linux_old1/drivers/iommu/amd_iommu_v2.c

998 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (C) 2010-2012 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <jroedel@suse.de>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define pr_fmt(fmt) "AMD-Vi: " fmt
#include <linux/mmu_notifier.h>
#include <linux/amd-iommu.h>
#include <linux/mm_types.h>
#include <linux/profile.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/iommu.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/gfp.h>
#include "amd_iommu_types.h"
#include "amd_iommu_proto.h"
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Joerg Roedel <jroedel@suse.de>");
#define MAX_DEVICES 0x10000
#define PRI_QUEUE_SIZE 512
struct pri_queue {
atomic_t inflight;
bool finish;
int status;
};
struct pasid_state {
struct list_head list; /* For global state-list */
atomic_t count; /* Reference count */
unsigned mmu_notifier_count; /* Counting nested mmu_notifier
calls */
struct mm_struct *mm; /* mm_struct for the faults */
struct mmu_notifier mn; /* mmu_notifier handle */
struct pri_queue pri[PRI_QUEUE_SIZE]; /* PRI tag states */
struct device_state *device_state; /* Link to our device_state */
int pasid; /* PASID index */
bool invalid; /* Used during setup and
teardown of the pasid */
spinlock_t lock; /* Protect pri_queues and
mmu_notifer_count */
wait_queue_head_t wq; /* To wait for count == 0 */
};
struct device_state {
struct list_head list;
u16 devid;
atomic_t count;
struct pci_dev *pdev;
struct pasid_state **states;
struct iommu_domain *domain;
int pasid_levels;
int max_pasids;
amd_iommu_invalid_ppr_cb inv_ppr_cb;
amd_iommu_invalidate_ctx inv_ctx_cb;
spinlock_t lock;
wait_queue_head_t wq;
};
struct fault {
struct work_struct work;
struct device_state *dev_state;
struct pasid_state *state;
struct mm_struct *mm;
u64 address;
u16 devid;
u16 pasid;
u16 tag;
u16 finish;
u16 flags;
};
static LIST_HEAD(state_list);
static spinlock_t state_lock;
static struct workqueue_struct *iommu_wq;
static void free_pasid_states(struct device_state *dev_state);
static u16 device_id(struct pci_dev *pdev)
{
u16 devid;
devid = pdev->bus->number;
devid = (devid << 8) | pdev->devfn;
return devid;
}
static struct device_state *__get_device_state(u16 devid)
{
struct device_state *dev_state;
list_for_each_entry(dev_state, &state_list, list) {
if (dev_state->devid == devid)
return dev_state;
}
return NULL;
}
static struct device_state *get_device_state(u16 devid)
{
struct device_state *dev_state;
unsigned long flags;
spin_lock_irqsave(&state_lock, flags);
dev_state = __get_device_state(devid);
if (dev_state != NULL)
atomic_inc(&dev_state->count);
spin_unlock_irqrestore(&state_lock, flags);
return dev_state;
}
static void free_device_state(struct device_state *dev_state)
{
struct iommu_group *group;
/*
* First detach device from domain - No more PRI requests will arrive
* from that device after it is unbound from the IOMMUv2 domain.
