linux_old1/drivers/infiniband/hw/ipath/ipath_eeprom.c

638 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006 QLogic, Inc. All rights reserved.
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include "ipath_kernel.h"
/*
* InfiniPath I2C driver for a serial eeprom. This is not a generic
* I2C interface. For a start, the device we're using (Atmel AT24C11)
* doesn't work like a regular I2C device. It looks like one
* electrically, but not logically. Normal I2C devices have a single
* 7-bit or 10-bit I2C address that they respond to. Valid 7-bit
* addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78
* to 0x7F are special reserved addresses (e.g. 0x00 is the "general
* call" address.) The Atmel device, on the other hand, responds to ALL
* 7-bit addresses. It's designed to be the only device on a given I2C
* bus. A 7-bit address corresponds to the memory address within the
* Atmel device itself.
*
* Also, the timing requirements mean more than simple software
* bitbanging, with readbacks from chip to ensure timing (simple udelay
* is not enough).
*
* This all means that accessing the device is specialized enough
* that using the standard kernel I2C bitbanging interface would be
* impossible. For example, the core I2C eeprom driver expects to find
* a device at one or more of a limited set of addresses only. It doesn't
* allow writing to an eeprom. It also doesn't provide any means of
* accessing eeprom contents from within the kernel, only via sysfs.
*/
enum i2c_type {
i2c_line_scl = 0,
i2c_line_sda
};
enum i2c_state {
i2c_line_low = 0,
i2c_line_high
};
#define READ_CMD 1
#define WRITE_CMD 0
static int eeprom_init;
/*
* The gpioval manipulation really should be protected by spinlocks
* or be converted to use atomic operations.
*/
/**
* i2c_gpio_set - set a GPIO line
* @dd: the infinipath device
* @line: the line to set
* @new_line_state: the state to set
*
* Returns 0 if the line was set to the new state successfully, non-zero
* on error.
*/
static int i2c_gpio_set(struct ipath_devdata *dd,
enum i2c_type line,
enum i2c_state new_line_state)
{
u64 read_val, write_val, mask, *gpioval;
gpioval = &dd->ipath_gpio_out;
read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
if (line == i2c_line_scl)
mask = dd->ipath_gpio_scl;
else
mask = dd->ipath_gpio_sda;
if (new_line_state == i2c_line_high)
/* tri-state the output rather than force high */
write_val = read_val & ~mask;
else
/* config line to be an output */
write_val = read_val | mask;
ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, write_val);
/* set high and verify */
if (new_line_state == i2c_line_high)
write_val = 0x1UL;
else
write_val = 0x0UL;
if (line == i2c_line_scl) {
write_val <<= dd->ipath_gpio_scl_num;
*gpioval = *gpioval & ~(1UL << dd->ipath_gpio_scl_num);
*gpioval |= write_val;
} else {
write_val <<= dd->ipath_gpio_sda_num;
*gpioval = *gpioval & ~(1UL << dd->ipath_gpio_sda_num);
*gpioval |= write_val;
}
ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
return 0;
}
/**
* i2c_gpio_get - get a GPIO line state
* @dd: the infinipath device
* @line: the line to get
* @curr_statep: where to put the line state
*
* Returns 0 if the line was set to the new state successfully, non-zero
* on error. curr_state is not set on error.
