linux_old1/drivers/hwmon/w83791d.c

1644 lines
50 KiB
C
Raw Normal View History

/*
w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
monitoring
Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Supports following chips:
Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
w83791d 10 5 5 3 0x71 0x5ca3 yes no
The w83791d chip appears to be part way between the 83781d and the
83792d. Thus, this file is derived from both the w83792d.c and
w83781d.c files.
The w83791g chip is the same as the w83791d but lead-free.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#define NUMBER_OF_VIN 10
#define NUMBER_OF_FANIN 5
#define NUMBER_OF_TEMPIN 3
#define NUMBER_OF_PWM 5
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
I2C_CLIENT_END };
/* Insmod parameters */
static unsigned short force_subclients[4];
module_param_array(force_subclients, short, NULL, 0);
MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
"{bus, clientaddr, subclientaddr1, subclientaddr2}");
static int reset;
module_param(reset, bool, 0);
MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
static int init;
module_param(init, bool, 0);
MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
/* The W83791D registers */
static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
0x20, /* VCOREA in DataSheet */
0x21, /* VINR0 in DataSheet */
0x22, /* +3.3VIN in DataSheet */
0x23, /* VDD5V in DataSheet */
0x24, /* +12VIN in DataSheet */
0x25, /* -12VIN in DataSheet */
0x26, /* -5VIN in DataSheet */
0xB0, /* 5VSB in DataSheet */
0xB1, /* VBAT in DataSheet */
0xB2 /* VINR1 in DataSheet */
};
static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
0x2B, /* VCOREA High Limit in DataSheet */
0x2D, /* VINR0 High Limit in DataSheet */
0x2F, /* +3.3VIN High Limit in DataSheet */
0x31, /* VDD5V High Limit in DataSheet */
0x33, /* +12VIN High Limit in DataSheet */
0x35, /* -12VIN High Limit in DataSheet */
0x37, /* -5VIN High Limit in DataSheet */
0xB4, /* 5VSB High Limit in DataSheet */
0xB6, /* VBAT High Limit in DataSheet */
0xB8 /* VINR1 High Limit in DataSheet */
};
static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
0x2C, /* VCOREA Low Limit in DataSheet */
0x2E, /* VINR0 Low Limit in DataSheet */
0x30, /* +3.3VIN Low Limit in DataSheet */
0x32, /* VDD5V Low Limit in DataSheet */
0x34, /* +12VIN Low Limit in DataSheet */
0x36, /* -12VIN Low Limit in DataSheet */
0x38, /* -5VIN Low Limit in DataSheet */
0xB5, /* 5VSB Low Limit in DataSheet */
0xB7, /* VBAT Low Limit in DataSheet */
0xB9 /* VINR1 Low Limit in DataSheet */
};
static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
0x28, /* FAN 1 Count in DataSheet */
0x29, /* FAN 2 Count in DataSheet */
0x2A, /* FAN 3 Count in DataSheet */
0xBA, /* FAN 4 Count in DataSheet */
0xBB, /* FAN 5 Count in DataSheet */
};
static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
0x3B, /* FAN 1 Count Low Limit in DataSheet */
0x3C, /* FAN 2 Count Low Limit in DataSheet */
0x3D, /* FAN 3 Count Low Limit in DataSheet */
0xBC, /* FAN 4 Count Low Limit in DataSheet */
0xBD, /* FAN 5 Count Low Limit in DataSheet */
};
static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
0x81, /* PWM 1 duty cycle register in DataSheet */
0x83, /* PWM 2 duty cycle register in DataSheet */
0x94, /* PWM 3 duty cycle register in DataSheet */
0xA0, /* PWM 4 duty cycle register in DataSheet */
0xA1, /* PWM 5 duty cycle register in DataSheet */
};
static const u8 W83791D_REG_TEMP_TARGET[3] = {
0x85, /* PWM 1 target temperature for temp 1 */
0x86, /* PWM 2 target temperature for temp 2 */
0x96, /* PWM 3 target temperature for temp 3 */
};
static const u8 W83791D_REG_TEMP_TOL[2] = {
0x87, /* PWM 1/2 temperature tolerance */
0x97, /* PWM 3 temperature tolerance */
};
static const u8 W83791D_REG_FAN_CFG[2] = {
0x84, /* FAN 1/2 configuration */
0x95, /* FAN 3 configuration */
};
static const u8 W83791D_REG_FAN_DIV[3] = {
0x47, /* contains FAN1 and FAN2 Divisor */
0x4b, /* contains FAN3 Divisor */
0x5C, /* contains FAN4 and FAN5 Divisor */
};
#define W83791D_REG_BANK 0x4E
#define W83791D_REG_TEMP2_CONFIG 0xC2
#define W83791D_REG_TEMP3_CONFIG 0xCA
static const u8 W83791D_REG_TEMP1[3] = {
0x27, /* TEMP 1 in DataSheet */
0x39, /* TEMP 1 Over in DataSheet */