*/
group = iommu_group_get(&dev_state->pdev->dev);
if (WARN_ON(!group))
return;
iommu_detach_group(dev_state->domain, group);
iommu_group_put(group);
/* Everything is down now, free the IOMMUv2 domain */
iommu_domain_free(dev_state->domain);
/* Finally get rid of the device-state */
kfree(dev_state);
}
static void put_device_state(struct device_state *dev_state)
{
if (atomic_dec_and_test(&dev_state->count))
wake_up(&dev_state->wq);
}
/* Must be called under dev_state->lock */
static struct pasid_state **__get_pasid_state_ptr(struct device_state *dev_state,
int pasid, bool alloc)
{
struct pasid_state **root, **ptr;
int level, index;
level = dev_state->pasid_levels;
root = dev_state->states;
while (true) {
index = (pasid >> (9 * level)) & 0x1ff;
ptr = &root[index];
if (level == 0)
break;
if (*ptr == NULL) {
if (!alloc)
return NULL;
*ptr = (void *)get_zeroed_page(GFP_ATOMIC);
if (*ptr == NULL)
return NULL;
}
root = (struct pasid_state **)*ptr;
level -= 1;
}
return ptr;
}
static int set_pasid_state(struct device_state *dev_state,
struct pasid_state *pasid_state,
int pasid)
{
struct pasid_state **ptr;
unsigned long flags;
int ret;
spin_lock_irqsave(&dev_state->lock, flags);
ptr = __get_pasid_state_ptr(dev_state, pasid, true);
ret = -ENOMEM;
if (ptr == NULL)
goto out_unlock;
ret = -ENOMEM;
if (*ptr != NULL)
goto out_unlock;
*ptr = pasid_state;
ret = 0;
out_unlock:
spin_unlock_irqrestore(&dev_state->lock, flags);
return ret;
}
static void clear_pasid_state(struct device_state *dev_state, int pasid)
{
struct pasid_state **ptr;
unsigned long flags;
spin_lock_irqsave(&dev_state->lock, flags);
ptr = __get_pasid_state_ptr(dev_state, pasid, true);
if (ptr == NULL)
goto out_unlock;
*ptr = NULL;
out_unlock:
spin_unlock_irqrestore(&dev_state->lock, flags);
}
static struct pasid_state *get_pasid_state(struct device_state *dev_state,
int pasid)
{
struct pasid_state **ptr, *ret = NULL;
unsigned long flags;
spin_lock_irqsave(&dev_state->lock, flags);
ptr = __get_pasid_state_ptr(dev_state, pasid, false);
if (ptr == NULL)
goto out_unlock;
ret = *ptr;
if (ret)
atomic_inc(&ret->count);
out_unlock:
spin_unlock_irqrestore(&dev_state->lock, flags);
return ret;
}
static void free_pasid_state(struct pasid_state *pasid_state)
{
kfree(pasid_state);
}
static void put_pasid_state(struct pasid_state *pasid_state)
{
if (atomic_dec_and_test(&pasid_state->count))
wake_up(&pasid_state->wq);
}
static void put_pasid_state_wait(struct pasid_state *pasid_state)
{
atomic_dec(&pasid_state->count);
wait_event(pasid_state->wq, !atomic_read(&pasid_state->count));
free_pasid_state(pasid_state);
}
static void unbind_pasid(struct pasid_state *pasid_state)
{
struct iommu_domain *domain;
domain = pasid_state->device_state->domain;
/*
* Mark pasid_state as invalid, no more faults will we added to the
* work queue after this is visible everywhere.
*/
pasid_state->invalid = true;
/* Make sure this is visible */
smp_wmb();
/* After this the device/pasid can't access the mm anymore */
amd_iommu_domain_clear_gcr3(domain, pasid_state->pasid);
/* Make sure no more pending faults are in the queue */
flush_workqueue(iommu_wq);
}
static void free_pasid_states_level1(struct pasid_state **tbl)
{
int i;
for (i = 0; i < 512; ++i) {
if (tbl[i] == NULL)
continue;
free_page((unsigned long)tbl[i]);
}
}
static void free_pasid_states_level2(struct pasid_state **tbl)
{
struct pasid_state **ptr;
int i;
for (i = 0; i < 512; ++i) {
if (tbl[i] == NULL)
continue;
ptr = (struct pasid_state **)tbl[i];
free_pasid_states_level1(ptr);
}
}
static void free_pasid_states(struct device_state *dev_state)
