tuxera.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-19 08:17:12 +08:00
err = hfsplus_cat_build_key(sb, fd.search_key,
HFSPLUS_SB(sb)->hidden_dir->i_ino,
&str);
hfsplus: fix longname handling Longname is not correctly handled by hfsplus driver. If an attempt to create a longname(>255) file/directory is made, it succeeds by creating a file/directory with HFSPLUS_MAX_STRLEN and incorrect catalog key. Thus leaving the volume in an inconsistent state. This patch fixes this issue. Although lookup is always called first to create a negative entry, so just doing a check in lookup would probably fix this issue. I choose to propagate error to other iops as well. Please NOTE: I have factored out hfsplus_cat_build_key_with_cnid from hfsplus_cat_build_key, to avoid unncessary branching. Thanks a lot. TEST: ------ dir="TEST_DIR" cdir=`pwd` name255="_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_1234" name256="${name255}5" mkdir $dir cd $dir touch $name255 rm -f $name255 touch $name256 ls -la cd $cdir rm -rf $dir RESULT: ------- [sougata@ultrabook tmp]$ cdir=`pwd` [sougata@ultrabook tmp]$ name255="_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_1234" [sougata@ultrabook tmp]$ name256="${name255}5" [sougata@ultrabook tmp]$ [sougata@ultrabook tmp]$ mkdir $dir [sougata@ultrabook tmp]$ cd $dir [sougata@ultrabook TEST_DIR]$ touch $name255 [sougata@ultrabook TEST_DIR]$ rm -f $name255 [sougata@ultrabook TEST_DIR]$ touch $name256 [sougata@ultrabook TEST_DIR]$ ls -la ls: cannot access _123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234: No such file or directory total 0 drwxrwxr-x 1 sougata sougata 3 Feb 20 19:56 . drwxrwxrwx 1 root root 6 Feb 20 19:56 .. -????????? ? ? ? ? ? _123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234 [sougata@ultrabook TEST_DIR]$ cd $cdir [sougata@ultrabook tmp]$ rm -rf $dir rm: cannot remove `TEST_DIR': Directory not empty -ENAMETOOLONG returned from hfsplus_asc2uni was not propaged to iops. This allowed hfsplus to create files/directories with HFSPLUS_MAX_STRLEN and incorrect keys, leaving the FS in an inconsistent state. This patch fixes this issue. Signed-off-by: Sougata Santra <sougata@tuxera.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-19 08:17:12 +08:00
if (unlikely(err < 0))
goto fail;
goto again;
}
} else if (!dentry->d_fsdata)
dentry->d_fsdata = (void *)(unsigned long)cnid;
} else {
pr_err("invalid catalog entry type in lookup\n");
err = -EIO;
goto fail;
}
hfs_find_exit(&fd);
inode = hfsplus_iget(dir->i_sb, cnid);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (S_ISREG(inode->i_mode))
HFSPLUS_I(inode)->linkid = linkid;
out:
return d_splice_alias(inode, dentry);
fail:
hfs_find_exit(&fd);
return ERR_PTR(err);
}
static int hfsplus_readdir(struct file *file, struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
struct super_block *sb = inode->i_sb;
int len, err;
hfsplus: fix worst-case unicode to char conversion of file names and attributes This is a series of 3 patches which corrects issues in HFS+ concerning the use of non-english file names and attributes. Names and attributes are stored internally as UTF-16 units up to a fixed maximum size, and convert to and from user-representation by NLS. The code incorrectly assume that NLS string lengths are equal to unicode lengths, which is only true for English ascii usage. This patch (of 3): The HFS Plus Volume Format specification (TN1150) states that file names are stored internally as a maximum of 255 unicode characters, as defined by The Unicode Standard, Version 2.0 [Unicode, Inc. ISBN 0-201-48345-9]. File names are converted by the NLS system on Linux before presented to the user. 255 CJK characters converts to UTF-8 with 1 unicode