linux_old1/drivers/misc/sgi-xp/xpc.h

1188 lines
41 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved.
*/
/*
* Cross Partition Communication (XPC) structures and macros.
*/
#ifndef _DRIVERS_MISC_SGIXP_XPC_H
#define _DRIVERS_MISC_SGIXP_XPC_H
#include <linux/interrupt.h>
#include <linux/sysctl.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/sn/bte.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/addrs.h>
#include <asm/sn/mspec.h>
#include <asm/sn/shub_mmr.h>
#include "xp.h"
/*
* XPC Version numbers consist of a major and minor number. XPC can always
* talk to versions with same major #, and never talk to versions with a
* different major #.
*/
#define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf))
#define XPC_VERSION_MAJOR(_v) ((_v) >> 4)
#define XPC_VERSION_MINOR(_v) ((_v) & 0xf)
/*
* The next macros define word or bit representations for given
* C-brick nasid in either the SAL provided bit array representing
* nasids in the partition/machine or the AMO_t array used for
* inter-partition initiation communications.
*
* For SN2 machines, C-Bricks are alway even numbered NASIDs. As
* such, some space will be saved by insisting that nasid information
* passed from SAL always be packed for C-Bricks and the
* cross-partition interrupts use the same packing scheme.
*/
#define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2)
#define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1))
#define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \
(1UL << XPC_NASID_B_INDEX(_n)))
#define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2)
#define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */
#define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */
/* define the process name of HB checker and the CPU it is pinned to */
#define XPC_HB_CHECK_THREAD_NAME "xpc_hb"
#define XPC_HB_CHECK_CPU 0
/* define the process name of the discovery thread */
#define XPC_DISCOVERY_THREAD_NAME "xpc_discovery"
/*
* the reserved page
*
* SAL reserves one page of memory per partition for XPC. Though a full page
* in length (16384 bytes), its starting address is not page aligned, but it
* is cacheline aligned. The reserved page consists of the following:
*
* reserved page header
*
* The first cacheline of the reserved page contains the header
* (struct xpc_rsvd_page). Before SAL initialization has completed,
* SAL has set up the following fields of the reserved page header:
* SAL_signature, SAL_version, partid, and nasids_size. The other
* fields are set up by XPC. (xpc_rsvd_page points to the local
* partition's reserved page.)
*
* part_nasids mask
* mach_nasids mask
*
* SAL also sets up two bitmaps (or masks), one that reflects the actual
* nasids in this partition (part_nasids), and the other that reflects
* the actual nasids in the entire machine (mach_nasids). We're only
* interested in the even numbered nasids (which contain the processors
* and/or memory), so we only need half as many bits to represent the
* nasids. The part_nasids mask is located starting at the first cacheline
* following the reserved page header. The mach_nasids mask follows right
* after the part_nasids mask. The size in bytes of each mask is reflected
* by the reserved page header field 'nasids_size'. (Local partition's
* mask pointers are xpc_part_nasids and xpc_mach_nasids.)
*
* vars
* vars part
*
* Immediately following the mach_nasids mask are the XPC variables
* required by other partitions. First are those that are generic to all
* partitions (vars), followed on the next available cacheline by those
* which are partition specific (vars part). These are setup by XPC.
* (Local partition's vars pointers are xpc_vars and xpc_vars_part.)
*
* Note: Until vars_pa is set, the partition XPC code has not been initialized.
*/
struct xpc_rsvd_page {
u64 SAL_signature; /* SAL: unique signature */
u64 SAL_version; /* SAL: version */
u8 partid; /* SAL: partition ID */
u8 version;
u8 pad1[6]; /* align to next u64 in cacheline */
u64 vars_pa; /* physical address of struct xpc_vars */
struct timespec stamp; /* time when reserved page was setup by XPC */
u64 pad2[9]; /* align to last u64 in cacheline */
u64 nasids_size; /* SAL: size of each nasid mask in bytes */
};
#define XPC_RP_VERSION _XPC_VERSION(1, 1) /* version 1.1 of the reserved page */
#define XPC_SUPPORTS_RP_STAMP(_version) \
(_version >= _XPC_VERSION(1, 1))
/*
* compare stamps - the return value is:
*
* < 0, if stamp1 < stamp2
* = 0, if stamp1 == stamp2
* > 0, if stamp1 > stamp2
*/
static inline int
xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2)
{
int ret;
ret = stamp1->tv_sec - stamp2->tv_sec;
if (ret == 0)
ret = stamp1->tv_nsec - stamp2->tv_nsec;
return ret;
}
/*
* Define the structures by which XPC variables can be exported to other
* partitions. (There are two: struct xpc_vars and struct xpc_vars_part)
*/
/*
* The following structure describes the partition generic variables
* needed by other partitions in order to properly initialize.
