linux_old1/drivers/net/usb/sr9800.c

875 lines
20 KiB
C
Raw Normal View History

/* CoreChip-sz SR9800 one chip USB 2.0 Ethernet Devices
*
* Author : Liu Junliang <liujunliang_ljl@163.com>
*
* Based on asix_common.c, asix_devices.c
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.*
*/
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/workqueue.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
#include <linux/slab.h>
#include <linux/if_vlan.h>
#include "sr9800.h"
static int sr_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
int err;
err = usbnet_read_cmd(dev, cmd, SR_REQ_RD_REG, value, index,
data, size);
if ((err != size) && (err >= 0))
err = -EINVAL;
return err;
}
static int sr_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
int err;
err = usbnet_write_cmd(dev, cmd, SR_REQ_WR_REG, value, index,
data, size);
if ((err != size) && (err >= 0))
err = -EINVAL;
return err;
}
static void
sr_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
usbnet_write_cmd_async(dev, cmd, SR_REQ_WR_REG, value, index, data,
size);
}
static int sr_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
int offset = 0;
usbnet: remove generic hard_header_len check This patch removes a generic hard_header_len check from the usbnet module that is causing dropped packages under certain circumstances for devices that send rx packets that cross urb boundaries. One example is the AX88772B which occasionally send rx packets that cross urb boundaries where the remaining partial packet is sent with no hardware header. When the buffer with a partial packet is of less number of octets than the value of hard_header_len the buffer is discarded by the usbnet module. With AX88772B this can be reproduced by using ping with a packet size between 1965-1976. The bug has been reported here: https://bugzilla.kernel.org/show_bug.cgi?id=29082 This patch introduces the following changes: - Removes the generic hard_header_len check in the rx_complete function in the usbnet module. - Introduces a ETH_HLEN check for skbs that are not cloned from within a rx_fixup callback. - For safety a hard_header_len check is added to each rx_fixup callback function that could be affected by this change. These extra checks could possibly be removed by someone who has the hardware to test. - Removes a call to dev_kfree_skb_any() and instead utilizes the dev->done list to queue skbs for cleanup. The changes place full responsibility on the rx_fixup callback functions that clone skbs to only pass valid skbs to the usbnet_skb_return function. Signed-off-by: Emil Goode <emilgoode@gmail.com> Reported-by: Igor Gnatenko <i.gnatenko.brain@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-14 00:50:19 +08:00
/* This check is no longer done by usbnet */
if (skb->len < dev->net->hard_header_len)
return 0;
while (offset + sizeof(u32) < skb->len) {
struct sk_buff *sr_skb;
u16 size;
u32 header = get_unaligned_le32(skb->data + offset);
offset += sizeof(u32);
/* get the packet length */
size = (u16) (header & 0x7ff);
if (size != ((~header >> 16) & 0x07ff)) {
netdev_err(dev->net, "%s : Bad Header Length\n",
__func__);
return 0;
}
if ((size > dev->net->mtu + ETH_HLEN + VLAN_HLEN) ||
(size + offset > skb->len)) {
netdev_err(dev->net, "%s : Bad RX Length %d\n",
__func__, size);
return 0;
}
sr_skb = netdev_alloc_skb_ip_align(dev->net, size);
if (!sr_skb)
return 0;
skb_put(sr_skb, size);
memcpy(sr_skb->data, skb->data + offset, size);
usbnet_skb_return(dev, sr_skb);
offset += (size + 1) & 0xfffe;