character to up to 3 bytes, and to GB18030 with 1 unicode character to up to 4 bytes. Thus, trying in a UTF-8 locale to list files with names of more than 85 CJK characters results in: $ ls /mnt ls: reading directory /mnt: File name too long The receiving buffer to hfsplus_uni2asc() needs to be 255 x NLS_MAX_CHARSET_SIZE bytes, not 255 bytes as the code has always been. Similar consideration applies to attributes, which are stored internally as a maximum of 127 UTF-16BE units. See XNU source for an up-to-date reference on attributes. Strictly speaking, the maximum value of NLS_MAX_CHARSET_SIZE = 6 is not attainable in the case of conversion to UTF-8, as going beyond 3 bytes requires the use of surrogate pairs, i.e. consuming two input units. Thanks Anton Altaparmakov for reviewing an earlier version of this change. This patch fixes all callers of hfsplus_uni2asc(), and also enables the use of long non-English file names in HFS+. The getting and setting, and general usage of long non-English attributes requires further forthcoming work, in the following patches of this series. [akpm@linux-foundation.org: fix build] Signed-off-by: Hin-Tak Leung <htl10@users.sourceforge.net> Reviewed-by: Anton Altaparmakov <anton@tuxera.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Sougata Santra <sougata@tuxera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-07 05:36:21 +08:00
char *strbuf;
hfsplus_cat_entry entry;
struct hfs_find_data fd;
struct hfsplus_readdir_data *rd;
u16 type;
if (file->f_pos >= inode->i_size)
return 0;
err = hfs_find_init(HFSPLUS_SB(sb)->cat_tree, &fd);
if (err)
return err;
hfsplus: fix worst-case unicode to char conversion of file names and attributes This is a series of 3 patches which corrects issues in HFS+ concerning the use of non-english file names and attributes. Names and attributes are stored internally as UTF-16 units up to a fixed maximum size, and convert to and from user-representation by NLS. The code incorrectly assume that NLS string lengths are equal to unicode lengths, which is only true for English ascii usage. This patch (of 3): The HFS Plus Volume Format specification (TN1150) states that file names are stored internally as a maximum of 255 unicode characters, as defined by The Unicode Standard, Version 2.0 [Unicode, Inc. ISBN 0-201-48345-9]. File names are converted by the NLS system on Linux before presented to the user. 255 CJK characters converts to UTF-8 with 1 unicode character to up to 3 bytes, and to GB18030 with 1 unicode character to up to 4 bytes. Thus, trying in a UTF-8 locale to list files with names of more than 85 CJK characters results in: $ ls /mnt ls: reading directory /mnt: File name too long The receiving buffer to hfsplus_uni2asc() needs to be 255 x NLS_MAX_CHARSET_SIZE bytes, not 255 bytes as the code has always been. Similar consideration applies to attributes, which are stored internally as a maximum of 127 UTF-16BE units. See XNU source for an up-to-date reference on attributes. Strictly speaking, the maximum value of NLS_MAX_CHARSET_SIZE = 6 is not attainable in the case of conversion to UTF-8, as going beyond 3 bytes requires the use of surrogate pairs, i.e. consuming two input units. Thanks Anton Altaparmakov for reviewing an earlier version of this change. This patch fixes all callers of hfsplus_uni2asc(), and also enables the use of long non-English file names in HFS+. The getting and setting, and general usage of long non-English attributes requires further forthcoming work, in the following patches of this series. [akpm@linux-foundation.org: fix build] Signed-off-by: Hin-Tak Leung <htl10@users.sourceforge.net> Reviewed-by: Anton Altaparmakov <anton@tuxera.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Sougata Santra <sougata@tuxera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-07 05:36:21 +08:00