{
struct pasid_state *pasid_state;
int i;
for (i = 0; i < dev_state->max_pasids; ++i) {
pasid_state = get_pasid_state(dev_state, i);
if (pasid_state == NULL)
continue;
put_pasid_state(pasid_state);
/*
* This will call the mn_release function and
* unbind the PASID
*/
mmu_notifier_unregister(&pasid_state->mn, pasid_state->mm);
put_pasid_state_wait(pasid_state); /* Reference taken in
amd_iommu_bind_pasid */
/* Drop reference taken in amd_iommu_bind_pasid */
put_device_state(dev_state);
}
if (dev_state->pasid_levels == 2)
free_pasid_states_level2(dev_state->states);
else if (dev_state->pasid_levels == 1)
free_pasid_states_level1(dev_state->states);
else
BUG_ON(dev_state->pasid_levels != 0);
free_page((unsigned long)dev_state->states);
}
static struct pasid_state *mn_to_state(struct mmu_notifier *mn)
{
return container_of(mn, struct pasid_state, mn);
}
static void mn_invalidate_range(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start, unsigned long end)
{
struct pasid_state *pasid_state;
struct device_state *dev_state;
pasid_state = mn_to_state(mn);
dev_state = pasid_state->device_state;
if ((start ^ (end - 1)) < PAGE_SIZE)
amd_iommu_flush_page(dev_state->domain, pasid_state->pasid,
start);
else
amd_iommu_flush_tlb(dev_state->domain, pasid_state->pasid);
}
static void mn_release(struct mmu_notifier *mn, struct mm_struct *mm)
{
struct pasid_state *pasid_state;
struct device_state *dev_state;
bool run_inv_ctx_cb;
might_sleep();
pasid_state = mn_to_state(mn);
dev_state = pasid_state->device_state;
run_inv_ctx_cb = !pasid_state->invalid;
if (run_inv_ctx_cb && dev_state->inv_ctx_cb)
dev_state->inv_ctx_cb(dev_state->pdev, pasid_state->pasid);
unbind_pasid(pasid_state);
}
static const struct mmu_notifier_ops iommu_mn = {
.release = mn_release,
.invalidate_range = mn_invalidate_range,
};
static void set_pri_tag_status(struct pasid_state *pasid_state,
u16 tag, int status)
{
unsigned long flags;
spin_lock_irqsave(&pasid_state->lock, flags);
pasid_state->pri[tag].status = status;
spin_unlock_irqrestore(&pasid_state->lock, flags);
}
static void finish_pri_tag(struct device_state *dev_state,
struct pasid_state *pasid_state,
u16 tag)
{
unsigned long flags;
spin_lock_irqsave(&pasid_state->lock, flags);
if (atomic_dec_and_test(&pasid_state->pri[tag].inflight) &&
pasid_state->pri[tag].finish) {
amd_iommu_complete_ppr(dev_state->pdev, pasid_state->pasid,
pasid_state->pri[tag].status, tag);
pasid_state->pri[tag].finish = false;
pasid_state->pri[tag].status = PPR_SUCCESS;
}
spin_unlock_irqrestore(&pasid_state->lock, flags);
}
static void handle_fault_error(struct fault *fault)
{
int status;
if (!fault->dev_state->inv_ppr_cb) {
set_pri_tag_status(fault->state, fault->tag, PPR_INVALID);
return;
}
status = fault->dev_state->inv_ppr_cb(fault->dev_state->pdev,
fault->pasid,
fault->address,
fault->flags);
switch (status) {
case AMD_IOMMU_INV_PRI_RSP_SUCCESS:
set_pri_tag_status(fault->state, fault->tag, PPR_SUCCESS);
break;
case AMD_IOMMU_INV_PRI_RSP_INVALID:
set_pri_tag_status(fault->state, fault->tag, PPR_INVALID);
break;
case AMD_IOMMU_INV_PRI_RSP_FAIL:
set_pri_tag_status(fault->state, fault->tag, PPR_FAILURE);
break;
default:
BUG();
}
}
static bool access_error(struct vm_area_struct *vma, struct fault *fault)
{
unsigned long requested = 0;
if (fault->flags & PPR_FAULT_EXEC)
requested |= VM_EXEC;
if (fault->flags & PPR_FAULT_READ)
requested |= VM_READ;
if (fault->flags & PPR_FAULT_WRITE)
requested |= VM_WRITE;
return (requested & ~vma->vm_flags) != 0;
}
static void do_fault(struct work_struct *work)