0x3A, /* TEMP 1 Hyst in DataSheet */
};
static const u8 W83791D_REG_TEMP_ADD[2][6] = {
{0xC0, /* TEMP 2 in DataSheet */
0xC1, /* TEMP 2(0.5 deg) in DataSheet */
0xC5, /* TEMP 2 Over High part in DataSheet */
0xC6, /* TEMP 2 Over Low part in DataSheet */
0xC3, /* TEMP 2 Thyst High part in DataSheet */
0xC4}, /* TEMP 2 Thyst Low part in DataSheet */
{0xC8, /* TEMP 3 in DataSheet */
0xC9, /* TEMP 3(0.5 deg) in DataSheet */
0xCD, /* TEMP 3 Over High part in DataSheet */
0xCE, /* TEMP 3 Over Low part in DataSheet */
0xCB, /* TEMP 3 Thyst High part in DataSheet */
0xCC} /* TEMP 3 Thyst Low part in DataSheet */
};
#define W83791D_REG_BEEP_CONFIG 0x4D
static const u8 W83791D_REG_BEEP_CTRL[3] = {
0x56, /* BEEP Control Register 1 */
0x57, /* BEEP Control Register 2 */
0xA3, /* BEEP Control Register 3 */
};
#define W83791D_REG_GPIO 0x15
#define W83791D_REG_CONFIG 0x40
#define W83791D_REG_VID_FANDIV 0x47
#define W83791D_REG_DID_VID4 0x49
#define W83791D_REG_WCHIPID 0x58
#define W83791D_REG_CHIPMAN 0x4F
#define W83791D_REG_PIN 0x4B
#define W83791D_REG_I2C_SUBADDR 0x4A
#define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */
#define W83791D_REG_ALARM2 0xAA /* realtime status register2 */
#define W83791D_REG_ALARM3 0xAB /* realtime status register3 */
#define W83791D_REG_VBAT 0x5D
#define W83791D_REG_I2C_ADDR 0x48
/* The SMBus locks itself. The Winbond W83791D has a bank select register
(index 0x4e), but the driver only accesses registers in bank 0. Since
we don't switch banks, we don't need any special code to handle
locking access between bank switches */
static inline int w83791d_read(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/* The analog voltage inputs have 16mV LSB. Since the sysfs output is
in mV as would be measured on the chip input pin, need to just
multiply/divide by 16 to translate from/to register values. */
#define IN_TO_REG(val) (SENSORS_LIMIT((((val) + 8) / 16), 0, 255))
#define IN_FROM_REG(val) ((val) * 16)
static u8 fan_to_reg(long rpm, int div)
{
if (rpm == 0)
return 255;
rpm = SENSORS_LIMIT(rpm, 1, 1000000);
return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
#define FAN_FROM_REG(val,div) ((val) == 0 ? -1 : \
((val) == 255 ? 0 : \
1350000 / ((val) * (div))))
/* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
#define TEMP1_FROM_REG(val) ((val) * 1000)
#define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
(val) >= 127000 ? 127 : \
(val) < 0 ? ((val) - 500) / 1000 : \
((val) + 500) / 1000)
/* for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
Assumes the top 8 bits are the integral amount and the bottom 8 bits
are the fractional amount. Since we only have 0.5 degree resolution,
the bottom 7 bits will always be zero */
#define TEMP23_FROM_REG(val) ((val) / 128 * 500)
#define TEMP23_TO_REG(val) ((val) <= -128000 ? 0x8000 : \
(val) >= 127500 ? 0x7F80 : \
(val) < 0 ? ((val) - 250) / 500 * 128 : \
((val) + 250) / 500 * 128)
/* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
#define TARGET_TEMP_TO_REG(val) ((val) < 0 ? 0 : \
(val) >= 127000 ? 127 : \
((val) + 500) / 1000)
/* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
#define TOL_TEMP_TO_REG(val) ((val) < 0 ? 0 : \
(val) >= 15000 ? 15 : \
((val) + 500) / 1000)
#define BEEP_MASK_TO_REG(val) ((val) & 0xffffff)
#define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff)
#define DIV_FROM_REG(val) (1 << (val))
static u8 div_to_reg(int nr, long val)
{
int i;
/* fan divisors max out at 128 */
val = SENSORS_LIMIT(val, 1, 128) >> 1;
for (i = 0; i < 7; i++) {
if (val == 0)
break;
val >>= 1;
}
return (u8) i;
}
struct w83791d_data {
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
/* array of 2 pointers to subclients */
struct i2c_client *lm75[2];
/* volts */
u8 in[NUMBER_OF_VIN]; /* Register value */
u8 in_max[NUMBER_OF_VIN]; /* Register value */
u8 in_min[NUMBER_OF_VIN]; /* Register value */
/* fans */
u8 fan[NUMBER_OF_FANIN]; /* Register value */
u8 fan_min[NUMBER_OF_FANIN]; /* Register value */
u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */
/* Temperature sensors */
s8 temp1[3]; /* current, over, thyst */
s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the
integral part, bottom 8 bits are the
fractional part. We only use the top
