linux_old1/drivers/usb/gadget/uvc_video.c

387 lines
9.4 KiB
C
Raw Normal View History

/*
* uvc_video.c -- USB Video Class Gadget driver
*
* Copyright (C) 2009-2010
* Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <media/v4l2-dev.h>
#include "uvc.h"
#include "uvc_queue.h"
/* --------------------------------------------------------------------------
* Video codecs
*/
static int
uvc_video_encode_header(struct uvc_video *video, struct uvc_buffer *buf,
u8 *data, int len)
{
data[0] = 2;
data[1] = UVC_STREAM_EOH | video->fid;
if (buf->buf.bytesused - video->queue.buf_used <= len - 2)
data[1] |= UVC_STREAM_EOF;
return 2;
}
static int
uvc_video_encode_data(struct uvc_video *video, struct uvc_buffer *buf,
u8 *data, int len)
{
struct uvc_video_queue *queue = &video->queue;
unsigned int nbytes;
void *mem;
/* Copy video data to the USB buffer. */
mem = queue->mem + buf->buf.m.offset + queue->buf_used;
nbytes = min((unsigned int)len, buf->buf.bytesused - queue->buf_used);
memcpy(data, mem, nbytes);
queue->buf_used += nbytes;
return nbytes;
}
static void
uvc_video_encode_bulk(struct usb_request *req, struct uvc_video *video,
struct uvc_buffer *buf)
{
void *mem = req->buf;
int len = video->req_size;
int ret;
/* Add a header at the beginning of the payload. */
if (video->payload_size == 0) {
ret = uvc_video_encode_header(video, buf, mem, len);
video->payload_size += ret;
mem += ret;
len -= ret;
}
/* Process video data. */
len = min((int)(video->max_payload_size - video->payload_size), len);
ret = uvc_video_encode_data(video, buf, mem, len);
video->payload_size += ret;
len -= ret;
req->length = video->req_size - len;
req->zero = video->payload_size == video->max_payload_size;
if (buf->buf.bytesused == video->queue.buf_used) {
video->queue.buf_used = 0;
buf->state = UVC_BUF_STATE_DONE;
uvc_queue_next_buffer(&video->queue, buf);
video->fid ^= UVC_STREAM_FID;
video->payload_size = 0;
}
if (video->payload_size == video->max_payload_size ||
buf->buf.bytesused == video->queue.buf_used)
video->payload_size = 0;
}
static void
uvc_video_encode_isoc(struct usb_request *req, struct uvc_video *video,
struct uvc_buffer *buf)
{
void *mem = req->buf;
int len = video->req_size;
int ret;
/* Add the header. */
ret = uvc_video_encode_header(video, buf, mem, len);
mem += ret;
len -= ret;
/* Process video data. */
ret = uvc_video_encode_data(video, buf, mem, len);
len -= ret;
req->length = video->req_size - len;
if (buf->buf.bytesused == video->queue.buf_used) {
video->queue.buf_used = 0;
buf->state = UVC_BUF_STATE_DONE;
uvc_queue_next_buffer(&video->queue, buf);
video->fid ^= UVC_STREAM_FID;
}
}
/* --------------------------------------------------------------------------
* Request handling
*/
/*
* I somehow feel that synchronisation won't be easy to achieve here. We have
* three events that control USB requests submission:
*
* - USB request completion: the completion handler will resubmit the request
* if a video buffer is available.
*
* - USB interface setting selection: in response to a SET_INTERFACE request,
* the handler will start streaming if a video buffer is available and if
* video is not currently streaming.
*
* - V4L2 buffer queueing: the driver will start streaming if video is not
* currently streaming.
*
* Race conditions between those 3 events might lead to deadlocks or other
* nasty side effects.
*
* The "video currently streaming" condition can't be detected by the irqqueue
* being empty, as a request can still be in flight. A separate "queue paused"
* flag is thus needed.
*
* The paused flag will be set when we try to retrieve the irqqueue head if the
* queue is empty, and cleared when we queue a buffer.
*
* The USB request completion handler will get the buffer at the irqqueue head
* under protection of the queue spinlock. If the queue is empty, the streaming
* paused flag will be set. Right after releasing the spinlock a userspace
* application can queue a buffer. The flag will then cleared, and the ioctl
* handler will restart the video stream.
