linux_old1/drivers/gpu/drm/nouveau/nouveau_sgdma.c

535 lines
13 KiB
C
Raw Normal View History

#include "drmP.h"
#include "nouveau_drv.h"
#include <linux/pagemap.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#define NV_CTXDMA_PAGE_SHIFT 12
#define NV_CTXDMA_PAGE_SIZE (1 << NV_CTXDMA_PAGE_SHIFT)
#define NV_CTXDMA_PAGE_MASK (NV_CTXDMA_PAGE_SIZE - 1)
struct nouveau_sgdma_be {
struct ttm_backend backend;
struct drm_device *dev;
dma_addr_t *pages;
bool *ttm_alloced;
unsigned nr_pages;
u64 offset;
bool bound;
};
static int
nouveau_sgdma_populate(struct ttm_backend *be, unsigned long num_pages,
struct page **pages, struct page *dummy_read_page,
dma_addr_t *dma_addrs)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_device *dev = nvbe->dev;
NV_DEBUG(nvbe->dev, "num_pages = %ld\n", num_pages);
if (nvbe->pages)
return -EINVAL;
nvbe->pages = kmalloc(sizeof(dma_addr_t) * num_pages, GFP_KERNEL);
if (!nvbe->pages)
return -ENOMEM;
nvbe->ttm_alloced = kmalloc(sizeof(bool) * num_pages, GFP_KERNEL);
if (!nvbe->ttm_alloced)
return -ENOMEM;
nvbe->nr_pages = 0;
while (num_pages--) {
if (dma_addrs[nvbe->nr_pages] != DMA_ERROR_CODE) {
nvbe->pages[nvbe->nr_pages] =
dma_addrs[nvbe->nr_pages];
nvbe->ttm_alloced[nvbe->nr_pages] = true;
} else {
nvbe->pages[nvbe->nr_pages] =
pci_map_page(dev->pdev, pages[nvbe->nr_pages], 0,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev->pdev,
nvbe->pages[nvbe->nr_pages])) {
be->func->clear(be);
return -EFAULT;
}
}
nvbe->nr_pages++;
}
return 0;
}
static void
nouveau_sgdma_clear(struct ttm_backend *be)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_device *dev;
if (nvbe && nvbe->pages) {
dev = nvbe->dev;
NV_DEBUG(dev, "\n");
if (nvbe->bound)
be->func->unbind(be);
while (nvbe->nr_pages--) {
if (!nvbe->ttm_alloced[nvbe->nr_pages])
pci_unmap_page(dev->pdev, nvbe->pages[nvbe->nr_pages],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
}
kfree(nvbe->pages);
kfree(nvbe->ttm_alloced);
nvbe->pages = NULL;
nvbe->ttm_alloced = NULL;
nvbe->nr_pages = 0;
}
}
static void
nouveau_sgdma_destroy(struct ttm_backend *be)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
if (be) {
NV_DEBUG(nvbe->dev, "\n");
if (nvbe) {
if (nvbe->pages)
be->func->clear(be);
kfree(nvbe);
}
}
}
static int
nv04_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_device *dev = nvbe->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
unsigned i, j, pte;
NV_DEBUG(dev, "pg=0x%lx\n", mem->start);
nvbe->offset = mem->start << PAGE_SHIFT;
pte = (nvbe->offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
for (i = 0; i < nvbe->nr_pages; i++) {
dma_addr_t dma_offset = nvbe->pages[i];
uint32_t offset_l = lower_32_bits(dma_offset);
for (j = 0; j < PAGE_SIZE / NV_CTXDMA_PAGE_SIZE; j++, pte++) {
nv_wo32(gpuobj, (pte * 4) + 0, offset_l | 3);
dma_offset += NV_CTXDMA_PAGE_SIZE;
}
}
nvbe->bound = true;
return 0;
}
static int
nv04_sgdma_unbind(struct ttm_backend *be)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_device *dev = nvbe->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