}
if (skb->len != offset) {
netdev_err(dev->net, "%s : Bad SKB Length %d\n", __func__,
skb->len);
return 0;
}
return 1;
}
static struct sk_buff *sr_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
gfp_t flags)
{
int headroom = skb_headroom(skb);
int tailroom = skb_tailroom(skb);
u32 padbytes = 0xffff0000;
u32 packet_len;
int padlen;
padlen = ((skb->len + 4) % (dev->maxpacket - 1)) ? 0 : 4;
if ((!skb_cloned(skb)) && ((headroom + tailroom) >= (4 + padlen))) {
if ((headroom < 4) || (tailroom < padlen)) {
skb->data = memmove(skb->head + 4, skb->data,
skb->len);
skb_set_tail_pointer(skb, skb->len);
}
} else {
struct sk_buff *skb2;
skb2 = skb_copy_expand(skb, 4, padlen, flags);
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
}
skb_push(skb, 4);
packet_len = (((skb->len - 4) ^ 0x0000ffff) << 16) + (skb->len - 4);
cpu_to_le32s(&packet_len);
skb_copy_to_linear_data(skb, &packet_len, sizeof(packet_len));
if (padlen) {
cpu_to_le32s(&padbytes);
memcpy(skb_tail_pointer(skb), &padbytes, sizeof(padbytes));
skb_put(skb, sizeof(padbytes));
}
return skb;
}
static void sr_status(struct usbnet *dev, struct urb *urb)
{
struct sr9800_int_data *event;
int link;
if (urb->actual_length < 8)
return;
event = urb->transfer_buffer;
link = event->link & 0x01;
if (netif_carrier_ok(dev->net) != link) {
usbnet_link_change(dev, link, 1);
netdev_dbg(dev->net, "Link Status is: %d\n", link);
}
return;
}
static inline int sr_set_sw_mii(struct usbnet *dev)
{
int ret;
ret = sr_write_cmd(dev, SR_CMD_SET_SW_MII, 0x0000, 0, 0, NULL);
if (ret < 0)
netdev_err(dev->net, "Failed to enable software MII access\n");
return ret;
}
static inline int sr_set_hw_mii(struct usbnet *dev)
{
int ret;
ret = sr_write_cmd(dev, SR_CMD_SET_HW_MII, 0x0000, 0, 0, NULL);
if (ret < 0)
netdev_err(dev->net, "Failed to enable hardware MII access\n");
return ret;
}
static inline int sr_get_phy_addr(struct usbnet *dev)
{
u8 buf[2];
int ret;
ret = sr_read_cmd(dev, SR_CMD_READ_PHY_ID, 0, 0, 2, buf);
if (ret < 0) {
netdev_err(dev->net, "%s : Error reading PHYID register:%02x\n",
__func__, ret);
goto out;
}
netdev_dbg(dev->net, "%s : returning 0x%04x\n", __func__,
*((__le16 *)buf));
ret = buf[1];
out:
return ret;
}
static int sr_sw_reset(struct usbnet *dev, u8 flags)
{
int ret;
ret = sr_write_cmd(dev, SR_CMD_SW_RESET, flags, 0, 0, NULL);
if (ret < 0)
netdev_err(dev->net, "Failed to send software reset:%02x\n",
ret);
return ret;
}
static u16 sr_read_rx_ctl(struct usbnet *dev)
{
__le16 v;
int ret;
ret = sr_read_cmd(dev, SR_CMD_READ_RX_CTL, 0, 0, 2, &v);
if (ret < 0) {
netdev_err(dev->net, "Error reading RX_CTL register:%02x\n",
ret);
goto out;
}
ret = le16_to_cpu(v);
out:
return ret;
}
static int sr_write_rx_ctl(struct usbnet *dev, u16 mode)
{
int ret;
netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode);
ret = sr_write_cmd(dev, SR_CMD_WRITE_RX_CTL, mode, 0, 0, NULL);
if (ret < 0)
netdev_err(dev->net,
"Failed to write RX_CTL mode to 0x%04x:%02x\n",
mode, ret);
return ret;
}
static u16 sr_read_medium_status(struct usbnet *dev)
{
__le16 v;
int ret;
ret = sr_read_cmd(dev, SR_CMD_READ_MEDIUM_STATUS, 0, 0, 2, &v);
if (ret < 0) {
netdev_err(dev->net,
"Error reading Medium Status register:%02x\n", ret);
return ret; /* TODO: callers not checking for error ret */
}
return le16_to_cpu(v);
}
static int sr_write_medium_mode(struct usbnet *dev, u16 mode)
{
int ret;
netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode);
ret = sr_write_cmd(dev, SR_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL);
