linux_old1/drivers/scsi/gdth_proc.c

651 lines
22 KiB
C
Raw Normal View History

/* gdth_proc.c
* $Id: gdth_proc.c,v 1.43 2006/01/11 16:15:00 achim Exp $
*/
#include <linux/completion.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
int gdth_set_info(struct Scsi_Host *host, char *buffer, int length)
{
gdth_ha_str *ha = shost_priv(host);
int ret_val = -EINVAL;
TRACE2(("gdth_set_info() ha %d\n",ha->hanum,));
if (length >= 4) {
if (strncmp(buffer,"gdth",4) == 0) {
buffer += 5;
length -= 5;
ret_val = gdth_set_asc_info(host, buffer, length, ha);
}
}
return ret_val;
}
static int gdth_set_asc_info(struct Scsi_Host *host, char *buffer,
int length, gdth_ha_str *ha)
{
int orig_length, drive, wb_mode;
int i, found;
gdth_cmd_str gdtcmd;
gdth_cpar_str *pcpar;
u64 paddr;
char cmnd[MAX_COMMAND_SIZE];
memset(cmnd, 0xff, 12);
memset(&gdtcmd, 0, sizeof(gdth_cmd_str));
TRACE2(("gdth_set_asc_info() ha %d\n",ha->hanum));
orig_length = length + 5;
drive = -1;
wb_mode = 0;
found = FALSE;
if (length >= 5 && strncmp(buffer,"flush",5)==0) {
buffer += 6;
length -= 6;
if (length && *buffer>='0' && *buffer<='9') {
drive = (int)(*buffer-'0');
++buffer; --length;
if (length && *buffer>='0' && *buffer<='9') {
drive = drive*10 + (int)(*buffer-'0');
++buffer; --length;
}
printk("GDT: Flushing host drive %d .. ",drive);
} else {
printk("GDT: Flushing all host drives .. ");
}
for (i = 0; i < MAX_HDRIVES; ++i) {
if (ha->hdr[i].present) {
if (drive != -1 && i != drive)
continue;
found = TRUE;
gdtcmd.Service = CACHESERVICE;
gdtcmd.OpCode = GDT_FLUSH;
if (ha->cache_feat & GDT_64BIT) {
gdtcmd.u.cache64.DeviceNo = i;
gdtcmd.u.cache64.BlockNo = 1;
} else {
gdtcmd.u.cache.DeviceNo = i;
gdtcmd.u.cache.BlockNo = 1;
}
gdth_execute(host, &gdtcmd, cmnd, 30, NULL);
}
}
if (!found)
printk("\nNo host drive found !\n");
else
printk("Done.\n");
return(orig_length);
}
if (length >= 7 && strncmp(buffer,"wbp_off",7)==0) {
buffer += 8;
length -= 8;
printk("GDT: Disabling write back permanently .. ");
wb_mode = 1;
} else if (length >= 6 && strncmp(buffer,"wbp_on",6)==0) {
buffer += 7;
length -= 7;
printk("GDT: Enabling write back permanently .. ");
wb_mode = 2;
} else if (length >= 6 && strncmp(buffer,"wb_off",6)==0) {
buffer += 7;
length -= 7;
printk("GDT: Disabling write back commands .. ");
if (ha->cache_feat & GDT_WR_THROUGH) {
gdth_write_through = TRUE;
printk("Done.\n");
} else {
printk("Not supported !\n");
}
return(orig_length);
} else if (length >= 5 && strncmp(buffer,"wb_on",5)==0) {
buffer += 6;
length -= 6;
printk("GDT: Enabling write back commands .. ");
gdth_write_through = FALSE;
printk("Done.\n");
return(orig_length);
}
if (wb_mode) {
if (!gdth_ioctl_alloc(ha, sizeof(gdth_cpar_str), TRUE, &paddr))
return(-EBUSY);
pcpar = (gdth_cpar_str *)ha->pscratch;
memcpy( pcpar, &ha->cpar, sizeof(gdth_cpar_str) );
gdtcmd.Service = CACHESERVICE;
gdtcmd.OpCode = GDT_IOCTL;
gdtcmd.u.ioctl.p_param = paddr;
gdtcmd.u.ioctl.param_size = sizeof(gdth_cpar_str);