unsigned i, j, pte;
NV_DEBUG(dev, "\n");
if (!nvbe->bound)
return 0;
pte = (nvbe->offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
for (i = 0; i < nvbe->nr_pages; i++) {
for (j = 0; j < PAGE_SIZE / NV_CTXDMA_PAGE_SIZE; j++, pte++)
nv_wo32(gpuobj, (pte * 4) + 0, 0x00000000);
}
nvbe->bound = false;
return 0;
}
static struct ttm_backend_func nv04_sgdma_backend = {
.populate = nouveau_sgdma_populate,
.clear = nouveau_sgdma_clear,
.bind = nv04_sgdma_bind,
.unbind = nv04_sgdma_unbind,
.destroy = nouveau_sgdma_destroy
};
static void
nv41_sgdma_flush(struct nouveau_sgdma_be *nvbe)
{
struct drm_device *dev = nvbe->dev;
nv_wr32(dev, 0x100810, 0x00000022);
if (!nv_wait(dev, 0x100810, 0x00000100, 0x00000100))
NV_ERROR(dev, "vm flush timeout: 0x%08x\n",
nv_rd32(dev, 0x100810));
nv_wr32(dev, 0x100810, 0x00000000);
}
static int
nv41_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
dma_addr_t *list = nvbe->pages;
u32 pte = mem->start << 2;
u32 cnt = nvbe->nr_pages;
nvbe->offset = mem->start << PAGE_SHIFT;
while (cnt--) {
nv_wo32(pgt, pte, (*list++ >> 7) | 1);
pte += 4;
}
nv41_sgdma_flush(nvbe);
nvbe->bound = true;
return 0;
}
static int
nv41_sgdma_unbind(struct ttm_backend *be)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
u32 pte = (nvbe->offset >> 12) << 2;
u32 cnt = nvbe->nr_pages;
while (cnt--) {
nv_wo32(pgt, pte, 0x00000000);
pte += 4;
}
nv41_sgdma_flush(nvbe);
nvbe->bound = false;
return 0;
}
static struct ttm_backend_func nv41_sgdma_backend = {
.populate = nouveau_sgdma_populate,
.clear = nouveau_sgdma_clear,
.bind = nv41_sgdma_bind,
.unbind = nv41_sgdma_unbind,
.destroy = nouveau_sgdma_destroy
};
static void
nv44_sgdma_flush(struct nouveau_sgdma_be *nvbe)
{
struct drm_device *dev = nvbe->dev;
nv_wr32(dev, 0x100814, (nvbe->nr_pages - 1) << 12);
nv_wr32(dev, 0x100808, nvbe->offset | 0x20);
if (!nv_wait(dev, 0x100808, 0x00000001, 0x00000001))
NV_ERROR(dev, "gart flush timeout: 0x%08x\n",
nv_rd32(dev, 0x100808));
nv_wr32(dev, 0x100808, 0x00000000);
}
static void
nv44_sgdma_fill(struct nouveau_gpuobj *pgt, dma_addr_t *list, u32 base, u32 cnt)
{
struct drm_nouveau_private *dev_priv = pgt->dev->dev_private;
dma_addr_t dummy = dev_priv->gart_info.dummy.addr;
u32 pte, tmp[4];
pte = base >> 2;
base &= ~0x0000000f;
tmp[0] = nv_ro32(pgt, base + 0x0);
tmp[1] = nv_ro32(pgt, base + 0x4);
tmp[2] = nv_ro32(pgt, base + 0x8);
tmp[3] = nv_ro32(pgt, base + 0xc);
while (cnt--) {
u32 addr = list ? (*list++ >> 12) : (dummy >> 12);
switch (pte++ & 0x3) {
case 0:
tmp[0] &= ~0x07ffffff;
tmp[0] |= addr;
break;
case 1:
tmp[0] &= ~0xf8000000;
tmp[0] |= addr << 27;
tmp[1] &= ~0x003fffff;
tmp[1] |= addr >> 5;
break;
case 2:
tmp[1] &= ~0xffc00000;
tmp[1] |= addr << 22;
tmp[2] &= ~0x0001ffff;
tmp[2] |= addr >> 10;
break;
case 3:
tmp[2] &= ~0xfffe0000;
tmp[2] |= addr << 17;
tmp[3] &= ~0x00000fff;
tmp[3] |= addr >> 15;
break;
}
}
tmp[3] |= 0x40000000;
nv_wo32(pgt, base + 0x0, tmp[0]);
nv_wo32(pgt, base + 0x4, tmp[1]);
nv_wo32(pgt, base + 0x8, tmp[2]);
nv_wo32(pgt, base + 0xc, tmp[3]);
}
static int