{
struct fault *fault = container_of(work, struct fault, work);
struct vm_area_struct *vma;
mm: convert return type of handle_mm_fault() caller to vm_fault_t Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. Ref-> commit 1c8f422059ae ("mm: change return type to vm_fault_t") In this patch all the caller of handle_mm_fault() are changed to return vm_fault_t type. Link: http://lkml.kernel.org/r/20180617084810.GA6730@jordon-HP-15-Notebook-PC Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Tony Luck <tony.luck@intel.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: David S. Miller <davem@davemloft.net> Cc: Richard Weinberger <richard@nod.at> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Levin, Alexander (Sasha Levin)" <alexander.levin@verizon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:44:47 +08:00
vm_fault_t ret = VM_FAULT_ERROR;
unsigned int flags = 0;
struct mm_struct *mm;
u64 address;
mm = fault->state->mm;
address = fault->address;
if (fault->flags & PPR_FAULT_USER)
flags |= FAULT_FLAG_USER;
if (fault->flags & PPR_FAULT_WRITE)
flags |= FAULT_FLAG_WRITE;
mm/core: Do not enforce PKEY permissions on remote mm access We try to enforce protection keys in software the same way that we do in hardware. (See long example below). But, we only want to do this when accessing our *own* process's memory. If GDB set PKRU[6].AD=1 (disable access to PKEY 6), then tried to PTRACE_POKE a target process which just happened to have some mprotect_pkey(pkey=6) memory, we do *not* want to deny the debugger access to that memory. PKRU is fundamentally a thread-local structure and we do not want to enforce it on access to _another_ thread's data. This gets especially tricky when we have workqueues or other delayed-work mechanisms that might run in a random process's context. We can check that we only enforce pkeys when operating on our *own* mm, but delayed work gets performed when a random user context is active. We might end up with a situation where a delayed-work gup fails when running randomly under its "own" task but succeeds when running under another process. We want to avoid that. To avoid that, we use the new GUP flag: FOLL_REMOTE and add a fault flag: FAULT_FLAG_REMOTE. They indicate that we are walking an mm which is not guranteed to be the same as current->mm and should not be subject to protection key enforcement. Thanks to Jerome Glisse for pointing out this scenario. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexey Kardashevskiy <aik@ozlabs.ru> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dominik Dingel <dingel@linux.vnet.ibm.com> Cc: Dominik Vogt <vogt@linux.vnet.ibm.com> Cc: Eric B Munson <emunson@akamai.com> Cc: Geliang Tang <geliangtang@163.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Low <jason.low2@hp.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xie XiuQi <xiexiuqi@huawei.com> Cc: iommu@lists.linux-foundation.org Cc: linux-arch@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: linux-s390@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-13 05:02:21 +08:00
flags |= FAULT_FLAG_REMOTE;
down_read(&mm->mmap_sem);
vma = find_extend_vma(mm, address);
if (!vma || address < vma->vm_start)
/* failed to get a vma in the right range */
goto out;
/* Check if we have the right permissions on the vma */
if (access_error(vma, fault))
goto out;
ret = handle_mm_fault(vma, address, flags);
out:
up_read(&mm->mmap_sem);
if (ret & VM_FAULT_ERROR)
/* failed to service fault */
handle_fault_error(fault);