gdtcmd.u.ioctl.subfunc = CACHE_CONFIG;
gdtcmd.u.ioctl.channel = INVALID_CHANNEL;
pcpar->write_back = wb_mode==1 ? 0:1;
gdth_execute(host, &gdtcmd, cmnd, 30, NULL);
gdth_ioctl_free(ha, GDTH_SCRATCH, ha->pscratch, paddr);
printk("Done.\n");
return(orig_length);
}
printk("GDT: Unknown command: %s Length: %d\n",buffer,length);
return(-EINVAL);
}
int gdth_show_info(struct seq_file *m, struct Scsi_Host *host)
{
gdth_ha_str *ha = shost_priv(host);
int hlen;
int id, i, j, k, sec, flag;
int no_mdrv = 0, drv_no, is_mirr;
u32 cnt;
u64 paddr;
int rc = -ENOMEM;
gdth_cmd_str *gdtcmd;
gdth_evt_str *estr;
char hrec[161];
char *buf;
gdth_dskstat_str *pds;
gdth_diskinfo_str *pdi;
gdth_arrayinf_str *pai;
gdth_defcnt_str *pdef;
gdth_cdrinfo_str *pcdi;
gdth_hget_str *phg;
char cmnd[MAX_COMMAND_SIZE];
gdtcmd = kmalloc(sizeof(*gdtcmd), GFP_KERNEL);
estr = kmalloc(sizeof(*estr), GFP_KERNEL);
if (!gdtcmd || !estr)
goto free_fail;
memset(cmnd, 0xff, 12);
memset(gdtcmd, 0, sizeof(gdth_cmd_str));
TRACE2(("gdth_get_info() ha %d\n",ha->hanum));
/* request is i.e. "cat /proc/scsi/gdth/0" */
/* format: %-15s\t%-10s\t%-15s\t%s */
/* driver parameters */
seq_puts(m, "Driver Parameters:\n");
if (reserve_list[0] == 0xff)
strcpy(hrec, "--");
else {
hlen = sprintf(hrec, "%d", reserve_list[0]);
for (i = 1; i < MAX_RES_ARGS; i++) {
if (reserve_list[i] == 0xff)
break;
hlen += snprintf(hrec + hlen , 161 - hlen, ",%d", reserve_list[i]);
}
}
seq_printf(m,
" reserve_mode: \t%d \treserve_list: \t%s\n",
reserve_mode, hrec);
seq_printf(m,
" max_ids: \t%-3d \thdr_channel: \t%d\n",
max_ids, hdr_channel);
/* controller information */
seq_puts(m, "\nDisk Array Controller Information:\n");
seq_printf(m,
" Number: \t%d \tName: \t%s\n",
ha->hanum, ha->binfo.type_string);
seq_printf(m,
" Driver Ver.: \t%-10s\tFirmware Ver.: \t",
GDTH_VERSION_STR);
if (ha->more_proc)
seq_printf(m, "%d.%02d.%02d-%c%03X\n",
(u8)(ha->binfo.upd_fw_ver>>24),
(u8)(ha->binfo.upd_fw_ver>>16),
(u8)(ha->binfo.upd_fw_ver),
ha->bfeat.raid ? 'R':'N',
ha->binfo.upd_revision);
else
seq_printf(m, "%d.%02d\n", (u8)(ha->cpar.version>>8),
(u8)(ha->cpar.version));
if (ha->more_proc)
/* more information: 1. about controller */
seq_printf(m,
" Serial No.: \t0x%8X\tCache RAM size:\t%d KB\n",
ha->binfo.ser_no, ha->binfo.memsize / 1024);
#ifdef GDTH_DMA_STATISTICS
/* controller statistics */
seq_puts(m, "\nController Statistics:\n");
seq_printf(m,
" 32-bit DMA buffer:\t%lu\t64-bit DMA buffer:\t%lu\n",
ha->dma32_cnt, ha->dma64_cnt);
#endif
if (ha->more_proc) {
/* more information: 2. about physical devices */
seq_puts(m, "\nPhysical Devices:");
flag = FALSE;
buf = gdth_ioctl_alloc(ha, GDTH_SCRATCH, FALSE, &paddr);
if (!buf)
goto stop_output;
for (i = 0; i < ha->bus_cnt; ++i) {
/* 2.a statistics (and retries/reassigns) */
TRACE2(("pdr_statistics() chn %d\n",i));
pds = (gdth_dskstat_str *)(buf + GDTH_SCRATCH/4);
gdtcmd->Service = CACHESERVICE;
gdtcmd->OpCode = GDT_IOCTL;