nv44_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
dma_addr_t *list = nvbe->pages;
u32 pte = mem->start << 2, tmp[4];
u32 cnt = nvbe->nr_pages;
int i;
nvbe->offset = mem->start << PAGE_SHIFT;
if (pte & 0x0000000c) {
u32 max = 4 - ((pte >> 2) & 0x3);
u32 part = (cnt > max) ? max : cnt;
nv44_sgdma_fill(pgt, list, pte, part);
pte += (part << 2);
list += part;
cnt -= part;
}
while (cnt >= 4) {
for (i = 0; i < 4; i++)
tmp[i] = *list++ >> 12;
nv_wo32(pgt, pte + 0x0, tmp[0] >> 0 | tmp[1] << 27);
nv_wo32(pgt, pte + 0x4, tmp[1] >> 5 | tmp[2] << 22);
nv_wo32(pgt, pte + 0x8, tmp[2] >> 10 | tmp[3] << 17);
nv_wo32(pgt, pte + 0xc, tmp[3] >> 15 | 0x40000000);
pte += 0x10;
cnt -= 4;
}
if (cnt)
nv44_sgdma_fill(pgt, list, pte, cnt);
nv44_sgdma_flush(nvbe);
nvbe->bound = true;
return 0;
}
static int
nv44_sgdma_unbind(struct ttm_backend *be)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
u32 pte = (nvbe->offset >> 12) << 2;
u32 cnt = nvbe->nr_pages;
if (pte & 0x0000000c) {
u32 max = 4 - ((pte >> 2) & 0x3);
u32 part = (cnt > max) ? max : cnt;
nv44_sgdma_fill(pgt, NULL, pte, part);
pte += (part << 2);
cnt -= part;
}
while (cnt >= 4) {
nv_wo32(pgt, pte + 0x0, 0x00000000);
nv_wo32(pgt, pte + 0x4, 0x00000000);
nv_wo32(pgt, pte + 0x8, 0x00000000);
nv_wo32(pgt, pte + 0xc, 0x00000000);
pte += 0x10;
cnt -= 4;
}
if (cnt)
nv44_sgdma_fill(pgt, NULL, pte, cnt);
nv44_sgdma_flush(nvbe);
nvbe->bound = false;
return 0;
}
static struct ttm_backend_func nv44_sgdma_backend = {
.populate = nouveau_sgdma_populate,
.clear = nouveau_sgdma_clear,
.bind = nv44_sgdma_bind,
.unbind = nv44_sgdma_unbind,
.destroy = nouveau_sgdma_destroy
};
static int
nv50_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_mem *node = mem->mm_node;
/* noop: bound in move_notify() */
node->pages = nvbe->pages;
nvbe->pages = (dma_addr_t *)node;
nvbe->bound = true;
return 0;
}
static int
nv50_sgdma_unbind(struct ttm_backend *be)
{
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
struct nouveau_mem *node = (struct nouveau_mem *)nvbe->pages;
/* noop: unbound in move_notify() */
nvbe->pages = node->pages;
node->pages = NULL;
nvbe->bound = false;
return 0;
}
static struct ttm_backend_func nv50_sgdma_backend = {
.populate = nouveau_sgdma_populate,
.clear = nouveau_sgdma_clear,
.bind = nv50_sgdma_bind,
.unbind = nv50_sgdma_unbind,
.destroy = nouveau_sgdma_destroy
};
struct ttm_backend *
nouveau_sgdma_init_ttm(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_sgdma_be *nvbe;
nvbe = kzalloc(sizeof(*nvbe), GFP_KERNEL);
if (!nvbe)
return NULL;
nvbe->dev = dev;
nvbe->backend.func = dev_priv->gart_info.func;
return &nvbe->backend;
}
int
nouveau_sgdma_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj = NULL;
u32 aper_size, align;
int ret;
if (dev_priv->card_type >= NV_50 ||
dev_priv->ramin_rsvd_vram >= 2 * 1024 * 1024)
aper_size = 512 * 1024 * 1024;
else
aper_size = 64 * 1024 * 1024;
/* Dear NVIDIA, NV44+ would like proper present bits in PTEs for
* christmas. The cards before it have them, the cards after
* it have them, why is NV44 so unloved?