finish_pri_tag(fault->dev_state, fault->state, fault->tag);
put_pasid_state(fault->state);
kfree(fault);
}
static int ppr_notifier(struct notifier_block *nb, unsigned long e, void *data)
{
struct amd_iommu_fault *iommu_fault;
struct pasid_state *pasid_state;
struct device_state *dev_state;
unsigned long flags;
struct fault *fault;
bool finish;
u16 tag, devid;
int ret;
struct iommu_dev_data *dev_data;
struct pci_dev *pdev = NULL;
iommu_fault = data;
tag = iommu_fault->tag & 0x1ff;
finish = (iommu_fault->tag >> 9) & 1;
devid = iommu_fault->device_id;
pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
devid & 0xff);
if (!pdev)
return -ENODEV;
dev_data = get_dev_data(&pdev->dev);
/* In kdump kernel pci dev is not initialized yet -> send INVALID */
ret = NOTIFY_DONE;
if (translation_pre_enabled(amd_iommu_rlookup_table[devid])
&& dev_data->defer_attach) {
amd_iommu_complete_ppr(pdev, iommu_fault->pasid,
PPR_INVALID, tag);
goto out;
}
dev_state = get_device_state(iommu_fault->device_id);
if (dev_state == NULL)
goto out;
pasid_state = get_pasid_state(dev_state, iommu_fault->pasid);
if (pasid_state == NULL || pasid_state->invalid) {
/* We know the device but not the PASID -> send INVALID */
amd_iommu_complete_ppr(dev_state->pdev, iommu_fault->pasid,
PPR_INVALID, tag);
goto out_drop_state;
}
spin_lock_irqsave(&pasid_state->lock, flags);
atomic_inc(&pasid_state->pri[tag].inflight);
if (finish)
pasid_state->pri[tag].finish = true;
spin_unlock_irqrestore(&pasid_state->lock, flags);
fault = kzalloc(sizeof(*fault), GFP_ATOMIC);
if (fault == NULL) {
/* We are OOM - send success and let the device re-fault */
finish_pri_tag(dev_state, pasid_state, tag);
goto out_drop_state;
}
fault->dev_state = dev_state;
fault->address = iommu_fault->address;
fault->state = pasid_state;
fault->tag = tag;
fault->finish = finish;
fault->pasid = iommu_fault->pasid;
fault->flags = iommu_fault->flags;
INIT_WORK(&fault->work, do_fault);
queue_work(iommu_wq, &fault->work);
ret = NOTIFY_OK;
out_drop_state:
if (ret != NOTIFY_OK && pasid_state)
put_pasid_state(pasid_state);
put_device_state(dev_state);
out:
return ret;
}
static struct notifier_block ppr_nb = {
.notifier_call = ppr_notifier,
};
int amd_iommu_bind_pasid(struct pci_dev *pdev, int pasid,
struct task_struct *task)
{
struct pasid_state *pasid_state;
struct device_state *dev_state;
struct mm_struct *mm;
u16 devid;
int ret;
might_sleep();
if (!amd_iommu_v2_supported())
return -ENODEV;
devid = device_id(pdev);
dev_state = get_device_state(devid);
if (dev_state == NULL)
return -EINVAL;
ret = -EINVAL;
if (pasid < 0 || pasid >= dev_state->max_pasids)
goto out;
ret = -ENOMEM;
pasid_state = kzalloc(sizeof(*pasid_state), GFP_KERNEL);
if (pasid_state == NULL)
goto out;
atomic_set(&pasid_state->count, 1);
init_waitqueue_head(&pasid_state->wq);
spin_lock_init(&pasid_state->lock);
mm = get_task_mm(task);
pasid_state->mm = mm;
pasid_state->device_state = dev_state;
pasid_state->pasid = pasid;
pasid_state->invalid = true; /* Mark as valid only if we are
done with setting up the pasid */
pasid_state->mn.ops = &iommu_mn;
if (pasid_state->mm == NULL)
goto out_free;
mmu_notifier_register(&pasid_state->mn, mm);
ret = set_pasid_state(dev_state, pasid_state, pasid);
if (ret)
goto out_unregister;
ret = amd_iommu_domain_set_gcr3(dev_state->domain, pasid,
__pa(pasid_state->mm->pgd));
if (ret)
goto out_clear_state;
/* Now we are ready to handle faults */
pasid_state->invalid = false;
/*
* Drop the reference to the mm_struct here. We rely on the
* mmu_notifier release call-back to inform us when the mm
* is going away.
