116 lines
4.6 KiB
C
116 lines
4.6 KiB
C
|
/* To be include by pgtable-hash64.h only */
|
||
|
|
||
|
/* Additional PTE bits (don't change without checking asm in hash_low.S) */
|
||
|
#define _PAGE_SPECIAL 0x00000400 /* software: special page */
|
||
|
#define _PAGE_HPTE_SUB 0x0ffff000 /* combo only: sub pages HPTE bits */
|
||
|
#define _PAGE_HPTE_SUB0 0x08000000 /* combo only: first sub page */
|
||
|
#define _PAGE_COMBO 0x10000000 /* this is a combo 4k page */
|
||
|
#define _PAGE_4K_PFN 0x20000000 /* PFN is for a single 4k page */
|
||
|
|
||
|
/* For 64K page, we don't have a separate _PAGE_HASHPTE bit. Instead,
|
||
|
* we set that to be the whole sub-bits mask. The C code will only
|
||
|
* test this, so a multi-bit mask will work. For combo pages, this
|
||
|
* is equivalent as effectively, the old _PAGE_HASHPTE was an OR of
|
||
|
* all the sub bits. For real 64k pages, we now have the assembly set
|
||
|
* _PAGE_HPTE_SUB0 in addition to setting the HIDX bits which overlap
|
||
|
* that mask. This is fine as long as the HIDX bits are never set on
|
||
|
* a PTE that isn't hashed, which is the case today.
|
||
|
*
|
||
|
* A little nit is for the huge page C code, which does the hashing
|
||
|
* in C, we need to provide which bit to use.
|
||
|
*/
|
||
|
#define _PAGE_HASHPTE _PAGE_HPTE_SUB
|
||
|
|
||
|
/* Note the full page bits must be in the same location as for normal
|
||
|
* 4k pages as the same asssembly will be used to insert 64K pages
|
||
|
* wether the kernel has CONFIG_PPC_64K_PAGES or not
|
||
|
*/
|
||
|
#define _PAGE_F_SECOND 0x00008000 /* full page: hidx bits */
|
||
|
#define _PAGE_F_GIX 0x00007000 /* full page: hidx bits */
|
||
|
|
||
|
/* PTE flags to conserve for HPTE identification */
|
||
|
#define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_COMBO)
|
||
|
|
||
|
/* Shift to put page number into pte.
|
||
|
*
|
||
|
* That gives us a max RPN of 34 bits, which means a max of 50 bits
|
||
|
* of addressable physical space, or 46 bits for the special 4k PFNs.
|
||
|
*/
|
||
|
#define PTE_RPN_SHIFT (30)
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
/*
|
||
|
* With 64K pages on hash table, we have a special PTE format that
|
||
|
* uses a second "half" of the page table to encode sub-page information
|
||
|
* in order to deal with 64K made of 4K HW pages. Thus we override the
|
||
|
* generic accessors and iterators here
|
||
|
*/
|
||
|
#define __real_pte(e,p) ((real_pte_t) { \
|
||
|
(e), pte_val(*((p) + PTRS_PER_PTE)) })
|
||
|
#define __rpte_to_hidx(r,index) ((pte_val((r).pte) & _PAGE_COMBO) ? \
|
||
|
(((r).hidx >> ((index)<<2)) & 0xf) : ((pte_val((r).pte) >> 12) & 0xf))
|
||
|
#define __rpte_to_pte(r) ((r).pte)
|
||
|
#define __rpte_sub_valid(rpte, index) \
|
||
|
(pte_val(rpte.pte) & (_PAGE_HPTE_SUB0 >> (index)))
|
||
|
|
||
|
/* Trick: we set __end to va + 64k, which happens works for
|
||
|
* a 16M page as well as we want only one iteration
|
||
|
*/
|
||
|
#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
|
||
|
do { \
|
||
|
unsigned long __end = va + PAGE_SIZE; \
|
||
|
unsigned __split = (psize == MMU_PAGE_4K || \
|
||
|
psize == MMU_PAGE_64K_AP); \
|
||
|
shift = mmu_psize_defs[psize].shift; \
|
||
|
for (index = 0; va < __end; index++, va += (1L << shift)) { \
|
||
|
if (!__split || __rpte_sub_valid(rpte, index)) do { \
|
||
|
|
||
|
#define pte_iterate_hashed_end() } while(0); } } while(0)
|
||
|
|
||
|
#define pte_pagesize_index(mm, addr, pte) \
|
||
|
(((pte) & _PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
|
||
|
|
||
|
#define remap_4k_pfn(vma, addr, pfn, prot) \
|
||
|
remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, \
|
||
|
__pgprot(pgprot_val((prot)) | _PAGE_4K_PFN))
|
||
|
|
||
|
|
||
|
#ifdef CONFIG_PPC_SUBPAGE_PROT
|
||
|
/*
|
||
|
* For the sub-page protection option, we extend the PGD with one of
|
||
|
* these. Basically we have a 3-level tree, with the top level being
|
||
|
* the protptrs array. To optimize speed and memory consumption when
|
||
|
* only addresses < 4GB are being protected, pointers to the first
|
||
|
* four pages of sub-page protection words are stored in the low_prot
|
||
|
* array.
|
||
|
* Each page of sub-page protection words protects 1GB (4 bytes
|
||
|
* protects 64k). For the 3-level tree, each page of pointers then
|
||
|
* protects 8TB.
|
||
|
*/
|
||
|
struct subpage_prot_table {
|
||
|
unsigned long maxaddr; /* only addresses < this are protected */
|
||
|
unsigned int **protptrs[2];
|
||
|
unsigned int *low_prot[4];
|
||
|
};
|
||
|
|
||
|
#undef PGD_TABLE_SIZE
|
||
|
#define PGD_TABLE_SIZE ((sizeof(pgd_t) << PGD_INDEX_SIZE) + \
|
||
|
sizeof(struct subpage_prot_table))
|
||
|
|
||
|
#define SBP_L1_BITS (PAGE_SHIFT - 2)
|
||
|
#define SBP_L2_BITS (PAGE_SHIFT - 3)
|
||
|
#define SBP_L1_COUNT (1 << SBP_L1_BITS)
|
||
|
#define SBP_L2_COUNT (1 << SBP_L2_BITS)
|
||
|
#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
|
||
|
#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
|
||
|
|
||
|
extern void subpage_prot_free(pgd_t *pgd);
|
||
|
|
||
|
static inline struct subpage_prot_table *pgd_subpage_prot(pgd_t *pgd)
|
||
|
{
|
||
|
return (struct subpage_prot_table *)(pgd + PTRS_PER_PGD);
|
||
|
}
|
||
|
#endif /* CONFIG_PPC_SUBPAGE_PROT */
|
||
|
#endif /* __ASSEMBLY__ */
|