9 bits as the resolution is only
to the 0.5 degree C...
two sensors with three values
(cur, over, hyst) */
/* PWMs */
u8 pwm[5]; /* pwm duty cycle */
u8 pwm_enable[3]; /* pwm enable status for fan 1-3
(fan 4-5 only support manual mode) */
u8 temp_target[3]; /* pwm 1-3 target temperature */
u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */
/* Misc */
u32 alarms; /* realtime status register encoding,combined */
u8 beep_enable; /* Global beep enable */
u32 beep_mask; /* Mask off specific beeps */
u8 vid; /* Register encoding, combined */
u8 vrm; /* hwmon-vid */
};
static int w83791d_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int w83791d_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int w83791d_remove(struct i2c_client *client);
static int w83791d_read(struct i2c_client *client, u8 register);
static int w83791d_write(struct i2c_client *client, u8 register, u8 value);
static struct w83791d_data *w83791d_update_device(struct device *dev);
#ifdef DEBUG
static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
#endif
static void w83791d_init_client(struct i2c_client *client);
static const struct i2c_device_id w83791d_id[] = {
{ "w83791d", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, w83791d_id);
static struct i2c_driver w83791d_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "w83791d",
},
.probe = w83791d_probe,
.remove = w83791d_remove,
.id_table = w83791d_id,
.detect = w83791d_detect,
.address_list = normal_i2c,
};
/* following are the sysfs callback functions */
#define show_in_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct w83791d_data *data = w83791d_update_device(dev); \
int nr = sensor_attr->index; \
return sprintf(buf,"%d\n", IN_FROM_REG(data->reg[nr])); \
}
show_in_reg(in);
show_in_reg(in_min);
show_in_reg(in_max);
#define store_in_reg(REG, reg) \
static ssize_t store_in_##reg(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct i2c_client *client = to_i2c_client(dev); \
struct w83791d_data *data = i2c_get_clientdata(client); \
unsigned long val = simple_strtoul(buf, NULL, 10); \
int nr = sensor_attr->index; \
\
mutex_lock(&data->update_lock); \
data->in_##reg[nr] = IN_TO_REG(val); \
w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
mutex_unlock(&data->update_lock); \
\
return count; \
}
store_in_reg(MIN, min);
store_in_reg(MAX, max);
static struct sensor_device_attribute sda_in_input[] = {
SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};
static struct sensor_device_attribute sda_in_min[] = {
SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};
static struct sensor_device_attribute sda_in_max[] = {
SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};
static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int bitnr = sensor_attr->index;
return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
}
static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int bitnr = sensor_attr->index;
int bytenr = bitnr / 8;
long val = simple_strtol(buf, NULL, 10) ? 1 : 0;
mutex_lock(&data->update_lock);
data->beep_mask &= ~(0xff << (bytenr * 8));
data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
<< (bytenr * 8);
data->beep_mask &= ~(1 << bitnr);
data->beep_mask |= val << bitnr;
w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
(data->beep_mask >> (bytenr * 8)) & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int bitnr = sensor_attr->index;
return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
}
/* Note: The bitmask for the beep enable/disable is different than
the bitmask for the alarm. */
static struct sensor_device_attribute sda_in_beep[] = {
SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
};
static struct sensor_device_attribute sda_in_alarm[] = {
SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
};
#define show_fan_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct w83791d_data *data = w83791d_update_device(dev); \
int nr = sensor_attr->index; \
return sprintf(buf,"%d\n", \
FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);
static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
int nr = sensor_attr->index;
mutex_lock(&data->update_lock);
data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
}
