linux_old1/fs/afs/cmservice.c

605 lines
14 KiB
C
Raw Normal View History

/* AFS Cache Manager Service
*
* Copyright (C) 2002 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/ip.h>
#include "internal.h"
#include "afs_cm.h"
#if 0
struct workqueue_struct *afs_cm_workqueue;
#endif /* 0 */
static int afs_deliver_cb_init_call_back_state(struct afs_call *,
struct sk_buff *, bool);
static int afs_deliver_cb_init_call_back_state3(struct afs_call *,
struct sk_buff *, bool);
static int afs_deliver_cb_probe(struct afs_call *, struct sk_buff *, bool);
static int afs_deliver_cb_callback(struct afs_call *, struct sk_buff *, bool);
static int afs_deliver_cb_probe_uuid(struct afs_call *, struct sk_buff *, bool);
static int afs_deliver_cb_tell_me_about_yourself(struct afs_call *,
struct sk_buff *, bool);
static void afs_cm_destructor(struct afs_call *);
/*
* CB.CallBack operation type
*/
static const struct afs_call_type afs_SRXCBCallBack = {
.name = "CB.CallBack",
.deliver = afs_deliver_cb_callback,
.abort_to_error = afs_abort_to_error,
.destructor = afs_cm_destructor,
};
/*
* CB.InitCallBackState operation type
*/
static const struct afs_call_type afs_SRXCBInitCallBackState = {
.name = "CB.InitCallBackState",
.deliver = afs_deliver_cb_init_call_back_state,
.abort_to_error = afs_abort_to_error,
.destructor = afs_cm_destructor,
};
/*
* CB.InitCallBackState3 operation type
*/
static const struct afs_call_type afs_SRXCBInitCallBackState3 = {
.name = "CB.InitCallBackState3",
.deliver = afs_deliver_cb_init_call_back_state3,
.abort_to_error = afs_abort_to_error,
.destructor = afs_cm_destructor,
};
/*
* CB.Probe operation type
*/
static const struct afs_call_type afs_SRXCBProbe = {
.name = "CB.Probe",
.deliver = afs_deliver_cb_probe,
.abort_to_error = afs_abort_to_error,
.destructor = afs_cm_destructor,
};
/*
* CB.ProbeUuid operation type
*/
static const struct afs_call_type afs_SRXCBProbeUuid = {
.name = "CB.ProbeUuid",
.deliver = afs_deliver_cb_probe_uuid,
.abort_to_error = afs_abort_to_error,
.destructor = afs_cm_destructor,
};
/*
* CB.TellMeAboutYourself operation type
*/
static const struct afs_call_type afs_SRXCBTellMeAboutYourself = {
.name = "CB.TellMeAboutYourself",
.deliver = afs_deliver_cb_tell_me_about_yourself,
.abort_to_error = afs_abort_to_error,
.destructor = afs_cm_destructor,
};
/*
* route an incoming cache manager call
* - return T if supported, F if not
*/
bool afs_cm_incoming_call(struct afs_call *call)
{
u32 operation_id = ntohl(call->operation_ID);
_enter("{CB.OP %u}", operation_id);
switch (operation_id) {
case CBCallBack:
call->type = &afs_SRXCBCallBack;
return true;
case CBInitCallBackState:
call->type = &afs_SRXCBInitCallBackState;
return true;
case CBInitCallBackState3:
call->type = &afs_SRXCBInitCallBackState3;
return true;
case CBProbe:
call->type = &afs_SRXCBProbe;
return true;
case CBTellMeAboutYourself:
call->type = &afs_SRXCBTellMeAboutYourself;
return true;
default:
return false;
}
}
/*
* clean up a cache manager call
*/
static void afs_cm_destructor(struct afs_call *call)
{
_enter("");
/* Break the callbacks here so that we do it after the final ACK is
* received. The step number here must match the final number in
* afs_deliver_cb_callback().