*/
mmput(mm);
return 0;
out_clear_state:
clear_pasid_state(dev_state, pasid);
out_unregister:
mmu_notifier_unregister(&pasid_state->mn, mm);
mmput(mm);
out_free:
free_pasid_state(pasid_state);
out:
put_device_state(dev_state);
return ret;
}
EXPORT_SYMBOL(amd_iommu_bind_pasid);
void amd_iommu_unbind_pasid(struct pci_dev *pdev, int pasid)
{
struct pasid_state *pasid_state;
struct device_state *dev_state;
u16 devid;
might_sleep();
if (!amd_iommu_v2_supported())
return;
devid = device_id(pdev);
dev_state = get_device_state(devid);
if (dev_state == NULL)
return;
if (pasid < 0 || pasid >= dev_state->max_pasids)
goto out;
pasid_state = get_pasid_state(dev_state, pasid);
if (pasid_state == NULL)
goto out;
/*
* Drop reference taken here. We are safe because we still hold
* the reference taken in the amd_iommu_bind_pasid function.
*/
put_pasid_state(pasid_state);
/* Clear the pasid state so that the pasid can be re-used */
clear_pasid_state(dev_state, pasid_state->pasid);
/*
* Call mmu_notifier_unregister to drop our reference
* to pasid_state->mm
*/
mmu_notifier_unregister(&pasid_state->mn, pasid_state->mm);
put_pasid_state_wait(pasid_state); /* Reference taken in
amd_iommu_bind_pasid */
out:
/* Drop reference taken in this function */
put_device_state(dev_state);
/* Drop reference taken in amd_iommu_bind_pasid */
put_device_state(dev_state);
}
EXPORT_SYMBOL(amd_iommu_unbind_pasid);
int amd_iommu_init_device(struct pci_dev *pdev, int pasids)
{
struct device_state *dev_state;
struct iommu_group *group;
unsigned long flags;
int ret, tmp;
u16 devid;
might_sleep();
if (!amd_iommu_v2_supported())
return -ENODEV;
if (pasids <= 0 || pasids > (PASID_MASK + 1))
return -EINVAL;
devid = device_id(pdev);
dev_state = kzalloc(sizeof(*dev_state), GFP_KERNEL);
if (dev_state == NULL)
return -ENOMEM;
spin_lock_init(&dev_state->lock);
init_waitqueue_head(&dev_state->wq);
dev_state->pdev = pdev;
dev_state->devid = devid;
tmp = pasids;
for (dev_state->pasid_levels = 0; (tmp - 1) & ~0x1ff; tmp >>= 9)
dev_state->pasid_levels += 1;
atomic_set(&dev_state->count, 1);
dev_state->max_pasids = pasids;
ret = -ENOMEM;
dev_state->states = (void *)get_zeroed_page(GFP_KERNEL);
if (dev_state->states == NULL)
goto out_free_dev_state;
dev_state->domain = iommu_domain_alloc(&pci_bus_type);
if (dev_state->domain == NULL)
goto out_free_states;
amd_iommu_domain_direct_map(dev_state->domain);
ret = amd_iommu_domain_enable_v2(dev_state->domain, pasids);
if (ret)
goto out_free_domain;
group = iommu_group_get(&pdev->dev);
if (!group) {
ret = -EINVAL;
goto out_free_domain;
}
ret = iommu_attach_group(dev_state->domain, group);
if (ret != 0)
goto out_drop_group;
iommu_group_put(group);
spin_lock_irqsave(&state_lock, flags);
if (__get_device_state(devid) != NULL) {
spin_unlock_irqrestore(&state_lock, flags);
ret = -EBUSY;
goto out_free_domain;
}
list_add_tail(&dev_state->list, &state_list);
spin_unlock_irqrestore(&state_lock, flags);
return 0;
out_drop_group:
iommu_group_put(group);
out_free_domain:
iommu_domain_free(dev_state->domain);
out_free_states:
free_page((unsigned long)dev_state->states);
out_free_dev_state:
kfree(dev_state);
return ret;
}
EXPORT_SYMBOL(amd_iommu_init_device);
void amd_iommu_free_device(struct pci_dev *pdev)
{
struct device_state *dev_state;
unsigned long flags;
u16 devid;
if (!amd_iommu_v2_supported())
return;
devid = device_id(pdev);
spin_lock_irqsave(&state_lock, flags);
dev_state = __get_device_state(devid);
if (dev_state == NULL) {
spin_unlock_irqrestore(&state_lock, flags);
return;
}
list_del(&dev_state->list);
spin_unlock_irqrestore(&state_lock, flags);
/* Get rid of any remaining pasid states */
free_pasid_states(dev_state);
put_device_state(dev_state);
/*
* Wait until the last reference is dropped before freeing
* the device state.