*
* struct xpc_vars version number also applies to struct xpc_vars_part.
* Changes to either structure and/or related functionality should be
* reflected by incrementing either the major or minor version numbers
* of struct xpc_vars.
*/
struct xpc_vars {
u8 version;
u64 heartbeat;
u64 heartbeating_to_mask;
u64 heartbeat_offline; /* if 0, heartbeat should be changing */
int act_nasid;
int act_phys_cpuid;
u64 vars_part_pa;
u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */
AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */
};
#define XPC_V_VERSION _XPC_VERSION(3, 1) /* version 3.1 of the cross vars */
#define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \
(_version >= _XPC_VERSION(3, 1))
static inline int
xpc_hb_allowed(partid_t partid, struct xpc_vars *vars)
{
return ((vars->heartbeating_to_mask & (1UL << partid)) != 0);
}
static inline void
xpc_allow_hb(partid_t partid, struct xpc_vars *vars)
{
u64 old_mask, new_mask;
do {
old_mask = vars->heartbeating_to_mask;
new_mask = (old_mask | (1UL << partid));
} while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) !=
old_mask);
}
static inline void
xpc_disallow_hb(partid_t partid, struct xpc_vars *vars)
{
u64 old_mask, new_mask;
do {
old_mask = vars->heartbeating_to_mask;
new_mask = (old_mask & ~(1UL << partid));
} while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) !=
old_mask);
}
/*
* The AMOs page consists of a number of AMO variables which are divided into
* four groups, The first two groups are used to identify an IRQ's sender.
* These two groups consist of 64 and 128 AMO variables respectively. The last
* two groups, consisting of just one AMO variable each, are used to identify
* the remote partitions that are currently engaged (from the viewpoint of
* the XPC running on the remote partition).
*/
#define XPC_NOTIFY_IRQ_AMOS 0
#define XPC_ACTIVATE_IRQ_AMOS (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS)
#define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS)
#define XPC_DISENGAGE_REQUEST_AMO (XPC_ENGAGED_PARTITIONS_AMO + 1)
/*
* The following structure describes the per partition specific variables.
*
* An array of these structures, one per partition, will be defined. As a
* partition becomes active XPC will copy the array entry corresponding to
* itself from that partition. It is desirable that the size of this
* structure evenly divide into a cacheline, such that none of the entries
* in this array crosses a cacheline boundary. As it is now, each entry
* occupies half a cacheline.
*/
struct xpc_vars_part {
u64 magic;
u64 openclose_args_pa; /* physical address of open and close args */
u64 GPs_pa; /* physical address of Get/Put values */
u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */
int IPI_nasid; /* nasid of where to send IPIs */
int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */
u8 nchannels; /* #of defined channels supported */
u8 reserved[23]; /* pad to a full 64 bytes */
};
/*
* The vars_part MAGIC numbers play a part in the first contact protocol.
*
* MAGIC1 indicates that the per partition specific variables for a remote
* partition have been initialized by this partition.
*
* MAGIC2 indicates that this partition has pulled the remote partititions
* per partition variables that pertain to this partition.
*/
#define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */
#define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */
/* the reserved page sizes and offsets */
#define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page))
#define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars))
#define XPC_RP_PART_NASIDS(_rp) ((u64 *)((u8 *)(_rp) + XPC_RP_HEADER_SIZE))
#define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words)
#define XPC_RP_VARS(_rp) ((struct xpc_vars *)(XPC_RP_MACH_NASIDS(_rp) + \
xp_nasid_mask_words))
#define XPC_RP_VARS_PART(_rp) ((struct xpc_vars_part *) \
((u8 *)XPC_RP_VARS(_rp) + XPC_RP_VARS_SIZE))
/*
* Functions registered by add_timer() or called by kernel_thread() only
* allow for a single 64-bit argument. The following macros can be used to
* pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from
* the passed argument.