gdtcmd->u.ioctl.p_param = paddr + GDTH_SCRATCH/4;
gdtcmd->u.ioctl.param_size = 3*GDTH_SCRATCH/4;
gdtcmd->u.ioctl.subfunc = DSK_STATISTICS | L_CTRL_PATTERN;
gdtcmd->u.ioctl.channel = ha->raw[i].address | INVALID_CHANNEL;
pds->bid = ha->raw[i].local_no;
pds->first = 0;
pds->entries = ha->raw[i].pdev_cnt;
cnt = (3*GDTH_SCRATCH/4 - 5 * sizeof(u32)) /
sizeof(pds->list[0]);
if (pds->entries > cnt)
pds->entries = cnt;
if (gdth_execute(host, gdtcmd, cmnd, 30, NULL) != S_OK)
pds->count = 0;
/* other IOCTLs must fit into area GDTH_SCRATCH/4 */
for (j = 0; j < ha->raw[i].pdev_cnt; ++j) {
/* 2.b drive info */
TRACE2(("scsi_drv_info() chn %d dev %d\n",
i, ha->raw[i].id_list[j]));
pdi = (gdth_diskinfo_str *)buf;
gdtcmd->Service = CACHESERVICE;
gdtcmd->OpCode = GDT_IOCTL;
gdtcmd->u.ioctl.p_param = paddr;
gdtcmd->u.ioctl.param_size = sizeof(gdth_diskinfo_str);
gdtcmd->u.ioctl.subfunc = SCSI_DR_INFO | L_CTRL_PATTERN;
gdtcmd->u.ioctl.channel =
ha->raw[i].address | ha->raw[i].id_list[j];
if (gdth_execute(host, gdtcmd, cmnd, 30, NULL) == S_OK) {
strncpy(hrec,pdi->vendor,8);
strncpy(hrec+8,pdi->product,16);
strncpy(hrec+24,pdi->revision,4);
hrec[28] = 0;
seq_printf(m,
"\n Chn/ID/LUN: \t%c/%02d/%d \tName: \t%s\n",
'A'+i,pdi->target_id,pdi->lun,hrec);
flag = TRUE;
pdi->no_ldrive &= 0xffff;
if (pdi->no_ldrive == 0xffff)
strcpy(hrec,"--");
else
sprintf(hrec,"%d",pdi->no_ldrive);
seq_printf(m,
" Capacity [MB]:\t%-6d \tTo Log. Drive: \t%s\n",
pdi->blkcnt/(1024*1024/pdi->blksize),
hrec);
} else {
pdi->devtype = 0xff;
}
if (pdi->devtype == 0) {
/* search retries/reassigns */
for (k = 0; k < pds->count; ++k) {
if (pds->list[k].tid == pdi->target_id &&
pds->list[k].lun == pdi->lun) {
seq_printf(m,
" Retries: \t%-6d \tReassigns: \t%d\n",
pds->list[k].retries,
pds->list[k].reassigns);
break;
}
}
/* 2.c grown defects */
TRACE2(("scsi_drv_defcnt() chn %d dev %d\n",
i, ha->raw[i].id_list[j]));
pdef = (gdth_defcnt_str *)buf;
gdtcmd->Service = CACHESERVICE;
gdtcmd->OpCode = GDT_IOCTL;
gdtcmd->u.ioctl.p_param = paddr;
gdtcmd->u.ioctl.param_size = sizeof(gdth_defcnt_str);
gdtcmd->u.ioctl.subfunc = SCSI_DEF_CNT | L_CTRL_PATTERN;
gdtcmd->u.ioctl.channel =
ha->raw[i].address | ha->raw[i].id_list[j];
pdef->sddc_type = 0x08;
if (gdth_execute(host, gdtcmd, cmnd, 30, NULL) == S_OK) {
seq_printf(m,
" Grown Defects:\t%d\n",
pdef->sddc_cnt);
}
}
}
}
gdth_ioctl_free(ha, GDTH_SCRATCH, buf, paddr);
if (!flag)
seq_puts(m, "\n --\n");
/* 3. about logical drives */
seq_puts(m, "\nLogical Drives:");
flag = FALSE;
buf = gdth_ioctl_alloc(ha, GDTH_SCRATCH, FALSE, &paddr);
if (!buf)
goto stop_output;
for (i = 0; i < MAX_LDRIVES; ++i) {
if (!ha->hdr[i].is_logdrv)
continue;
drv_no = i;
j = k = 0;
is_mirr = FALSE;
do {
/* 3.a log. drive info */
TRACE2(("cache_drv_info() drive no %d\n",drv_no));
pcdi = (gdth_cdrinfo_str *)buf;
gdtcmd->Service = CACHESERVICE;
gdtcmd->OpCode = GDT_IOCTL;
gdtcmd->u.ioctl.p_param = paddr;
gdtcmd->u.ioctl.param_size = sizeof(gdth_cdrinfo_str);