*/
static int i2c_gpio_get(struct ipath_devdata *dd,
enum i2c_type line,
enum i2c_state *curr_statep)
{
u64 read_val, write_val, mask;
int ret;
/* check args */
if (curr_statep == NULL) {
ret = 1;
goto bail;
}
read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
/* config line to be an input */
if (line == i2c_line_scl)
mask = dd->ipath_gpio_scl;
else
mask = dd->ipath_gpio_sda;
write_val = read_val & ~mask;
ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, write_val);
read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
if (read_val & mask)
*curr_statep = i2c_line_high;
else
*curr_statep = i2c_line_low;
ret = 0;
bail:
return ret;
}
/**
* i2c_wait_for_writes - wait for a write
* @dd: the infinipath device
*
* We use this instead of udelay directly, so we can make sure
* that previous register writes have been flushed all the way
* to the chip. Since we are delaying anyway, the cost doesn't
* hurt, and makes the bit twiddling more regular
*/
static void i2c_wait_for_writes(struct ipath_devdata *dd)
{
(void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
rmb();
}
static void scl_out(struct ipath_devdata *dd, u8 bit)
{
i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);
i2c_wait_for_writes(dd);
}
static void sda_out(struct ipath_devdata *dd, u8 bit)
{
i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);
i2c_wait_for_writes(dd);
}
static u8 sda_in(struct ipath_devdata *dd, int wait)
{
enum i2c_state bit;
if (i2c_gpio_get(dd, i2c_line_sda, &bit))
ipath_dbg("get bit failed!\n");
if (wait)
i2c_wait_for_writes(dd);
return bit == i2c_line_high ? 1U : 0;
}
/**
* i2c_ackrcv - see if ack following write is true
* @dd: the infinipath device
*/
static int i2c_ackrcv(struct ipath_devdata *dd)
{
u8 ack_received;
/* AT ENTRY SCL = LOW */
/* change direction, ignore data */
ack_received = sda_in(dd, 1);
scl_out(dd, i2c_line_high);
ack_received = sda_in(dd, 1) == 0;
scl_out(dd, i2c_line_low);
return ack_received;
}
/**
* wr_byte - write a byte, one bit at a time
* @dd: the infinipath device
* @data: the byte to write
*
* Returns 0 if we got the following ack, otherwise 1
*/
static int wr_byte(struct ipath_devdata *dd, u8 data)
{
int bit_cntr;
u8 bit;
for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
bit = (data >> bit_cntr) & 1;
sda_out(dd, bit);
scl_out(dd, i2c_line_high);
scl_out(dd, i2c_line_low);
}
return (!i2c_ackrcv(dd)) ? 1 : 0;
}
static void send_ack(struct ipath_devdata *dd)
{
sda_out(dd, i2c_line_low);
scl_out(dd, i2c_line_high);
scl_out(dd, i2c_line_low);
sda_out(dd, i2c_line_high);
}
/**
* i2c_startcmd - transmit the start condition, followed by address/cmd
* @dd: the infinipath device
* @offset_dir: direction byte
*
* (both clock/data high, clock high, data low while clock is high)
*/
static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
{
int res;
/* issue start sequence */
sda_out(dd, i2c_line_high);
scl_out(dd, i2c_line_high);
sda_out(dd, i2c_line_low);
scl_out(dd, i2c_line_low);
/* issue length and direction byte */
res = wr_byte(dd, offset_dir);
if (res)
ipath_cdbg(VERBOSE, "No ack to complete start\n");
return res;
}
/**
* stop_cmd - transmit the stop condition
* @dd: the infinipath device
*
* (both clock/data low, clock high, data high while clock is high)
*/
static void stop_cmd(struct ipath_devdata *dd)
{
scl_out(dd, i2c_line_low);
sda_out(dd, i2c_line_low);
scl_out(dd, i2c_line_high);
sda_out(dd, i2c_line_high);
udelay(2);
}
/**
* eeprom_reset - reset I2C communication
* @dd: the infinipath device
*/
static int eeprom_reset(struct ipath_devdata *dd)
{
int clock_cycles_left = 9;
u64 *gpioval = &dd->ipath_gpio_out;
int ret;
eeprom_init = 1;
*gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
"is %llx\n", (unsigned long long) *gpioval);
/*
* This is to get the i2c into a known state, by first going low,
* then tristate sda (and then tristate scl as first thing
* in loop)
*/
scl_out(dd, i2c_line_low);
sda_out(dd, i2c_line_high);
while (clock_cycles_left--) {
scl_out(dd, i2c_line_high);
if (sda_in(dd, 0)) {
sda_out(dd, i2c_line_low);
scl_out(dd, i2c_line_low);
ret = 0;
goto bail;
}
scl_out(dd, i2c_line_low);
}
ret = 1;
bail:
return ret;
}
/**
* ipath_eeprom_read - receives bytes from the eeprom via I2C
* @dd: the infinipath device
* @eeprom_offset: address to read from
* @buffer: where to store result
* @len: number of bytes to receive
*/
int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
void *buffer, int len)
{
/* compiler complains unless initialized */
u8 single_byte = 0;
int bit_cntr;
int ret;
if (!eeprom_init)
eeprom_reset(dd);
eeprom_offset = (eeprom_offset << 1) | READ_CMD;
if (i2c_startcmd(dd, eeprom_offset)) {
ipath_dbg("Failed startcmd\n");
stop_cmd(dd);
ret = 1;
goto bail;
}
/*
* eeprom keeps clocking data out as long as we ack, automatically
* incrementing the address.