strbuf = kmalloc(NLS_MAX_CHARSET_SIZE * HFSPLUS_MAX_STRLEN + 1, GFP_KERNEL);
if (!strbuf) {
err = -ENOMEM;
goto out;
}
hfsplus: fix longname handling Longname is not correctly handled by hfsplus driver. If an attempt to create a longname(>255) file/directory is made, it succeeds by creating a file/directory with HFSPLUS_MAX_STRLEN and incorrect catalog key. Thus leaving the volume in an inconsistent state. This patch fixes this issue. Although lookup is always called first to create a negative entry, so just doing a check in lookup would probably fix this issue. I choose to propagate error to other iops as well. Please NOTE: I have factored out hfsplus_cat_build_key_with_cnid from hfsplus_cat_build_key, to avoid unncessary branching. Thanks a lot. TEST: ------ dir="TEST_DIR" cdir=`pwd` name255="_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ _123456789_123456789_123456789_123456789_123456789_1234" name256="${name255}5" mkdir $dir cd $dir touch $name255 rm -f $name255 touch $name256 ls -la cd $cdir rm -rf $dir RESULT: ------- [sougata@ultrabook tmp]$ cdir=`pwd` [sougata@ultrabook tmp]$ name255="_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_123456789_123456789\ > _123456789_123456789_123456789_123456789_123456789_1234" [sougata@ultrabook tmp]$ name256="${name255}5" [sougata@ultrabook tmp]$ [sougata@ultrabook tmp]$ mkdir $dir [sougata@ultrabook tmp]$ cd $dir [sougata@ultrabook TEST_DIR]$ touch $name255 [sougata@ultrabook TEST_DIR]$ rm -f $name255 [sougata@ultrabook TEST_DIR]$ touch $name256 [sougata@ultrabook TEST_DIR]$ ls -la ls: cannot access _123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234: No such file or directory total 0 drwxrwxr-x 1 sougata sougata 3 Feb 20 19:56 . drwxrwxrwx 1 root root 6 Feb 20 19:56 .. -????????? ? ? ? ? ? _123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_1234 [sougata@ultrabook TEST_DIR]$ cd $cdir [sougata@ultrabook tmp]$ rm -rf $dir rm: cannot remove `TEST_DIR': Directory not empty -ENAMETOOLONG returned from hfsplus_asc2uni was not propaged to iops. This allowed hfsplus to create files/directories with HFSPLUS_MAX_STRLEN and incorrect keys, leaving the FS in an inconsistent state. This patch fixes this issue. Signed-off-by: Sougata Santra <sougata@tuxera.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-19 08:17:12 +08:00
hfsplus_cat_build_key_with_cnid(sb, fd.search_key, inode->i_ino);
err = hfs_brec_find(&fd, hfs_find_rec_by_key);
if (err)
goto out;
if (ctx->pos == 0) {
/* This is completely artificial... */
if (!dir_emit_dot(file, ctx))
goto out;
ctx->pos = 1;
}
if (ctx->pos == 1) {
if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) {
err = -EIO;
goto out;
}
hfs_bnode_read(fd.bnode, &entry, fd.entryoffset,
fd.entrylength);
if (be16_to_cpu(entry.type) != HFSPLUS_FOLDER_THREAD) {
pr_err("bad catalog folder thread\n");
err = -EIO;
goto out;
}
if (fd.entrylength < HFSPLUS_MIN_THREAD_SZ) {
pr_err("truncated catalog thread\n");
err = -EIO;
goto out;
}
if (!dir_emit(ctx, "..", 2,
be32_to_cpu(entry.thread.parentID), DT_DIR))
goto out;
ctx->pos = 2;
}
if (ctx->pos >= inode->i_size)
goto out;
err = hfs_brec_goto(&fd, ctx->pos - 1);
if (err)
goto out;
for (;;) {
if (be32_to_cpu(fd.key->cat.parent) != inode->i_ino) {
pr_err("walked past end of dir\n");
err = -EIO;
goto out;
}
if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) {
err = -EIO;
goto out;
}
hfs_bnode_read(fd.bnode, &entry, fd.entryoffset,
fd.entrylength);
type = be16_to_cpu(entry.type);