/* Note: we save and restore the fan minimum here, because its value is
determined in part by the fan divisor. This follows the principle of
least suprise; the user doesn't expect the fan minimum to change just
because the divisor changed. */
static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long min;
u8 tmp_fan_div;
u8 fan_div_reg;
u8 vbat_reg;
int indx = 0;
u8 keep_mask = 0;
u8 new_shift = 0;
/* Save fan_min */
min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
mutex_lock(&data->update_lock);
data->fan_div[nr] = div_to_reg(nr, simple_strtoul(buf, NULL, 10));
switch (nr) {
case 0:
indx = 0;
keep_mask = 0xcf;
new_shift = 4;
break;
case 1:
indx = 0;
keep_mask = 0x3f;
new_shift = 6;
break;
case 2:
indx = 1;
keep_mask = 0x3f;
new_shift = 6;
break;
case 3:
indx = 2;
keep_mask = 0xf8;
new_shift = 0;
break;
case 4:
indx = 2;
keep_mask = 0x8f;
new_shift = 4;
break;
#ifdef DEBUG
default:
dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
count = -EINVAL;
goto err_exit;
#endif
}
fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
& keep_mask;
tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
w83791d_write(client, W83791D_REG_FAN_DIV[indx],
fan_div_reg | tmp_fan_div);
/* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
if (nr < 3) {
keep_mask = ~(1 << (nr + 5));
vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
& keep_mask;
tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
w83791d_write(client, W83791D_REG_VBAT,
vbat_reg | tmp_fan_div);
}
/* Restore fan_min */
data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
#ifdef DEBUG
err_exit:
#endif
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_fan_input[] = {
SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
static struct sensor_device_attribute sda_fan_min[] = {
SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 0),
SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 1),
SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 2),
SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 3),
SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 4),
};
static struct sensor_device_attribute sda_fan_div[] = {
SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 0),
SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 1),
SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 2),
SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 3),
SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 4),
};
static struct sensor_device_attribute sda_fan_beep[] = {
SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
};
static struct sensor_device_attribute sda_fan_alarm[] = {
SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
};
/* read/write PWMs */
static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->pwm[nr]);
}
static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm[nr] = SENSORS_LIMIT(val, 0, 255);
w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwm[] = {
SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 0),
SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 1),
SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 2),
SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 3),
SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 4),
};
static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
}
static ssize_t store_pwmenable(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
u8 reg_cfg_tmp;
u8 reg_idx = 0;
u8 val_shift = 0;
u8 keep_mask = 0;
int ret = strict_strtoul(buf, 10, &val);
if (ret || val < 1 || val > 3)
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm_enable[nr] = val - 1;
switch (nr) {
case 0:
reg_idx = 0;
val_shift = 2;
keep_mask = 0xf3;
break;
case 1:
reg_idx = 0;
val_shift = 4;
keep_mask = 0xcf;
break;
case 2:
reg_idx = 1;
val_shift = 2;
keep_mask = 0xf3;
break;
}
reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
data->pwm_enable[nr] << val_shift;
w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwmenable[] = {
SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 0),
SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 1),
SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 2),
};
/* For Smart Fan I / Thermal Cruise */
static ssize_t show_temp_target(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