*/
while (len-- > 0) {
/* get data */
single_byte = 0;
for (bit_cntr = 8; bit_cntr; bit_cntr--) {
u8 bit;
scl_out(dd, i2c_line_high);
bit = sda_in(dd, 0);
single_byte |= bit << (bit_cntr - 1);
scl_out(dd, i2c_line_low);
}
/* send ack if not the last byte */
if (len)
send_ack(dd);
*((u8 *) buffer) = single_byte;
buffer++;
}
stop_cmd(dd);
ret = 0;
bail:
return ret;
}
/**
* ipath_eeprom_write - writes data to the eeprom via I2C
* @dd: the infinipath device
* @eeprom_offset: where to place data
* @buffer: data to write
* @len: number of bytes to write
*/
int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
const void *buffer, int len)
{
u8 single_byte;
int sub_len;
const u8 *bp = buffer;
int max_wait_time, i;
int ret;
if (!eeprom_init)
eeprom_reset(dd);
while (len > 0) {
if (i2c_startcmd(dd, (eeprom_offset << 1) | WRITE_CMD)) {
ipath_dbg("Failed to start cmd offset %u\n",
eeprom_offset);
goto failed_write;
}
sub_len = min(len, 4);
eeprom_offset += sub_len;
len -= sub_len;
for (i = 0; i < sub_len; i++) {
if (wr_byte(dd, *bp++)) {
ipath_dbg("no ack after byte %u/%u (%u "
"total remain)\n", i, sub_len,
len + sub_len - i);
goto failed_write;
}
}
stop_cmd(dd);
/*
* wait for write complete by waiting for a successful
* read (the chip replies with a zero after the write
* cmd completes, and before it writes to the eeprom.
* The startcmd for the read will fail the ack until
* the writes have completed. We do this inline to avoid
* the debug prints that are in the real read routine
* if the startcmd fails.
*/
max_wait_time = 100;
while (i2c_startcmd(dd, READ_CMD)) {
stop_cmd(dd);
if (!--max_wait_time) {
ipath_dbg("Did not get successful read to "
"complete write\n");
goto failed_write;
}
}
/* now read the zero byte */
for (i = single_byte = 0; i < 8; i++) {
u8 bit;
scl_out(dd, i2c_line_high);
bit = sda_in(dd, 0);
scl_out(dd, i2c_line_low);
single_byte <<= 1;
single_byte |= bit;
}
stop_cmd(dd);
}
ret = 0;
goto bail;
failed_write:
stop_cmd(dd);
ret = 1;
bail:
return ret;
}
static u8 flash_csum(struct ipath_flash *ifp, int adjust)
{
u8 *ip = (u8 *) ifp;
u8 csum = 0, len;
for (len = 0; len < ifp->if_length; len++)
csum += *ip++;
csum -= ifp->if_csum;
csum = ~csum;
if (adjust)
ifp->if_csum = csum;
return csum;
}
/**
* ipath_get_guid - get the GUID from the i2c device
* @dd: the infinipath device
*
* We have the capability to use the ipath_nguid field, and get
* the guid from the first chip's flash, to use for all of them.