*/
wait_event(dev_state->wq, !atomic_read(&dev_state->count));
free_device_state(dev_state);
}
EXPORT_SYMBOL(amd_iommu_free_device);
int amd_iommu_set_invalid_ppr_cb(struct pci_dev *pdev,
amd_iommu_invalid_ppr_cb cb)
{
struct device_state *dev_state;
unsigned long flags;
u16 devid;
int ret;
if (!amd_iommu_v2_supported())
return -ENODEV;
devid = device_id(pdev);
spin_lock_irqsave(&state_lock, flags);
ret = -EINVAL;
dev_state = __get_device_state(devid);
if (dev_state == NULL)
goto out_unlock;
dev_state->inv_ppr_cb = cb;
ret = 0;
out_unlock:
spin_unlock_irqrestore(&state_lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_set_invalid_ppr_cb);
int amd_iommu_set_invalidate_ctx_cb(struct pci_dev *pdev,
amd_iommu_invalidate_ctx cb)
{
struct device_state *dev_state;
unsigned long flags;
u16 devid;
int ret;
if (!amd_iommu_v2_supported())
return -ENODEV;
devid = device_id(pdev);
spin_lock_irqsave(&state_lock, flags);
ret = -EINVAL;
dev_state = __get_device_state(devid);
if (dev_state == NULL)
goto out_unlock;
dev_state->inv_ctx_cb = cb;
ret = 0;
out_unlock:
spin_unlock_irqrestore(&state_lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_set_invalidate_ctx_cb);
static int __init amd_iommu_v2_init(void)
{
int ret;
pr_info("AMD IOMMUv2 driver by Joerg Roedel <jroedel@suse.de>\n");
if (!amd_iommu_v2_supported()) {
pr_info("AMD IOMMUv2 functionality not available on this system\n");
/*
* Load anyway to provide the symbols to other modules
* which may use AMD IOMMUv2 optionally.
*/
return 0;
}
spin_lock_init(&state_lock);
ret = -ENOMEM;
iommu_wq = alloc_workqueue("amd_iommu_v2", WQ_MEM_RECLAIM, 0);
if (iommu_wq == NULL)
goto out;
amd_iommu_register_ppr_notifier(&ppr_nb);
return 0;
out:
return ret;
}
static void __exit amd_iommu_v2_exit(void)
{
struct device_state *dev_state;
int i;
if (!amd_iommu_v2_supported())
return;
amd_iommu_unregister_ppr_notifier(&ppr_nb);
flush_workqueue(iommu_wq);
/*
* The loop below might call flush_workqueue(), so call
* destroy_workqueue() after it
*/
for (i = 0; i < MAX_DEVICES; ++i) {
dev_state = get_device_state(i);
if (dev_state == NULL)
continue;
WARN_ON_ONCE(1);
put_device_state(dev_state);
amd_iommu_free_device(dev_state->pdev);
}
destroy_workqueue(iommu_wq);
}
module_init(amd_iommu_v2_init);
module_exit(amd_iommu_v2_exit);