if (ret < 0)
netdev_err(dev->net,
"Failed to write Medium Mode mode to 0x%04x:%02x\n",
mode, ret);
return ret;
}
static int sr_write_gpio(struct usbnet *dev, u16 value, int sleep)
{
int ret;
netdev_dbg(dev->net, "%s : value = 0x%04x\n", __func__, value);
ret = sr_write_cmd(dev, SR_CMD_WRITE_GPIOS, value, 0, 0, NULL);
if (ret < 0)
netdev_err(dev->net, "Failed to write GPIO value 0x%04x:%02x\n",
value, ret);
if (sleep)
msleep(sleep);
return ret;
}
/* SR9800 have a 16-bit RX_CTL value */
static void sr_set_multicast(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
struct sr_data *data = (struct sr_data *)&dev->data;
u16 rx_ctl = SR_DEFAULT_RX_CTL;
if (net->flags & IFF_PROMISC) {
rx_ctl |= SR_RX_CTL_PRO;
} else if (net->flags & IFF_ALLMULTI ||
netdev_mc_count(net) > SR_MAX_MCAST) {
rx_ctl |= SR_RX_CTL_AMALL;
} else if (netdev_mc_empty(net)) {
/* just broadcast and directed */
} else {
/* We use the 20 byte dev->data
* for our 8 byte filter buffer
* to avoid allocating memory that
* is tricky to free later
*/
struct netdev_hw_addr *ha;
u32 crc_bits;
memset(data->multi_filter, 0, SR_MCAST_FILTER_SIZE);
/* Build the multicast hash filter. */
netdev_for_each_mc_addr(ha, net) {
crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26;
data->multi_filter[crc_bits >> 3] |=
1 << (crc_bits & 7);
}
sr_write_cmd_async(dev, SR_CMD_WRITE_MULTI_FILTER, 0, 0,
SR_MCAST_FILTER_SIZE, data->multi_filter);
rx_ctl |= SR_RX_CTL_AM;
}
sr_write_cmd_async(dev, SR_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL);
}
static int sr_mdio_read(struct net_device *net, int phy_id, int loc)
{
struct usbnet *dev = netdev_priv(net);
__le16 res;
mutex_lock(&dev->phy_mutex);
sr_set_sw_mii(dev);
sr_read_cmd(dev, SR_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, &res);
sr_set_hw_mii(dev);
mutex_unlock(&dev->phy_mutex);
netdev_dbg(dev->net,
"%s : phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", __func__,
phy_id, loc, le16_to_cpu(res));
return le16_to_cpu(res);
}
static void
sr_mdio_write(struct net_device *net, int phy_id, int loc, int val)
{
struct usbnet *dev = netdev_priv(net);
__le16 res = cpu_to_le16(val);
netdev_dbg(dev->net,
"%s : phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", __func__,
phy_id, loc, val);
mutex_lock(&dev->phy_mutex);
sr_set_sw_mii(dev);
sr_write_cmd(dev, SR_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res);
sr_set_hw_mii(dev);
mutex_unlock(&dev->phy_mutex);
}
/* Get the PHY Identifier from the PHYSID1 & PHYSID2 MII registers */
static u32 sr_get_phyid(struct usbnet *dev)
{
int phy_reg;
u32 phy_id;
int i;
/* Poll for the rare case the FW or phy isn't ready yet. */
for (i = 0; i < 100; i++) {
phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID1);
if (phy_reg != 0 && phy_reg != 0xFFFF)
break;
mdelay(1);
}
if (phy_reg <= 0 || phy_reg == 0xFFFF)
return 0;
phy_id = (phy_reg & 0xffff) << 16;
phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID2);
if (phy_reg < 0)
return 0;
phy_id |= (phy_reg & 0xffff);
return phy_id;
}
static void
sr_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
u8 opt;
if (sr_read_cmd(dev, SR_CMD_READ_MONITOR_MODE, 0, 0, 1, &opt) < 0) {
wolinfo->supported = 0;
wolinfo->wolopts = 0;
return;
}
wolinfo->supported = WAKE_PHY | WAKE_MAGIC;
wolinfo->wolopts = 0;
if (opt & SR_MONITOR_LINK)
wolinfo->wolopts |= WAKE_PHY;
if (opt & SR_MONITOR_MAGIC)
wolinfo->wolopts |= WAKE_MAGIC;
}
static int
sr_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
u8 opt = 0;
if (wolinfo->wolopts & WAKE_PHY)