hfsplus: fix worst-case unicode to char conversion of file names and attributes This is a series of 3 patches which corrects issues in HFS+ concerning the use of non-english file names and attributes. Names and attributes are stored internally as UTF-16 units up to a fixed maximum size, and convert to and from user-representation by NLS. The code incorrectly assume that NLS string lengths are equal to unicode lengths, which is only true for English ascii usage. This patch (of 3): The HFS Plus Volume Format specification (TN1150) states that file names are stored internally as a maximum of 255 unicode characters, as defined by The Unicode Standard, Version 2.0 [Unicode, Inc. ISBN 0-201-48345-9]. File names are converted by the NLS system on Linux before presented to the user. 255 CJK characters converts to UTF-8 with 1 unicode character to up to 3 bytes, and to GB18030 with 1 unicode character to up to 4 bytes. Thus, trying in a UTF-8 locale to list files with names of more than 85 CJK characters results in: $ ls /mnt ls: reading directory /mnt: File name too long The receiving buffer to hfsplus_uni2asc() needs to be 255 x NLS_MAX_CHARSET_SIZE bytes, not 255 bytes as the code has always been. Similar consideration applies to attributes, which are stored internally as a maximum of 127 UTF-16BE units. See XNU source for an up-to-date reference on attributes. Strictly speaking, the maximum value of NLS_MAX_CHARSET_SIZE = 6 is not attainable in the case of conversion to UTF-8, as going beyond 3 bytes requires the use of surrogate pairs, i.e. consuming two input units. Thanks Anton Altaparmakov for reviewing an earlier version of this change. This patch fixes all callers of hfsplus_uni2asc(), and also enables the use of long non-English file names in HFS+. The getting and setting, and general usage of long non-English attributes requires further forthcoming work, in the following patches of this series. [akpm@linux-foundation.org: fix build] Signed-off-by: Hin-Tak Leung <htl10@users.sourceforge.net> Reviewed-by: Anton Altaparmakov <anton@tuxera.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Sougata Santra <sougata@tuxera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-07 05:36:21 +08:00
len = NLS_MAX_CHARSET_SIZE * HFSPLUS_MAX_STRLEN;
err = hfsplus_uni2asc(sb, &fd.key->cat.name, strbuf, &len);
if (err)
goto out;
if (type == HFSPLUS_FOLDER) {
if (fd.entrylength <
sizeof(struct hfsplus_cat_folder)) {
pr_err("small dir entry\n");
err = -EIO;
goto out;
}
if (HFSPLUS_SB(sb)->hidden_dir &&
HFSPLUS_SB(sb)->hidden_dir->i_ino ==
be32_to_cpu(entry.folder.id))
goto next;
if (!dir_emit(ctx, strbuf, len,
be32_to_cpu(entry.folder.id), DT_DIR))
break;
} else if (type == HFSPLUS_FILE) {
u16 mode;
unsigned type = DT_UNKNOWN;
if (fd.entrylength < sizeof(struct hfsplus_cat_file)) {
pr_err("small file entry\n");
err = -EIO;
goto out;
}
mode = be16_to_cpu(entry.file.permissions.mode);
if (S_ISREG(mode))
type = DT_REG;
else if (S_ISLNK(mode))
type = DT_LNK;
else if (S_ISFIFO(mode))
type = DT_FIFO;
else if (S_ISCHR(mode))
type = DT_CHR;
else if (S_ISBLK(mode))
type = DT_BLK;
else if (S_ISSOCK(mode))
type = DT_SOCK;
if (!dir_emit(ctx, strbuf, len,
be32_to_cpu(entry.file.id), type))
break;
} else {
pr_err("bad catalog entry type\n");
err = -EIO;
goto out;
}
next:
ctx->pos++;
if (ctx->pos >= inode->i_size)
goto out;
err = hfs_brec_goto(&fd, 1);
if (err)
goto out;
}
rd = file->private_data;
if (!rd) {
rd = kmalloc(sizeof(struct hfsplus_readdir_data), GFP_KERNEL);
if (!rd) {
err = -ENOMEM;
goto out;
}
file->private_data = rd;
rd->file = file;
spin_lock(&HFSPLUS_I(inode)->open_dir_lock);
list_add(&rd->list, &HFSPLUS_I(inode)->open_dir_list);
spin_unlock(&HFSPLUS_I(inode)->open_dir_lock);
}
/*
* Can be done after the list insertion; exclusion with
* hfsplus_delete_cat() is provided by directory lock.