}
static ssize_t store_temp_target(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
u8 target_mask;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->update_lock);
data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
target_mask = w83791d_read(client,
W83791D_REG_TEMP_TARGET[nr]) & 0x80;
w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
data->temp_target[nr] | target_mask);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_temp_target[] = {
SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 0),
SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 1),
SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 2),
};
static ssize_t show_temp_tolerance(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
}
static ssize_t store_temp_tolerance(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
u8 target_mask;
u8 reg_idx = 0;
u8 val_shift = 0;
u8 keep_mask = 0;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
switch (nr) {
case 0:
reg_idx = 0;
val_shift = 0;
keep_mask = 0xf0;
break;
case 1:
reg_idx = 0;
val_shift = 4;
keep_mask = 0x0f;
break;
case 2:
reg_idx = 1;
val_shift = 0;
keep_mask = 0xf0;
break;
}
mutex_lock(&data->update_lock);
data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
target_mask = w83791d_read(client,
W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
(data->temp_tolerance[nr] << val_shift) | target_mask);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_temp_tolerance[] = {
SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 0),
SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 1),
SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 2),
};
/* read/write the temperature1, includes measured value and limits */
static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
}
static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
int nr = attr->index;
mutex_lock(&data->update_lock);
data->temp1[nr] = TEMP1_TO_REG(val);
w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* read/write temperature2-3, includes measured value and limits */
static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = attr->nr;
int index = attr->index;
return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
}
static ssize_t store_temp23(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
int nr = attr->nr;
int index = attr->index;
mutex_lock(&data->update_lock);
data->temp_add[nr][index] = TEMP23_TO_REG(val);
w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
data->temp_add[nr][index] >> 8);
w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
data->temp_add[nr][index] & 0x80);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute_2 sda_temp_input[] = {
SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
};
static struct sensor_device_attribute_2 sda_temp_max[] = {
SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
show_temp1, store_temp1, 0, 1),
SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 0, 1),
SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 1, 1),
};
static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
show_temp1, store_temp1, 0, 2),
SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 0, 2),
SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 1, 2),
};
/* Note: The bitmask for the beep enable/disable is different than
the bitmask for the alarm. */
static struct sensor_device_attribute sda_temp_beep[] = {
SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
};
static struct sensor_device_attribute sda_temp_alarm[] = {
SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
};
/* get reatime status of all sensors items: voltage, temp, fan */
static ssize_t show_alarms_reg(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
/* Beep control */
#define GLOBAL_BEEP_ENABLE_SHIFT 15
#define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT)
static ssize_t show_beep_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", data->beep_enable);
}
static ssize_t show_beep_mask(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
}
static ssize_t store_beep_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
int i;
mutex_lock(&data->update_lock);
/* The beep_enable state overrides any enabling request from
the masks */