opt |= SR_MONITOR_LINK;
if (wolinfo->wolopts & WAKE_MAGIC)
opt |= SR_MONITOR_MAGIC;
if (sr_write_cmd(dev, SR_CMD_WRITE_MONITOR_MODE,
opt, 0, 0, NULL) < 0)
return -EINVAL;
return 0;
}
static int sr_get_eeprom_len(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
struct sr_data *data = (struct sr_data *)&dev->data;
return data->eeprom_len;
}
static int sr_get_eeprom(struct net_device *net,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct usbnet *dev = netdev_priv(net);
__le16 *ebuf = (__le16 *)data;
int ret;
int i;
/* Crude hack to ensure that we don't overwrite memory
* if an odd length is supplied
*/
if (eeprom->len % 2)
return -EINVAL;
eeprom->magic = SR_EEPROM_MAGIC;
/* sr9800 returns 2 bytes from eeprom on read */
for (i = 0; i < eeprom->len / 2; i++) {
ret = sr_read_cmd(dev, SR_CMD_READ_EEPROM, eeprom->offset + i,
0, 2, &ebuf[i]);
if (ret < 0)
return -EINVAL;
}
return 0;
}
static void sr_get_drvinfo(struct net_device *net,
struct ethtool_drvinfo *info)
{
struct usbnet *dev = netdev_priv(net);
struct sr_data *data = (struct sr_data *)&dev->data;
/* Inherit standard device info */
usbnet_get_drvinfo(net, info);
strncpy(info->driver, DRIVER_NAME, sizeof(info->driver));
strncpy(info->version, DRIVER_VERSION, sizeof(info->version));
info->eedump_len = data->eeprom_len;
}
static u32 sr_get_link(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
return mii_link_ok(&dev->mii);
}
static int sr_ioctl(struct net_device *net, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(net);
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
static int sr_set_mac_address(struct net_device *net, void *p)
{
struct usbnet *dev = netdev_priv(net);
struct sr_data *data = (struct sr_data *)&dev->data;
struct sockaddr *addr = p;
if (netif_running(net))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(net->dev_addr, addr->sa_data, ETH_ALEN);
/* We use the 20 byte dev->data
* for our 6 byte mac buffer
* to avoid allocating memory that
* is tricky to free later
*/
memcpy(data->mac_addr, addr->sa_data, ETH_ALEN);
sr_write_cmd_async(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN,
data->mac_addr);
return 0;
}
static const struct ethtool_ops sr9800_ethtool_ops = {
.get_drvinfo = sr_get_drvinfo,
.get_link = sr_get_link,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_wol = sr_get_wol,
.set_wol = sr_set_wol,
.get_eeprom_len = sr_get_eeprom_len,
.get_eeprom = sr_get_eeprom,
.get_settings = usbnet_get_settings,
.set_settings = usbnet_set_settings,
.nway_reset = usbnet_nway_reset,
};
static int sr9800_link_reset(struct usbnet *dev)
{
struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
u16 mode;
mii_check_media(&dev->mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
mode = SR9800_MEDIUM_DEFAULT;
if (ethtool_cmd_speed(&ecmd) != SPEED_100)
mode &= ~SR_MEDIUM_PS;
if (ecmd.duplex != DUPLEX_FULL)
mode &= ~SR_MEDIUM_FD;
netdev_dbg(dev->net, "%s : speed: %u duplex: %d mode: 0x%04x\n",
__func__, ethtool_cmd_speed(&ecmd), ecmd.duplex, mode);
sr_write_medium_mode(dev, mode);
return 0;
}
static int sr9800_set_default_mode(struct usbnet *dev)
{
u16 rx_ctl;
int ret;
sr_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
sr_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA);
mii_nway_restart(&dev->mii);
ret = sr_write_medium_mode(dev, SR9800_MEDIUM_DEFAULT);
if (ret < 0)
goto out;
ret = sr_write_cmd(dev, SR_CMD_WRITE_IPG012,
SR9800_IPG0_DEFAULT | SR9800_IPG1_DEFAULT,
SR9800_IPG2_DEFAULT, 0, NULL);
if (ret < 0) {