*/
memcpy(&rd->key, fd.key, sizeof(struct hfsplus_cat_key));
out:
hfsplus: fix worst-case unicode to char conversion of file names and attributes This is a series of 3 patches which corrects issues in HFS+ concerning the use of non-english file names and attributes. Names and attributes are stored internally as UTF-16 units up to a fixed maximum size, and convert to and from user-representation by NLS. The code incorrectly assume that NLS string lengths are equal to unicode lengths, which is only true for English ascii usage. This patch (of 3): The HFS Plus Volume Format specification (TN1150) states that file names are stored internally as a maximum of 255 unicode characters, as defined by The Unicode Standard, Version 2.0 [Unicode, Inc. ISBN 0-201-48345-9]. File names are converted by the NLS system on Linux before presented to the user. 255 CJK characters converts to UTF-8 with 1 unicode character to up to 3 bytes, and to GB18030 with 1 unicode character to up to 4 bytes. Thus, trying in a UTF-8 locale to list files with names of more than 85 CJK characters results in: $ ls /mnt ls: reading directory /mnt: File name too long The receiving buffer to hfsplus_uni2asc() needs to be 255 x NLS_MAX_CHARSET_SIZE bytes, not 255 bytes as the code has always been. Similar consideration applies to attributes, which are stored internally as a maximum of 127 UTF-16BE units. See XNU source for an up-to-date reference on attributes. Strictly speaking, the maximum value of NLS_MAX_CHARSET_SIZE = 6 is not attainable in the case of conversion to UTF-8, as going beyond 3 bytes requires the use of surrogate pairs, i.e. consuming two input units. Thanks Anton Altaparmakov for reviewing an earlier version of this change. This patch fixes all callers of hfsplus_uni2asc(), and also enables the use of long non-English file names in HFS+. The getting and setting, and general usage of long non-English attributes requires further forthcoming work, in the following patches of this series. [akpm@linux-foundation.org: fix build] Signed-off-by: Hin-Tak Leung <htl10@users.sourceforge.net> Reviewed-by: Anton Altaparmakov <anton@tuxera.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Sougata Santra <sougata@tuxera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-07 05:36:21 +08:00
kfree(strbuf);
hfs_find_exit(&fd);
return err;
}
static int hfsplus_dir_release(struct inode *inode, struct file *file)
{
struct hfsplus_readdir_data *rd = file->private_data;
if (rd) {
spin_lock(&HFSPLUS_I(inode)->open_dir_lock);
list_del(&rd->list);
spin_unlock(&HFSPLUS_I(inode)->open_dir_lock);
kfree(rd);
}
return 0;
}
static int hfsplus_link(struct dentry *src_dentry, struct inode *dst_dir,
struct dentry *dst_dentry)
{
struct hfsplus_sb_info *sbi = HFSPLUS_SB(dst_dir->i_sb);
struct inode *inode = d_inode(src_dentry);
struct inode *src_dir = d_inode(src_dentry->d_parent);
struct qstr str;
char name[32];
u32 cnid, id;
int res;
if (HFSPLUS_IS_RSRC(inode))
return -EPERM;
if (!S_ISREG(inode->i_mode))
return -EPERM;
mutex_lock(&sbi->vh_mutex);
if (inode->i_ino == (u32)(unsigned long)src_dentry->d_fsdata) {
for (;;) {
get_random_bytes(&id, sizeof(cnid));
id &= 0x3fffffff;
str.name = name;
str.len = sprintf(name, "iNode%d", id);
res = hfsplus_rename_cat(inode->i_ino,
src_dir, &src_dentry->d_name,
sbi->hidden_dir, &str);
if (!res)
break;
if (res != -EEXIST)
goto out;
}
HFSPLUS_I(inode)->linkid = id;
cnid = sbi->next_cnid++;
src_dentry->d_fsdata = (void *)(unsigned long)cnid;
res = hfsplus_create_cat(cnid, src_dir,
&src_dentry->d_name, inode);
if (res)
/* panic? */
goto out;
sbi->file_count++;
}
cnid = sbi->next_cnid++;
res = hfsplus_create_cat(cnid, dst_dir, &dst_dentry->d_name, inode);
if (res)
goto out;
inc_nlink(inode);
hfsplus_instantiate(dst_dentry, inode, cnid);
ihold(inode);
inode->i_ctime = current_time(inode);