*/
if (call->unmarshall == 6) {
ASSERT(call->server && call->count && call->request);
afs_break_callbacks(call->server, call->count, call->request);
}
afs_put_server(call->server);
call->server = NULL;
kfree(call->buffer);
call->buffer = NULL;
}
/*
* allow the fileserver to see if the cache manager is still alive
*/
static void SRXAFSCB_CallBack(struct work_struct *work)
{
struct afs_call *call = container_of(work, struct afs_call, work);
_enter("");
/* be sure to send the reply *before* attempting to spam the AFS server
* with FSFetchStatus requests on the vnodes with broken callbacks lest
* the AFS server get into a vicious cycle of trying to break further
* callbacks because it hadn't received completion of the CBCallBack op
* yet */
afs_send_empty_reply(call);
afs_break_callbacks(call->server, call->count, call->request);
_leave("");
}
/*
* deliver request data to a CB.CallBack call
*/
static int afs_deliver_cb_callback(struct afs_call *call, struct sk_buff *skb,
bool last)
{
struct afs_callback *cb;
struct afs_server *server;
struct in_addr addr;
__be32 *bp;
u32 tmp;
int ret, loop;
_enter("{%u},{%u},%d", call->unmarshall, skb->len, last);
switch (call->unmarshall) {
case 0:
call->offset = 0;
call->unmarshall++;
/* extract the FID array and its count in two steps */
case 1:
_debug("extract FID count");
ret = afs_extract_data(call, skb, last, &call->tmp, 4);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
call->count = ntohl(call->tmp);
_debug("FID count: %u", call->count);
if (call->count > AFSCBMAX)
return -EBADMSG;
call->buffer = kmalloc(call->count * 3 * 4, GFP_KERNEL);
if (!call->buffer)
return -ENOMEM;
call->offset = 0;
call->unmarshall++;
case 2:
_debug("extract FID array");
ret = afs_extract_data(call, skb, last, call->buffer,
call->count * 3 * 4);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
_debug("unmarshall FID array");
call->request = kcalloc(call->count,
sizeof(struct afs_callback),
GFP_KERNEL);
if (!call->request)
return -ENOMEM;
cb = call->request;
bp = call->buffer;
for (loop = call->count; loop > 0; loop--, cb++) {
cb->fid.vid = ntohl(*bp++);
cb->fid.vnode = ntohl(*bp++);
cb->fid.unique = ntohl(*bp++);
cb->type = AFSCM_CB_UNTYPED;
}
call->offset = 0;
call->unmarshall++;
/* extract the callback array and its count in two steps */
case 3:
_debug("extract CB count");
ret = afs_extract_data(call, skb, last, &call->tmp, 4);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
tmp = ntohl(call->tmp);
_debug("CB count: %u", tmp);
if (tmp != call->count && tmp != 0)
return -EBADMSG;
call->offset = 0;
call->unmarshall++;
if (tmp == 0)
goto empty_cb_array;
case 4:
_debug("extract CB array");
ret = afs_extract_data(call, skb, last, call->request,
call->count * 3 * 4);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
_debug("unmarshall CB array");
cb = call->request;
bp = call->buffer;
for (loop = call->count; loop > 0; loop--, cb++) {
cb->version = ntohl(*bp++);
cb->expiry = ntohl(*bp++);
cb->type = ntohl(*bp++);
}
empty_cb_array:
call->offset = 0;
call->unmarshall++;
case 5:
_debug("trailer");
if (skb->len != 0)
return -EBADMSG;
/* Record that the message was unmarshalled successfully so
* that the call destructor can know do the callback breaking
* work, even if the final ACK isn't received.
*
* If the step number changes, then afs_cm_destructor() must be
* updated also.