gdtcmd->u.ioctl.subfunc = CACHE_DRV_INFO;
gdtcmd->u.ioctl.channel = drv_no;
if (gdth_execute(host, gdtcmd, cmnd, 30, NULL) != S_OK)
break;
pcdi->ld_dtype >>= 16;
j++;
if (pcdi->ld_dtype > 2) {
strcpy(hrec, "missing");
} else if (pcdi->ld_error & 1) {
strcpy(hrec, "fault");
} else if (pcdi->ld_error & 2) {
strcpy(hrec, "invalid");
k++; j--;
} else {
strcpy(hrec, "ok");
}
if (drv_no == i) {
seq_printf(m,
"\n Number: \t%-2d \tStatus: \t%s\n",
drv_no, hrec);
flag = TRUE;
no_mdrv = pcdi->cd_ldcnt;
if (no_mdrv > 1 || pcdi->ld_slave != -1) {
is_mirr = TRUE;
strcpy(hrec, "RAID-1");
} else if (pcdi->ld_dtype == 0) {
strcpy(hrec, "Disk");
} else if (pcdi->ld_dtype == 1) {
strcpy(hrec, "RAID-0");
} else if (pcdi->ld_dtype == 2) {
strcpy(hrec, "Chain");
} else {
strcpy(hrec, "???");
}
seq_printf(m,
" Capacity [MB]:\t%-6d \tType: \t%s\n",
pcdi->ld_blkcnt/(1024*1024/pcdi->ld_blksize),
hrec);
} else {
seq_printf(m,
" Slave Number: \t%-2d \tStatus: \t%s\n",
drv_no & 0x7fff, hrec);
}
drv_no = pcdi->ld_slave;
} while (drv_no != -1);
if (is_mirr)
seq_printf(m,
" Missing Drv.: \t%-2d \tInvalid Drv.: \t%d\n",
no_mdrv - j - k, k);
if (!ha->hdr[i].is_arraydrv)
strcpy(hrec, "--");
else
sprintf(hrec, "%d", ha->hdr[i].master_no);
seq_printf(m,
" To Array Drv.:\t%s\n", hrec);
}
gdth_ioctl_free(ha, GDTH_SCRATCH, buf, paddr);
if (!flag)
seq_puts(m, "\n --\n");
/* 4. about array drives */
seq_puts(m, "\nArray Drives:");
flag = FALSE;
buf = gdth_ioctl_alloc(ha, GDTH_SCRATCH, FALSE, &paddr);
if (!buf)
goto stop_output;
for (i = 0; i < MAX_LDRIVES; ++i) {
if (!(ha->hdr[i].is_arraydrv && ha->hdr[i].is_master))
continue;
/* 4.a array drive info */
TRACE2(("array_info() drive no %d\n",i));
pai = (gdth_arrayinf_str *)buf;
gdtcmd->Service = CACHESERVICE;
gdtcmd->OpCode = GDT_IOCTL;
gdtcmd->u.ioctl.p_param = paddr;
gdtcmd->u.ioctl.param_size = sizeof(gdth_arrayinf_str);
gdtcmd->u.ioctl.subfunc = ARRAY_INFO | LA_CTRL_PATTERN;
gdtcmd->u.ioctl.channel = i;
if (gdth_execute(host, gdtcmd, cmnd, 30, NULL) == S_OK) {
if (pai->ai_state == 0)
strcpy(hrec, "idle");
else if (pai->ai_state == 2)
strcpy(hrec, "build");
else if (pai->ai_state == 4)
strcpy(hrec, "ready");
else if (pai->ai_state == 6)
strcpy(hrec, "fail");
else if (pai->ai_state == 8 || pai->ai_state == 10)
strcpy(hrec, "rebuild");
else
strcpy(hrec, "error");
if (pai->ai_ext_state & 0x10)
strcat(hrec, "/expand");
else if (pai->ai_ext_state & 0x1)
strcat(hrec, "/patch");
seq_printf(m,
"\n Number: \t%-2d \tStatus: \t%s\n",
i,hrec);
flag = TRUE;
if (pai->ai_type == 0)
strcpy(hrec, "RAID-0");
else if (pai->ai_type == 4)
strcpy(hrec, "RAID-4");
else if (pai->ai_type == 5)
strcpy(hrec, "RAID-5");
else
strcpy(hrec, "RAID-10");
seq_printf(m,
" Capacity [MB]:\t%-6d \tType: \t%s\n",
pai->ai_size/(1024*1024/pai->ai_secsize),
hrec);
}
}
gdth_ioctl_free(ha, GDTH_SCRATCH, buf, paddr);
if (!flag)
seq_puts(m, "\n --\n");
/* 5. about host drives */
seq_puts(m, "\nHost Drives:");
flag = FALSE;