mark_inode_dirty(inode);
sbi->file_count++;
hfsplus_mark_mdb_dirty(dst_dir->i_sb);
out:
mutex_unlock(&sbi->vh_mutex);
return res;
}
static int hfsplus_unlink(struct inode *dir, struct dentry *dentry)
{
struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb);
struct inode *inode = d_inode(dentry);
struct qstr str;
char name[32];
u32 cnid;
int res;
if (HFSPLUS_IS_RSRC(inode))
return -EPERM;
mutex_lock(&sbi->vh_mutex);
cnid = (u32)(unsigned long)dentry->d_fsdata;
if (inode->i_ino == cnid &&
atomic_read(&HFSPLUS_I(inode)->opencnt)) {
str.name = name;
str.len = sprintf(name, "temp%lu", inode->i_ino);
res = hfsplus_rename_cat(inode->i_ino,
dir, &dentry->d_name,
sbi->hidden_dir, &str);
if (!res) {
inode->i_flags |= S_DEAD;
drop_nlink(inode);
}
goto out;
}
res = hfsplus_delete_cat(cnid, dir, &dentry->d_name);
if (res)
goto out;
if (inode->i_nlink > 0)
drop_nlink(inode);
if (inode->i_ino == cnid)
clear_nlink(inode);
if (!inode->i_nlink) {
if (inode->i_ino != cnid) {
sbi->file_count--;
if (!atomic_read(&HFSPLUS_I(inode)->opencnt)) {
res = hfsplus_delete_cat(inode->i_ino,
sbi->hidden_dir,
NULL);
if (!res)
hfsplus_delete_inode(inode);
} else
inode->i_flags |= S_DEAD;
} else
hfsplus_delete_inode(inode);
} else
sbi->file_count--;
inode->i_ctime = current_time(inode);
mark_inode_dirty(inode);
out:
mutex_unlock(&sbi->vh_mutex);
return res;
}
static int hfsplus_rmdir(struct inode *dir, struct dentry *dentry)
{
struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb);
struct inode *inode = d_inode(dentry);
int res;
if (inode->i_size != 2)
return -ENOTEMPTY;
mutex_lock(&sbi->vh_mutex);
res = hfsplus_delete_cat(inode->i_ino, dir, &dentry->d_name);
if (res)
goto out;
clear_nlink(inode);
inode->i_ctime = current_time(inode);
hfsplus_delete_inode(inode);
mark_inode_dirty(inode);
out:
mutex_unlock(&sbi->vh_mutex);
return res;
}
static int hfsplus_symlink(struct inode *dir, struct dentry *dentry,
const char *symname)
{
struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb);
struct inode *inode;
int res = -ENOMEM;
mutex_lock(&sbi->vh_mutex);
inode = hfsplus_new_inode(dir->i_sb, dir, S_IFLNK | S_IRWXUGO);
if (!inode)
goto out;
res = page_symlink(inode, symname, strlen(symname) + 1);
if (res)
goto out_err;
res = hfsplus_create_cat(inode->i_ino, dir, &dentry->d_name, inode);
if (res)
goto out_err;
res = hfsplus_init_inode_security(inode, dir, &dentry->d_name);
if (res == -EOPNOTSUPP)
res = 0; /* Operation is not supported. */
else if (res) {
/* Try to delete anyway without error analysis. */
hfsplus_delete_cat(inode->i_ino, dir, &dentry->d_name);
goto out_err;
}
hfsplus_instantiate(dentry, inode, inode->i_ino);
mark_inode_dirty(inode);
goto out;
out_err:
clear_nlink(inode);
hfsplus_delete_inode(inode);
iput(inode);
out:
mutex_unlock(&sbi->vh_mutex);
return res;
}
static int hfsplus_mknod(struct inode *dir, struct dentry *dentry,
umode_t mode, dev_t rdev)
{
struct hfsplus_sb_info *sbi = HFSPLUS_SB(dir->i_sb);
struct inode *inode;
int res = -ENOMEM;
mutex_lock(&sbi->vh_mutex);
inode = hfsplus_new_inode(dir->i_sb, dir, mode);
if (!inode)
goto out;
if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode))
init_special_inode(inode, mode, rdev);
res = hfsplus_create_cat(inode->i_ino, dir, &dentry->d_name, inode);
if (res)
goto failed_mknod;
res = hfsplus_init_inode_security(inode, dir, &dentry->d_name);
if (res == -EOPNOTSUPP)
res = 0; /* Operation is not supported. */
else if (res) {
/* Try to delete anyway without error analysis. */
hfsplus_delete_cat(inode->i_ino, dir, &dentry->d_name);
goto failed_mknod;
}
hfsplus_instantiate(dentry, inode, inode->i_ino);
mark_inode_dirty(inode);
goto out;
failed_mknod:
clear_nlink(inode);
hfsplus_delete_inode(inode);
iput(inode);
out:
mutex_unlock(&sbi->vh_mutex);
return res;
}