netdev_dbg(dev->net, "Write IPG,IPG1,IPG2 failed: %d\n", ret);
goto out;
}
/* Set RX_CTL to default values with 2k buffer, and enable cactus */
ret = sr_write_rx_ctl(dev, SR_DEFAULT_RX_CTL);
if (ret < 0)
goto out;
rx_ctl = sr_read_rx_ctl(dev);
netdev_dbg(dev->net, "RX_CTL is 0x%04x after all initializations\n",
rx_ctl);
rx_ctl = sr_read_medium_status(dev);
netdev_dbg(dev->net, "Medium Status:0x%04x after all initializations\n",
rx_ctl);
return 0;
out:
return ret;
}
static int sr9800_reset(struct usbnet *dev)
{
struct sr_data *data = (struct sr_data *)&dev->data;
int ret, embd_phy;
u16 rx_ctl;
ret = sr_write_gpio(dev,
SR_GPIO_RSE | SR_GPIO_GPO_2 | SR_GPIO_GPO2EN, 5);
if (ret < 0)
goto out;
embd_phy = ((sr_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0);
ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL);
if (ret < 0) {
netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret);
goto out;
}
ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_PRL);
if (ret < 0)
goto out;
msleep(150);
ret = sr_sw_reset(dev, SR_SWRESET_CLEAR);
if (ret < 0)
goto out;
msleep(150);
if (embd_phy) {
ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
if (ret < 0)
goto out;
} else {
ret = sr_sw_reset(dev, SR_SWRESET_PRTE);
if (ret < 0)
goto out;
}
msleep(150);
rx_ctl = sr_read_rx_ctl(dev);
netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl);
ret = sr_write_rx_ctl(dev, 0x0000);
if (ret < 0)
goto out;
rx_ctl = sr_read_rx_ctl(dev);
netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl);
ret = sr_sw_reset(dev, SR_SWRESET_PRL);
if (ret < 0)
goto out;
msleep(150);
ret = sr_sw_reset(dev, SR_SWRESET_IPRL | SR_SWRESET_PRL);
if (ret < 0)
goto out;
msleep(150);
ret = sr9800_set_default_mode(dev);
if (ret < 0)
goto out;
/* Rewrite MAC address */
memcpy(data->mac_addr, dev->net->dev_addr, ETH_ALEN);
ret = sr_write_cmd(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN,
data->mac_addr);
if (ret < 0)
goto out;
return 0;
out:
return ret;
}
static const struct net_device_ops sr9800_netdev_ops = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_change_mtu = usbnet_change_mtu,
.ndo_set_mac_address = sr_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = sr_ioctl,
.ndo_set_rx_mode = sr_set_multicast,
};
static int sr9800_phy_powerup(struct usbnet *dev)
{
int ret;
/* set the embedded Ethernet PHY in power-down state */
ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_IPRL);
if (ret < 0) {
netdev_err(dev->net, "Failed to power down PHY : %d\n", ret);
return ret;
}
msleep(20);
/* set the embedded Ethernet PHY in power-up state */
ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
if (ret < 0) {
netdev_err(dev->net, "Failed to reset PHY: %d\n", ret);
return ret;
}
msleep(600);
/* set the embedded Ethernet PHY in reset state */
ret = sr_sw_reset(dev, SR_SWRESET_CLEAR);
if (ret < 0) {
netdev_err(dev->net, "Failed to power up PHY: %d\n", ret);
return ret;
}
msleep(20);
/* set the embedded Ethernet PHY in power-up state */
ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
if (ret < 0) {
netdev_err(dev->net, "Failed to reset PHY: %d\n", ret);
return ret;
}
return 0;
}
static int sr9800_bind(struct usbnet *dev, struct usb_interface *intf)
{
struct sr_data *data = (struct sr_data *)&dev->data;
u16 led01_mux, led23_mux;
int ret, embd_phy;
u32 phyid;
u16 rx_ctl;
data->eeprom_len = SR9800_EEPROM_LEN;
usbnet_get_endpoints(dev, intf);
/* LED Setting Rule :
* AABB:CCDD
* AA : MFA0(LED0)
* BB : MFA1(LED1)
* CC : MFA2(LED2), Reserved for SR9800
* DD : MFA3(LED3), Reserved for SR9800