buf = gdth_ioctl_alloc(ha, sizeof(gdth_hget_str), FALSE, &paddr);
if (!buf)
goto stop_output;
for (i = 0; i < MAX_LDRIVES; ++i) {
if (!ha->hdr[i].is_logdrv ||
(ha->hdr[i].is_arraydrv && !ha->hdr[i].is_master))
continue;
/* 5.a get host drive list */
TRACE2(("host_get() drv_no %d\n",i));
phg = (gdth_hget_str *)buf;
gdtcmd->Service = CACHESERVICE;
gdtcmd->OpCode = GDT_IOCTL;
gdtcmd->u.ioctl.p_param = paddr;
gdtcmd->u.ioctl.param_size = sizeof(gdth_hget_str);
gdtcmd->u.ioctl.subfunc = HOST_GET | LA_CTRL_PATTERN;
gdtcmd->u.ioctl.channel = i;
phg->entries = MAX_HDRIVES;
phg->offset = GDTOFFSOF(gdth_hget_str, entry[0]);
if (gdth_execute(host, gdtcmd, cmnd, 30, NULL) == S_OK) {
ha->hdr[i].ldr_no = i;
ha->hdr[i].rw_attribs = 0;
ha->hdr[i].start_sec = 0;
} else {
for (j = 0; j < phg->entries; ++j) {
k = phg->entry[j].host_drive;
if (k >= MAX_LDRIVES)
continue;
ha->hdr[k].ldr_no = phg->entry[j].log_drive;
ha->hdr[k].rw_attribs = phg->entry[j].rw_attribs;
ha->hdr[k].start_sec = phg->entry[j].start_sec;
}
}
}
gdth_ioctl_free(ha, sizeof(gdth_hget_str), buf, paddr);
for (i = 0; i < MAX_HDRIVES; ++i) {
if (!(ha->hdr[i].present))
continue;
seq_printf(m,
"\n Number: \t%-2d \tArr/Log. Drive:\t%d\n",
i, ha->hdr[i].ldr_no);
flag = TRUE;
seq_printf(m,
" Capacity [MB]:\t%-6d \tStart Sector: \t%d\n",
(u32)(ha->hdr[i].size/2048), ha->hdr[i].start_sec);
}
if (!flag)
seq_puts(m, "\n --\n");
}
/* controller events */
seq_puts(m, "\nController Events:\n");
for (id = -1;;) {
id = gdth_read_event(ha, id, estr);
if (estr->event_source == 0)
break;
if (estr->event_data.eu.driver.ionode == ha->hanum &&
estr->event_source == ES_ASYNC) {
gdth_log_event(&estr->event_data, hrec);
gdth: replace struct timeval with ktime_get_real_seconds() struct timeval will overflow on 32-bit systems in y2038 and is being removed from the kernel. Replace the use of struct timeval and do_gettimeofday() with ktime_get_real_seconds() which provides a 64-bit seconds value and is y2038 safe. gdth driver requires changes in two areas: 1) gdth_store_event() loads two u32 timestamp fields for ioctl GDTIOCTL_EVENT These timestamp fields are part of struct gdth_evt_str used for passing event data to userspace. At the first instance of an event we do (first_stamp=last_stamp="current time"). If that same event repeats, we do (last_stamp="current time") AND increment same_count to indicate how many times the event has repeated since first_stamp. This patch replaces the use of timeval and do_gettimeofday() with ktime_get_real_seconds() cast to u32 to extend the timestamp fields to y2106. Beyond y2106, the userspace tools (ie. RAID controller monitors) can work around the time rollover and this driver would still not need to change. Alternative: The alternative approach is to introduce a new ioctl in gdth with the u32 time fields defined as u64. This would require userspace changes now, but not in y2106. 