data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
val = data->beep_mask;
for (i = 0; i < 3; i++) {
w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
val >>= 8;
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t store_beep_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->beep_enable = val ? 1 : 0;
/* Keep the full mask value in sync with the current enable */
data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
/* The global control is in the second beep control register
so only need to update that register */
val = (data->beep_mask >> 8) & 0xff;
w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_beep_ctrl[] = {
SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
show_beep_enable, store_beep_enable, 0),
SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
show_beep_mask, store_beep_mask, 1)
};
/* cpu voltage regulation information */
static ssize_t show_vid_reg(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
static ssize_t show_vrm_reg(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", data->vrm);
}
static ssize_t store_vrm_reg(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83791d_data *data = dev_get_drvdata(dev);
/* No lock needed as vrm is internal to the driver
(not read from a chip register) and so is not
updated in w83791d_update_device() */
data->vrm = simple_strtoul(buf, NULL, 10);
return count;
}
static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
#define IN_UNIT_ATTRS(X) \
&sda_in_input[X].dev_attr.attr, \
&sda_in_min[X].dev_attr.attr, \
&sda_in_max[X].dev_attr.attr, \
&sda_in_beep[X].dev_attr.attr, \
&sda_in_alarm[X].dev_attr.attr
#define FAN_UNIT_ATTRS(X) \
&sda_fan_input[X].dev_attr.attr, \
&sda_fan_min[X].dev_attr.attr, \
&sda_fan_div[X].dev_attr.attr, \
&sda_fan_beep[X].dev_attr.attr, \
&sda_fan_alarm[X].dev_attr.attr
#define TEMP_UNIT_ATTRS(X) \
&sda_temp_input[X].dev_attr.attr, \
&sda_temp_max[X].dev_attr.attr, \
&sda_temp_max_hyst[X].dev_attr.attr, \
&sda_temp_beep[X].dev_attr.attr, \
&sda_temp_alarm[X].dev_attr.attr
static struct attribute *w83791d_attributes[] = {
IN_UNIT_ATTRS(0),
IN_UNIT_ATTRS(1),
IN_UNIT_ATTRS(2),
IN_UNIT_ATTRS(3),
IN_UNIT_ATTRS(4),
IN_UNIT_ATTRS(5),
IN_UNIT_ATTRS(6),
IN_UNIT_ATTRS(7),
IN_UNIT_ATTRS(8),
IN_UNIT_ATTRS(9),
FAN_UNIT_ATTRS(0),
FAN_UNIT_ATTRS(1),
FAN_UNIT_ATTRS(2),
TEMP_UNIT_ATTRS(0),
TEMP_UNIT_ATTRS(1),
TEMP_UNIT_ATTRS(2),
&dev_attr_alarms.attr,
&sda_beep_ctrl[0].dev_attr.attr,
&sda_beep_ctrl[1].dev_attr.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
&sda_pwm[0].dev_attr.attr,
&sda_pwm[1].dev_attr.attr,
&sda_pwm[2].dev_attr.attr,
&sda_pwmenable[0].dev_attr.attr,
&sda_pwmenable[1].dev_attr.attr,
&sda_pwmenable[2].dev_attr.attr,
&sda_temp_target[0].dev_attr.attr,
&sda_temp_target[1].dev_attr.attr,
&sda_temp_target[2].dev_attr.attr,
&sda_temp_tolerance[0].dev_attr.attr,
&sda_temp_tolerance[1].dev_attr.attr,
&sda_temp_tolerance[2].dev_attr.attr,
NULL
};
static const struct attribute_group w83791d_group = {
.attrs = w83791d_attributes,
};
/* Separate group of attributes for fan/pwm 4-5. Their pins can also be
in use for GPIO in which case their sysfs-interface should not be made
available */
static struct attribute *w83791d_attributes_fanpwm45[] = {
FAN_UNIT_ATTRS(3),
FAN_UNIT_ATTRS(4),
&sda_pwm[3].dev_attr.attr,
&sda_pwm[4].dev_attr.attr,
NULL
};
static const struct attribute_group w83791d_group_fanpwm45 = {
.attrs = w83791d_attributes_fanpwm45,
};
static int w83791d_detect_subclients(struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
struct w83791d_data *data = i2c_get_clientdata(client);
int address = client->addr;
int i, id, err;
u8 val;
id = i2c_adapter_id(adapter);
if (force_subclients[0] == id && force_subclients[1] == address) {
for (i = 2; i <= 3; i++) {
if (force_subclients[i] < 0x48 ||
force_subclients[i] > 0x4f) {
dev_err(&client->dev,
"invalid subclient "
"address %d; must be 0x48-0x4f\n",
force_subclients[i]);
err = -ENODEV;
goto error_sc_0;
}
}
w83791d_write(client, W83791D_REG_I2C_SUBADDR,
(force_subclients[2] & 0x07) |
((force_subclients[3] & 0x07) << 4));
}
val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
if (!(val & 0x08)) {
data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7));
}
if (!(val & 0x80)) {