*/
dev_priv->gart_info.dummy.page = alloc_page(GFP_DMA32 | GFP_KERNEL);
if (!dev_priv->gart_info.dummy.page)
return -ENOMEM;
dev_priv->gart_info.dummy.addr =
pci_map_page(dev->pdev, dev_priv->gart_info.dummy.page,
0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev->pdev, dev_priv->gart_info.dummy.addr)) {
NV_ERROR(dev, "error mapping dummy page\n");
__free_page(dev_priv->gart_info.dummy.page);
dev_priv->gart_info.dummy.page = NULL;
return -ENOMEM;
}
if (dev_priv->card_type >= NV_50) {
dev_priv->gart_info.aper_base = 0;
dev_priv->gart_info.aper_size = aper_size;
dev_priv->gart_info.type = NOUVEAU_GART_HW;
dev_priv->gart_info.func = &nv50_sgdma_backend;
} else
if (drm_pci_device_is_pcie(dev) &&
dev_priv->chipset != 0x40 && dev_priv->chipset != 0x45) {
if (nv44_graph_class(dev)) {
dev_priv->gart_info.func = &nv44_sgdma_backend;
align = 512 * 1024;
} else {
dev_priv->gart_info.func = &nv41_sgdma_backend;
align = 16;
}
ret = nouveau_gpuobj_new(dev, NULL, aper_size / 1024, align,
NVOBJ_FLAG_ZERO_ALLOC |
NVOBJ_FLAG_ZERO_FREE, &gpuobj);
if (ret) {
NV_ERROR(dev, "Error creating sgdma object: %d\n", ret);
return ret;
}
dev_priv->gart_info.sg_ctxdma = gpuobj;
dev_priv->gart_info.aper_base = 0;
dev_priv->gart_info.aper_size = aper_size;
dev_priv->gart_info.type = NOUVEAU_GART_HW;
} else {
ret = nouveau_gpuobj_new(dev, NULL, (aper_size / 1024) + 8, 16,
NVOBJ_FLAG_ZERO_ALLOC |
NVOBJ_FLAG_ZERO_FREE, &gpuobj);
if (ret) {
NV_ERROR(dev, "Error creating sgdma object: %d\n", ret);
return ret;
}
nv_wo32(gpuobj, 0, NV_CLASS_DMA_IN_MEMORY |
(1 << 12) /* PT present */ |
(0 << 13) /* PT *not* linear */ |
(0 << 14) /* RW */ |
(2 << 16) /* PCI */);
nv_wo32(gpuobj, 4, aper_size - 1);
dev_priv->gart_info.sg_ctxdma = gpuobj;
dev_priv->gart_info.aper_base = 0;
dev_priv->gart_info.aper_size = aper_size;
dev_priv->gart_info.type = NOUVEAU_GART_PDMA;
dev_priv->gart_info.func = &nv04_sgdma_backend;
}
return 0;
}
void
nouveau_sgdma_takedown(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
nouveau_gpuobj_ref(NULL, &dev_priv->gart_info.sg_ctxdma);
if (dev_priv->gart_info.dummy.page) {
pci_unmap_page(dev->pdev, dev_priv->gart_info.dummy.addr,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
__free_page(dev_priv->gart_info.dummy.page);
dev_priv->gart_info.dummy.page = NULL;
}
}
uint32_t
nouveau_sgdma_get_physical(struct drm_device *dev, uint32_t offset)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
int pte = (offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
BUG_ON(dev_priv->card_type >= NV_50);
return (nv_ro32(gpuobj, 4 * pte) & ~NV_CTXDMA_PAGE_MASK) |
(offset & NV_CTXDMA_PAGE_MASK);
}