*/
led01_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_LINK;
led23_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_TX_ACTIVE;
ret = sr_write_cmd(dev, SR_CMD_LED_MUX, led01_mux, led23_mux, 0, NULL);
if (ret < 0) {
netdev_err(dev->net, "set LINK LED failed : %d\n", ret);
goto out;
}
/* Get the MAC address */
ret = sr_read_cmd(dev, SR_CMD_READ_NODE_ID, 0, 0, ETH_ALEN,
dev->net->dev_addr);
if (ret < 0) {
netdev_dbg(dev->net, "Failed to read MAC address: %d\n", ret);
return ret;
}
netdev_dbg(dev->net, "mac addr : %pM\n", dev->net->dev_addr);
/* Initialize MII structure */
dev->mii.dev = dev->net;
dev->mii.mdio_read = sr_mdio_read;
dev->mii.mdio_write = sr_mdio_write;
dev->mii.phy_id_mask = 0x1f;
dev->mii.reg_num_mask = 0x1f;
dev->mii.phy_id = sr_get_phy_addr(dev);
dev->net->netdev_ops = &sr9800_netdev_ops;
dev->net->ethtool_ops = &sr9800_ethtool_ops;
embd_phy = ((dev->mii.phy_id & 0x1f) == 0x10 ? 1 : 0);
/* Reset the PHY to normal operation mode */
ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL);
if (ret < 0) {
netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret);
return ret;
}
/* Init PHY routine */
ret = sr9800_phy_powerup(dev);
if (ret < 0)
goto out;
rx_ctl = sr_read_rx_ctl(dev);
netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl);
ret = sr_write_rx_ctl(dev, 0x0000);
if (ret < 0)
goto out;
rx_ctl = sr_read_rx_ctl(dev);
netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl);
/* Read PHYID register *AFTER* the PHY was reset properly */
phyid = sr_get_phyid(dev);
netdev_dbg(dev->net, "PHYID=0x%08x\n", phyid);
/* medium mode setting */
ret = sr9800_set_default_mode(dev);
if (ret < 0)
goto out;
if (dev->udev->speed == USB_SPEED_HIGH) {
ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE,
SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].byte_cnt,
SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].threshold,
0, NULL);
if (ret < 0) {
netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret);
goto out;
}
dev->rx_urb_size =
SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].size;
} else {
ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE,
SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].byte_cnt,
SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].threshold,
0, NULL);
if (ret < 0) {
netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret);
goto out;
}
dev->rx_urb_size =
SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].size;
}
netdev_dbg(dev->net, "%s : setting rx_urb_size with : %zu\n", __func__,
dev->rx_urb_size);
return 0;
out:
return ret;
}
static const struct driver_info sr9800_driver_info = {
.description = "CoreChip SR9800 USB 2.0 Ethernet",
.bind = sr9800_bind,
.status = sr_status,
.link_reset = sr9800_link_reset,
.reset = sr9800_reset,
.flags = DRIVER_FLAG,
.rx_fixup = sr_rx_fixup,
.tx_fixup = sr_tx_fixup,
};
static const struct usb_device_id products[] = {
{
USB_DEVICE(0x0fe6, 0x9800), /* SR9800 Device */
.driver_info = (unsigned long) &sr9800_driver_info,
},
{}, /* END */
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver sr_driver = {
.name = DRIVER_NAME,
.id_table = products,
.probe = usbnet_probe,
.suspend = usbnet_suspend,
.resume = usbnet_resume,
.disconnect = usbnet_disconnect,
.supports_autosuspend = 1,
};
module_usb_driver(sr_driver);
MODULE_AUTHOR("Liu Junliang <liujunliang_ljl@163.com");
MODULE_VERSION(DRIVER_VERSION);
MODULE_DESCRIPTION("SR9800 USB 2.0 USB2NET Dev : http://www.corechip-sz.com");
MODULE_LICENSE("GPL");