if ((data->lm75[0] != NULL) &&
((val & 0x7) == ((val >> 4) & 0x7))) {
dev_err(&client->dev,
"duplicate addresses 0x%x, "
"use force_subclient\n",
data->lm75[0]->addr);
err = -ENODEV;
goto error_sc_1;
}
data->lm75[1] = i2c_new_dummy(adapter,
0x48 + ((val >> 4) & 0x7));
}
return 0;
/* Undo inits in case of errors */
error_sc_1:
if (data->lm75[0] != NULL)
i2c_unregister_device(data->lm75[0]);
error_sc_0:
return err;
}
/* Return 0 if detection is successful, -ENODEV otherwise */
static int w83791d_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int val1, val2;
unsigned short address = client->addr;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
return -ENODEV;
}
if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
return -ENODEV;
val1 = w83791d_read(client, W83791D_REG_BANK);
val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
/* Check for Winbond ID if in bank 0 */
if (!(val1 & 0x07)) {
if ((!(val1 & 0x80) && val2 != 0xa3) ||
( (val1 & 0x80) && val2 != 0x5c)) {
return -ENODEV;
}
}
/* If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
should match */
if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
return -ENODEV;
/* We want bank 0 and Vendor ID high byte */
val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
/* Verify it is a Winbond w83791d */
val1 = w83791d_read(client, W83791D_REG_WCHIPID);
val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
if (val1 != 0x71 || val2 != 0x5c)
return -ENODEV;
strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
return 0;
}
static int w83791d_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct w83791d_data *data;
struct device *dev = &client->dev;
int i, err;
u8 has_fanpwm45;
#ifdef DEBUG
int val1;
val1 = w83791d_read(client, W83791D_REG_DID_VID4);
dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
(val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
#endif
data = kzalloc(sizeof(struct w83791d_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto error0;
}
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
err = w83791d_detect_subclients(client);
if (err)
goto error1;
/* Initialize the chip */
w83791d_init_client(client);
/* If the fan_div is changed, make sure there is a rational
fan_min in place */
for (i = 0; i < NUMBER_OF_FANIN; i++) {
data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
}
/* Register sysfs hooks */
if ((err = sysfs_create_group(&client->dev.kobj, &w83791d_group)))
goto error3;
/* Check if pins of fan/pwm 4-5 are in use as GPIO */
has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
if (has_fanpwm45) {
err = sysfs_create_group(&client->dev.kobj,
&w83791d_group_fanpwm45);
if (err)
goto error4;
}
/* Everything is ready, now register the working device */
data->hwmon_dev = hwmon_device_register(dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto error5;
}
return 0;
error5:
if (has_fanpwm45)
sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
error4:
sysfs_remove_group(&client->dev.kobj, &w83791d_group);
error3:
if (data->lm75[0] != NULL)
i2c_unregister_device(data->lm75[0]);
if (data->lm75[1] != NULL)
i2c_unregister_device(data->lm75[1]);
error1:
kfree(data);
error0:
return err;
}
static int w83791d_remove(struct i2c_client *client)
{
struct w83791d_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &w83791d_group);
if (data->lm75[0] != NULL)
i2c_unregister_device(data->lm75[0]);
if (data->lm75[1] != NULL)
i2c_unregister_device(data->lm75[1]);
kfree(data);
return 0;
}
static void w83791d_init_client(struct i2c_client *client)
{
struct w83791d_data *data = i2c_get_clientdata(client);
u8 tmp;
u8 old_beep;
/* The difference between reset and init is that reset
does a hard reset of the chip via index 0x40, bit 7,
but init simply forces certain registers to have "sane"
values. The hope is that the BIOS has done the right
thing (which is why the default is reset=0, init=0),
but if not, reset is the hard hammer and init
is the soft mallet both of which are trying to whack
things into place...
NOTE: The data sheet makes a distinction between
"power on defaults" and "reset by MR". As far as I can tell,
the hard reset puts everything into a power-on state so I'm
not sure what "reset by MR" means or how it can happen.