*/
call->unmarshall++;
case 6:
break;
}
if (!last)
return 0;
call->state = AFS_CALL_REPLYING;
/* we'll need the file server record as that tells us which set of
* vnodes to operate upon */
memcpy(&addr, &ip_hdr(skb)->saddr, 4);
server = afs_find_server(&addr);
if (!server)
return -ENOTCONN;
call->server = server;
INIT_WORK(&call->work, SRXAFSCB_CallBack);
queue_work(afs_wq, &call->work);
return 0;
}
/*
* allow the fileserver to request callback state (re-)initialisation
*/
static void SRXAFSCB_InitCallBackState(struct work_struct *work)
{
struct afs_call *call = container_of(work, struct afs_call, work);
_enter("{%p}", call->server);
afs_init_callback_state(call->server);
afs_send_empty_reply(call);
_leave("");
}
/*
* deliver request data to a CB.InitCallBackState call
*/
static int afs_deliver_cb_init_call_back_state(struct afs_call *call,
struct sk_buff *skb,
bool last)
{
struct afs_server *server;
struct in_addr addr;
_enter(",{%u},%d", skb->len, last);
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
/* no unmarshalling required */
call->state = AFS_CALL_REPLYING;
/* we'll need the file server record as that tells us which set of
* vnodes to operate upon */
memcpy(&addr, &ip_hdr(skb)->saddr, 4);
server = afs_find_server(&addr);
if (!server)
return -ENOTCONN;
call->server = server;
INIT_WORK(&call->work, SRXAFSCB_InitCallBackState);
queue_work(afs_wq, &call->work);
return 0;
}
/*
* deliver request data to a CB.InitCallBackState3 call
*/
static int afs_deliver_cb_init_call_back_state3(struct afs_call *call,
struct sk_buff *skb,
bool last)
{
struct afs_server *server;
struct in_addr addr;
_enter(",{%u},%d", skb->len, last);
if (!last)
return 0;
/* no unmarshalling required */
call->state = AFS_CALL_REPLYING;
/* we'll need the file server record as that tells us which set of
* vnodes to operate upon */
memcpy(&addr, &ip_hdr(skb)->saddr, 4);
server = afs_find_server(&addr);
if (!server)
return -ENOTCONN;
call->server = server;
INIT_WORK(&call->work, SRXAFSCB_InitCallBackState);
queue_work(afs_wq, &call->work);
return 0;
}
/*
* allow the fileserver to see if the cache manager is still alive
*/
static void SRXAFSCB_Probe(struct work_struct *work)
{
struct afs_call *call = container_of(work, struct afs_call, work);
_enter("");
afs_send_empty_reply(call);
_leave("");
}
/*
* deliver request data to a CB.Probe call
*/
static int afs_deliver_cb_probe(struct afs_call *call, struct sk_buff *skb,
bool last)
{
_enter(",{%u},%d", skb->len, last);
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
/* no unmarshalling required */
call->state = AFS_CALL_REPLYING;
INIT_WORK(&call->work, SRXAFSCB_Probe);
queue_work(afs_wq, &call->work);
return 0;
}
/*
* allow the fileserver to quickly find out if the fileserver has been rebooted
*/
static void SRXAFSCB_ProbeUuid(struct work_struct *work)
{
struct afs_call *call = container_of(work, struct afs_call, work);
struct afs_uuid *r = call->request;
struct {
__be32 match;
} reply;
_enter("");
if (memcmp(r, &afs_uuid, sizeof(afs_uuid)) == 0)
reply.match = htonl(0);
else
reply.match = htonl(1);
afs_send_simple_reply(call, &reply, sizeof(reply));
_leave("");