*/
static void
uvc_video_complete(struct usb_ep *ep, struct usb_request *req)
{
struct uvc_video *video = req->context;
struct uvc_buffer *buf;
unsigned long flags;
int ret;
switch (req->status) {
case 0:
break;
case -ESHUTDOWN:
printk(KERN_INFO "VS request cancelled.\n");
goto requeue;
default:
printk(KERN_INFO "VS request completed with status %d.\n",
req->status);
goto requeue;
}
spin_lock_irqsave(&video->queue.irqlock, flags);
buf = uvc_queue_head(&video->queue);
if (buf == NULL) {
spin_unlock_irqrestore(&video->queue.irqlock, flags);
goto requeue;
}
video->encode(req, video, buf);
if ((ret = usb_ep_queue(ep, req, GFP_ATOMIC)) < 0) {
printk(KERN_INFO "Failed to queue request (%d).\n", ret);
usb_ep_set_halt(ep);
spin_unlock_irqrestore(&video->queue.irqlock, flags);
goto requeue;
}
spin_unlock_irqrestore(&video->queue.irqlock, flags);
return;
requeue:
spin_lock_irqsave(&video->req_lock, flags);
list_add_tail(&req->list, &video->req_free);
spin_unlock_irqrestore(&video->req_lock, flags);
}
static int
uvc_video_free_requests(struct uvc_video *video)
{
unsigned int i;
for (i = 0; i < UVC_NUM_REQUESTS; ++i) {
if (video->req[i]) {
usb_ep_free_request(video->ep, video->req[i]);
video->req[i] = NULL;
}
if (video->req_buffer[i]) {
kfree(video->req_buffer[i]);
video->req_buffer[i] = NULL;
}
}
INIT_LIST_HEAD(&video->req_free);
video->req_size = 0;
return 0;
}
static int
uvc_video_alloc_requests(struct uvc_video *video)
{
unsigned int i;
int ret = -ENOMEM;
BUG_ON(video->req_size);
for (i = 0; i < UVC_NUM_REQUESTS; ++i) {
video->req_buffer[i] = kmalloc(video->ep->maxpacket, GFP_KERNEL);
if (video->req_buffer[i] == NULL)
goto error;
video->req[i] = usb_ep_alloc_request(video->ep, GFP_KERNEL);
if (video->req[i] == NULL)
goto error;
video->req[i]->buf = video->req_buffer[i];
video->req[i]->length = 0;
video->req[i]->dma = DMA_ADDR_INVALID;
video->req[i]->complete = uvc_video_complete;
video->req[i]->context = video;
list_add_tail(&video->req[i]->list, &video->req_free);
}
video->req_size = video->ep->maxpacket;
return 0;
error:
uvc_video_free_requests(video);
return ret;
}
/* --------------------------------------------------------------------------
* Video streaming
*/
/*
* uvc_video_pump - Pump video data into the USB requests
*
* This function fills the available USB requests (listed in req_free) with
* video data from the queued buffers.
*/
static int
uvc_video_pump(struct uvc_video *video)
{
struct usb_request *req;
struct uvc_buffer *buf;
unsigned long flags;
int ret;
/* FIXME TODO Race between uvc_video_pump and requests completion
* handler ???
*/
while (1) {
/* Retrieve the first available USB request, protected by the
* request lock.
*/
spin_lock_irqsave(&video->req_lock, flags);
if (list_empty(&video->req_free)) {
spin_unlock_irqrestore(&video->req_lock, flags);
return 0;
}
req = list_first_entry(&video->req_free, struct usb_request,
list);
list_del(&req->list);
spin_unlock_irqrestore(&video->req_lock, flags);
/* Retrieve the first available video buffer and fill the
* request, protected by the video queue irqlock.
*/
spin_lock_irqsave(&video->queue.irqlock, flags);
buf = uvc_queue_head(&video->queue);
if (buf == NULL) {
spin_unlock_irqrestore(&video->queue.irqlock, flags);
break;
}
video->encode(req, video, buf);
/* Queue the USB request */
if ((ret = usb_ep_queue(video->ep, req, GFP_KERNEL)) < 0) {
printk(KERN_INFO "Failed to queue request (%d)\n", ret);
usb_ep_set_halt(video->ep);
spin_unlock_irqrestore(&video->queue.irqlock, flags);
break;
}
spin_unlock_irqrestore(&video->queue.irqlock, flags);
}
spin_lock_irqsave(&video->req_lock, flags);
list_add_tail(&req->list, &video->req_free);
spin_unlock_irqrestore(&video->req_lock, flags);
return 0;
}
/*
* Enable or disable the video stream.
*/
static int
uvc_video_enable(struct uvc_video *video, int enable)
{
unsigned int i;
int ret;
if (video->ep == NULL) {
printk(KERN_INFO "Video enable failed, device is "
"uninitialized.\n");
return -ENODEV;
}
if (!enable) {
for (i = 0; i < UVC_NUM_REQUESTS; ++i)
usb_ep_dequeue(video->ep, video->req[i]);
uvc_video_free_requests(video);
uvc_queue_enable(&video->queue, 0);
return 0;
}
if ((ret = uvc_queue_enable(&video->queue, 1)) < 0)
return ret;
if ((ret = uvc_video_alloc_requests(video)) < 0)
return ret;
if (video->max_payload_size) {
video->encode = uvc_video_encode_bulk;
video->payload_size = 0;
} else
video->encode = uvc_video_encode_isoc;
return uvc_video_pump(video);
}
/*
* Initialize the UVC video stream.
*/
static int
uvc_video_init(struct uvc_video *video)
{
INIT_LIST_HEAD(&video->req_free);
spin_lock_init(&video->req_lock);
video->fcc = V4L2_PIX_FMT_YUYV;
video->bpp = 16;
video->width = 320;
video->height = 240;
video->imagesize = 320 * 240 * 2;
/* Initialize the video buffers queue. */
uvc_queue_init(&video->queue, V4L2_BUF_TYPE_VIDEO_OUTPUT);
return 0;
}