*/
void ipath_get_eeprom_info(struct ipath_devdata *dd)
{
void *buf;
struct ipath_flash *ifp;
__be64 guid;
int len;
u8 csum, *bguid;
int t = dd->ipath_unit;
struct ipath_devdata *dd0 = ipath_lookup(0);
if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
u8 *bguid, oguid;
dd->ipath_guid = dd0->ipath_guid;
bguid = (u8 *) & dd->ipath_guid;
oguid = bguid[7];
bguid[7] += t;
if (oguid > bguid[7]) {
if (bguid[6] == 0xff) {
if (bguid[5] == 0xff) {
ipath_dev_err(
dd,
"Can't set %s GUID from "
"base, wraps to OUI!\n",
ipath_get_unit_name(t));
dd->ipath_guid = 0;
goto bail;
}
bguid[5]++;
}
bguid[6]++;
}
dd->ipath_nguid = 1;
ipath_dbg("nguid %u, so adding %u to device 0 guid, "
"for %llx\n",
dd0->ipath_nguid, t,
(unsigned long long) be64_to_cpu(dd->ipath_guid));
goto bail;
}
len = offsetof(struct ipath_flash, if_future);
buf = vmalloc(len);
if (!buf) {
ipath_dev_err(dd, "Couldn't allocate memory to read %u "
"bytes from eeprom for GUID\n", len);
goto bail;
}
if (ipath_eeprom_read(dd, 0, buf, len)) {
ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
goto done;
}
ifp = (struct ipath_flash *)buf;
csum = flash_csum(ifp, 0);
if (csum != ifp->if_csum) {
dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
"0x%x, not 0x%x\n", csum, ifp->if_csum);
goto done;
}
if (*(__be64 *) ifp->if_guid == 0ULL ||
*(__be64 *) ifp->if_guid == __constant_cpu_to_be64(-1LL)) {
ipath_dev_err(dd, "Invalid GUID %llx from flash; "
"ignoring\n",
*(unsigned long long *) ifp->if_guid);
/* don't allow GUID if all 0 or all 1's */
goto done;
}
/* complain, but allow it */
if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
"default, probably not correct!\n",
*(unsigned long long *) ifp->if_guid);
bguid = ifp->if_guid;
if (!bguid[0] && !bguid[1] && !bguid[2]) {
/* original incorrect GUID format in flash; fix in
* core copy, by shifting up 2 octets; don't need to
* change top octet, since both it and shifted are
* 0.. */
bguid[1] = bguid[3];
bguid[2] = bguid[4];
bguid[3] = bguid[4] = 0;
guid = *(__be64 *) ifp->if_guid;
ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
"shifting 2 octets\n");
} else
guid = *(__be64 *) ifp->if_guid;
dd->ipath_guid = guid;
dd->ipath_nguid = ifp->if_numguid;
/*
* Things are slightly complicated by the desire to transparently
* support both the Pathscale 10-digit serial number and the QLogic
* 13-character version.
*/
if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
&& ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
/* This board has a Serial-prefix, which is stored
* elsewhere for backward-compatibility.
*/
char *snp = dd->ipath_serial;
int len;
memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
snp[sizeof ifp->if_sprefix] = '\0';
len = strlen(snp);
snp += len;
len = (sizeof dd->ipath_serial) - len;
if (len > sizeof ifp->if_serial) {
len = sizeof ifp->if_serial;
}
memcpy(snp, ifp->if_serial, len);
} else
memcpy(dd->ipath_serial, ifp->if_serial,
sizeof ifp->if_serial);
ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
(unsigned long long) be64_to_cpu(dd->ipath_guid));
done:
vfree(buf);
bail:;
}