}
/*
* deliver request data to a CB.ProbeUuid call
*/
static int afs_deliver_cb_probe_uuid(struct afs_call *call, struct sk_buff *skb,
bool last)
{
struct afs_uuid *r;
unsigned loop;
__be32 *b;
int ret;
_enter("{%u},{%u},%d", call->unmarshall, skb->len, last);
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
switch (call->unmarshall) {
case 0:
call->offset = 0;
call->buffer = kmalloc(11 * sizeof(__be32), GFP_KERNEL);
if (!call->buffer)
return -ENOMEM;
call->unmarshall++;
case 1:
_debug("extract UUID");
ret = afs_extract_data(call, skb, last, call->buffer,
11 * sizeof(__be32));
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
_debug("unmarshall UUID");
call->request = kmalloc(sizeof(struct afs_uuid), GFP_KERNEL);
if (!call->request)
return -ENOMEM;
b = call->buffer;
r = call->request;
r->time_low = ntohl(b[0]);
r->time_mid = ntohl(b[1]);
r->time_hi_and_version = ntohl(b[2]);
r->clock_seq_hi_and_reserved = ntohl(b[3]);
r->clock_seq_low = ntohl(b[4]);
for (loop = 0; loop < 6; loop++)
r->node[loop] = ntohl(b[loop + 5]);
call->offset = 0;
call->unmarshall++;
case 2:
_debug("trailer");
if (skb->len != 0)
return -EBADMSG;
break;
}
if (!last)
return 0;
call->state = AFS_CALL_REPLYING;
INIT_WORK(&call->work, SRXAFSCB_ProbeUuid);
queue_work(afs_wq, &call->work);
return 0;
}
/*
* allow the fileserver to ask about the cache manager's capabilities
*/
static void SRXAFSCB_TellMeAboutYourself(struct work_struct *work)
{
struct afs_interface *ifs;
struct afs_call *call = container_of(work, struct afs_call, work);
int loop, nifs;
struct {
struct /* InterfaceAddr */ {
__be32 nifs;
__be32 uuid[11];
__be32 ifaddr[32];
__be32 netmask[32];
__be32 mtu[32];
} ia;
struct /* Capabilities */ {
__be32 capcount;
__be32 caps[1];
} cap;
} reply;
_enter("");
nifs = 0;
ifs = kcalloc(32, sizeof(*ifs), GFP_KERNEL);
if (ifs) {
nifs = afs_get_ipv4_interfaces(ifs, 32, false);
if (nifs < 0) {
kfree(ifs);
ifs = NULL;
nifs = 0;
}
}
memset(&reply, 0, sizeof(reply));
reply.ia.nifs = htonl(nifs);
reply.ia.uuid[0] = htonl(afs_uuid.time_low);
reply.ia.uuid[1] = htonl(afs_uuid.time_mid);
reply.ia.uuid[2] = htonl(afs_uuid.time_hi_and_version);
reply.ia.uuid[3] = htonl((s8) afs_uuid.clock_seq_hi_and_reserved);
reply.ia.uuid[4] = htonl((s8) afs_uuid.clock_seq_low);
for (loop = 0; loop < 6; loop++)
reply.ia.uuid[loop + 5] = htonl((s8) afs_uuid.node[loop]);
if (ifs) {
for (loop = 0; loop < nifs; loop++) {
reply.ia.ifaddr[loop] = ifs[loop].address.s_addr;
reply.ia.netmask[loop] = ifs[loop].netmask.s_addr;
reply.ia.mtu[loop] = htonl(ifs[loop].mtu);
}
kfree(ifs);
}
reply.cap.capcount = htonl(1);
reply.cap.caps[0] = htonl(AFS_CAP_ERROR_TRANSLATION);
afs_send_simple_reply(call, &reply, sizeof(reply));
_leave("");
}
/*
* deliver request data to a CB.TellMeAboutYourself call
*/
static int afs_deliver_cb_tell_me_about_yourself(struct afs_call *call,
struct sk_buff *skb, bool last)
{
_enter(",{%u},%d", skb->len, last);
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
/* no unmarshalling required */
call->state = AFS_CALL_REPLYING;
INIT_WORK(&call->work, SRXAFSCB_TellMeAboutYourself);
queue_work(afs_wq, &call->work);
return 0;
}