static int hfsplus_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool excl)
{
return hfsplus_mknod(dir, dentry, mode, 0);
}
static int hfsplus_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
return hfsplus_mknod(dir, dentry, mode | S_IFDIR, 0);
}
static int hfsplus_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
int res;
if (flags & ~RENAME_NOREPLACE)
return -EINVAL;
/* Unlink destination if it already exists */
if (d_really_is_positive(new_dentry)) {
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry) Convert the following where appropriate: (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry). (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry). (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more complicated than it appears as some calls should be converted to d_can_lookup() instead. The difference is whether the directory in question is a real dir with a ->lookup op or whether it's a fake dir with a ->d_automount op. In some circumstances, we can subsume checks for dentry->d_inode not being NULL into this, provided we the code isn't in a filesystem that expects d_inode to be NULL if the dirent really *is* negative (ie. if we're going to use d_inode() rather than d_backing_inode() to get the inode pointer). Note that the dentry type field may be set to something other than DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS manages the fall-through from a negative dentry to a lower layer. In such a case, the dentry type of the negative union dentry is set to the same as the type of the lower dentry. However, if you know d_inode is not NULL at the call site, then you can use the d_is_xxx() functions even in a filesystem. There is one further complication: a 0,0 chardev dentry may be labelled DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was intended for special directory entry types that don't have attached inodes. The following perl+coccinelle script was used: use strict; my @callers; open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') || die "Can't grep for S_ISDIR and co. callers"; @callers = <$fd>; close($fd); unless (@callers) { print "No matches\n"; exit(0); } my @cocci = ( '@@', 'expression E;', '@@', '', '- S_ISLNK(E->d_inode->i_mode)', '+ d_is_symlink(E)', '', '@@', 'expression E;', '@@', '', '- S_ISDIR(E->d_inode->i_mode)', '+ d_is_dir(E)', '', '@@', 'expression E;', '@@', '', '- S_ISREG(E->d_inode->i_mode)', '+ d_is_reg(E)' ); my $coccifile = "tmp.sp.cocci"; open($fd, ">$coccifile") || die $coccifile; print($fd "$_\n") || die $coccifile foreach (@cocci); close($fd); foreach my $file (@callers) { chomp $file; print "Processing ", $file, "\n"; system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 || die "spatch failed"; } [AV: overlayfs parts skipped] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-29 20:02:35 +08:00
if (d_is_dir(new_dentry))
res = hfsplus_rmdir(new_dir, new_dentry);
else
res = hfsplus_unlink(new_dir, new_dentry);
if (res)
return res;
}
res = hfsplus_rename_cat((u32)(unsigned long)old_dentry->d_fsdata,
old_dir, &old_dentry->d_name,
new_dir, &new_dentry->d_name);
if (!res)
new_dentry->d_fsdata = old_dentry->d_fsdata;
return res;
}
const struct inode_operations hfsplus_dir_inode_operations = {
.lookup = hfsplus_lookup,
.create = hfsplus_create,
.link = hfsplus_link,
.unlink = hfsplus_unlink,
.mkdir = hfsplus_mkdir,
.rmdir = hfsplus_rmdir,
.symlink = hfsplus_symlink,
.mknod = hfsplus_mknod,
.rename = hfsplus_rename,
.listxattr = hfsplus_listxattr,
#ifdef CONFIG_HFSPLUS_FS_POSIX_ACL
.get_acl = hfsplus_get_posix_acl,
.set_acl = hfsplus_set_posix_acl,
#endif
};
const struct file_operations hfsplus_dir_operations = {
.fsync = hfsplus_file_fsync,
.read = generic_read_dir,
.iterate_shared = hfsplus_readdir,
.unlocked_ioctl = hfsplus_ioctl,
.llseek = generic_file_llseek,
.release = hfsplus_dir_release,
};