*/
if (reset || init) {
/* keep some BIOS settings when we... */
old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
if (reset) {
/* ... reset the chip and ... */
w83791d_write(client, W83791D_REG_CONFIG, 0x80);
}
/* ... disable power-on abnormal beep */
w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
/* disable the global beep (not done by hard reset) */
tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
if (init) {
/* Make sure monitoring is turned on for add-ons */
tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
if (tmp & 1) {
w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
tmp & 0xfe);
}
tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
if (tmp & 1) {
w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
tmp & 0xfe);
}
/* Start monitoring */
tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
}
}
data->vrm = vid_which_vrm();
}
static struct w83791d_data *w83791d_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int i, j;
u8 reg_array_tmp[3];
u8 vbat_reg;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + (HZ * 3))
|| !data->valid) {
dev_dbg(dev, "Starting w83791d device update\n");
/* Update the voltages measured value and limits */
for (i = 0; i < NUMBER_OF_VIN; i++) {
data->in[i] = w83791d_read(client,
W83791D_REG_IN[i]);
data->in_max[i] = w83791d_read(client,
W83791D_REG_IN_MAX[i]);
data->in_min[i] = w83791d_read(client,
W83791D_REG_IN_MIN[i]);
}
/* Update the fan counts and limits */
for (i = 0; i < NUMBER_OF_FANIN; i++) {
/* Update the Fan measured value and limits */
data->fan[i] = w83791d_read(client,
W83791D_REG_FAN[i]);
data->fan_min[i] = w83791d_read(client,
W83791D_REG_FAN_MIN[i]);
}
/* Update the fan divisor */
for (i = 0; i < 3; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_FAN_DIV[i]);
}
data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
data->fan_div[3] = reg_array_tmp[2] & 0x07;
data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
/* The fan divisor for fans 0-2 get bit 2 from
bits 5-7 respectively of vbat register */
vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
for (i = 0; i < 3; i++)
data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
/* Update PWM duty cycle */
for (i = 0; i < NUMBER_OF_PWM; i++) {
data->pwm[i] = w83791d_read(client,
W83791D_REG_PWM[i]);
}
/* Update PWM enable status */
for (i = 0; i < 2; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_FAN_CFG[i]);
}
data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
/* Update PWM target temperature */
for (i = 0; i < 3; i++) {
data->temp_target[i] = w83791d_read(client,
W83791D_REG_TEMP_TARGET[i]) & 0x7f;
}
/* Update PWM temperature tolerance */
for (i = 0; i < 2; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_TEMP_TOL[i]);
}
data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
/* Update the first temperature sensor */
for (i = 0; i < 3; i++) {
data->temp1[i] = w83791d_read(client,
W83791D_REG_TEMP1[i]);
}
/* Update the rest of the temperature sensors */
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
data->temp_add[i][j] =
(w83791d_read(client,
W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
w83791d_read(client,
W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
}
}
/* Update the realtime status */
data->alarms =
w83791d_read(client, W83791D_REG_ALARM1) +
(w83791d_read(client, W83791D_REG_ALARM2) << 8) +
(w83791d_read(client, W83791D_REG_ALARM3) << 16);
/* Update the beep configuration information */
data->beep_mask =
w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
(w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
(w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
/* Extract global beep enable flag */
data->beep_enable =
(data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
/* Update the cpu voltage information */
i = w83791d_read(client, W83791D_REG_VID_FANDIV);
data->vid = i & 0x0f;
data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
<< 4;
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
#ifdef DEBUG
w83791d_print_debug(data, dev);
#endif
return data;
}
#ifdef DEBUG
static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
{
int i = 0, j = 0;
dev_dbg(dev, "======Start of w83791d debug values======\n");
dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
for (i = 0; i < NUMBER_OF_VIN; i++) {
dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]);
dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
}
dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
for (i = 0; i < NUMBER_OF_FANIN; i++) {
dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]);
dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
}
/* temperature math is signed, but only print out the
bits that matter */
dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
for (i = 0; i < 3; i++) {
dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
(u16) data->temp_add[i][j]);
}
}
dev_dbg(dev, "Misc Information: ===>\n");
dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms);
dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
dev_dbg(dev, "=======End of w83791d debug values========\n");
dev_dbg(dev, "\n");
}
#endif
static int __init sensors_w83791d_init(void)
{
return i2c_add_driver(&w83791d_driver);
}
static void __exit sensors_w83791d_exit(void)
{
i2c_del_driver(&w83791d_driver);
}
MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
MODULE_DESCRIPTION("W83791D driver");
MODULE_LICENSE("GPL");
module_init(sensors_w83791d_init);
module_exit(sensors_w83791d_exit);