2) gdth_show_info() calculates elapsed time using u32 first_stamp It is adding events with timestamps to a seq_file. Timestamps are calculated as the "current time" minus the first_stamp. This patch replaces the use of timeval and do_gettimeofday() with ktime_get_real_seconds() cast to u32 to calculate the timestamp. This elapsed time calculation is safe even when the time wraps (beyond y2106) due to how unsigned subtraction works. A comment has been added to the code to indicate this safety. Alternative: This piece itself doesn't warrant an alternative, but if we do introduce a new structure & ioctl with u64 timestamps, this would change accordingly. Signed-off-by: Alison Schofield <amsfield22@gmail.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-02-18 13:29:34 +08:00
/*
* Elapsed seconds subtraction with unsigned operands is
* safe from wrap around in year 2106. Executes as:
* operand a + (2's complement operand b) + 1
*/
sec = (int)((u32)ktime_get_real_seconds() - estr->first_stamp);
if (sec < 0) sec = 0;
seq_printf(m," date- %02d:%02d:%02d\t%s\n",
sec/3600, sec%3600/60, sec%60, hrec);
}
if (id == -1)
break;
}
stop_output:
rc = 0;
free_fail:
kfree(gdtcmd);
kfree(estr);
return rc;
}
static char *gdth_ioctl_alloc(gdth_ha_str *ha, int size, int scratch,
u64 *paddr)
{
unsigned long flags;
char *ret_val;
if (size == 0)
return NULL;
spin_lock_irqsave(&ha->smp_lock, flags);
if (!ha->scratch_busy && size <= GDTH_SCRATCH) {
ha->scratch_busy = TRUE;
ret_val = ha->pscratch;
*paddr = ha->scratch_phys;
} else if (scratch) {
ret_val = NULL;
} else {
dma_addr_t dma_addr;
ret_val = pci_alloc_consistent(ha->pdev, size, &dma_addr);
*paddr = dma_addr;
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
return ret_val;
}
static void gdth_ioctl_free(gdth_ha_str *ha, int size, char *buf, u64 paddr)
{
unsigned long flags;
if (buf == ha->pscratch) {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->scratch_busy = FALSE;
spin_unlock_irqrestore(&ha->smp_lock, flags);
} else {
pci_free_consistent(ha->pdev, size, buf, paddr);
}
}
#ifdef GDTH_IOCTL_PROC
static int gdth_ioctl_check_bin(gdth_ha_str *ha, u16 size)
{
unsigned long flags;
int ret_val;
spin_lock_irqsave(&ha->smp_lock, flags);
ret_val = FALSE;
if (ha->scratch_busy) {
if (((gdth_iord_str *)ha->pscratch)->size == (u32)size)
ret_val = TRUE;
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
return ret_val;
}
#endif
static void gdth_wait_completion(gdth_ha_str *ha, int busnum, int id)
{
unsigned long flags;
int i;
Scsi_Cmnd *scp;
struct gdth_cmndinfo *cmndinfo;
u8 b, t;
spin_lock_irqsave(&ha->smp_lock, flags);
for (i = 0; i < GDTH_MAXCMDS; ++i) {
scp = ha->cmd_tab[i].cmnd;
cmndinfo = gdth_cmnd_priv(scp);
b = scp->device->channel;
t = scp->device->id;
if (!SPECIAL_SCP(scp) && t == (u8)id &&
b == (u8)busnum) {
cmndinfo->wait_for_completion = 0;
spin_unlock_irqrestore(&ha->smp_lock, flags);
while (!cmndinfo->wait_for_completion)
barrier();
spin_lock_irqsave(&ha->smp_lock, flags);
}
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
}