*/
#define XPC_PACK_ARGS(_arg1, _arg2) \
((((u64) _arg1) & 0xffffffff) | \
((((u64) _arg2) & 0xffffffff) << 32))
#define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff)
#define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff)
/*
* Define a Get/Put value pair (pointers) used with a message queue.
*/
struct xpc_gp {
s64 get; /* Get value */
s64 put; /* Put value */
};
#define XPC_GP_SIZE \
L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS)
/*
* Define a structure that contains arguments associated with opening and
* closing a channel.
*/
struct xpc_openclose_args {
u16 reason; /* reason why channel is closing */
u16 msg_size; /* sizeof each message entry */
u16 remote_nentries; /* #of message entries in remote msg queue */
u16 local_nentries; /* #of message entries in local msg queue */
u64 local_msgqueue_pa; /* physical address of local message queue */
};
#define XPC_OPENCLOSE_ARGS_SIZE \
L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS)
/* struct xpc_msg flags */
#define XPC_M_DONE 0x01 /* msg has been received/consumed */
#define XPC_M_READY 0x02 /* msg is ready to be sent */
#define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */
#define XPC_MSG_ADDRESS(_payload) \
((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET))
/*
* Defines notify entry.
*
* This is used to notify a message's sender that their message was received
* and consumed by the intended recipient.
*/
struct xpc_notify {
u8 type; /* type of notification */
/* the following two fields are only used if type == XPC_N_CALL */
xpc_notify_func func; /* user's notify function */
void *key; /* pointer to user's key */
};
/* struct xpc_notify type of notification */
#define XPC_N_CALL 0x01 /* notify function provided by user */
/*
* Define the structure that manages all the stuff required by a channel. In
* particular, they are used to manage the messages sent across the channel.
*
* This structure is private to a partition, and is NOT shared across the
* partition boundary.
*
* There is an array of these structures for each remote partition. It is
* allocated at the time a partition becomes active. The array contains one
* of these structures for each potential channel connection to that partition.
*
* Each of these structures manages two message queues (circular buffers).
* They are allocated at the time a channel connection is made. One of
* these message queues (local_msgqueue) holds the locally created messages
* that are destined for the remote partition. The other of these message
* queues (remote_msgqueue) is a locally cached copy of the remote partition's
* own local_msgqueue.
*
* The following is a description of the Get/Put pointers used to manage these
* two message queues. Consider the local_msgqueue to be on one partition
* and the remote_msgqueue to be its cached copy on another partition. A
* description of what each of the lettered areas contains is included.
*
*
* local_msgqueue remote_msgqueue
*
* |/////////| |/////////|
* w_remote_GP.get --> +---------+ |/////////|
* | F | |/////////|
* remote_GP.get --> +---------+ +---------+ <-- local_GP->get
* | | | |
* | | | E |
* | | | |
* | | +---------+ <-- w_local_GP.get
* | B | |/////////|
* | | |////D////|
* | | |/////////|
* | | +---------+ <-- w_remote_GP.put
* | | |////C////|
* local_GP->put --> +---------+ +---------+ <-- remote_GP.put
* | | |/////////|
* | A | |/////////|
* | | |/////////|
* w_local_GP.put --> +---------+ |/////////|
* |/////////| |/////////|
*
*
* ( remote_GP.[get|put] are cached copies of the remote
* partition's local_GP->[get|put], and thus their values can
* lag behind their counterparts on the remote partition. )
*
*
* A - Messages that have been allocated, but have not yet been sent to the
* remote partition.
*
* B - Messages that have been sent, but have not yet been acknowledged by the
* remote partition as having been received.
*
* C - Area that needs to be prepared for the copying of sent messages, by
* the clearing of the message flags of any previously received messages.
*
* D - Area into which sent messages are to be copied from the remote
* partition's local_msgqueue and then delivered to their intended
* recipients. [ To allow for a multi-message copy, another pointer
* (next_msg_to_pull) has been added to keep track of the next message
* number needing to be copied (pulled). It chases after w_remote_GP.put.
* Any messages lying between w_local_GP.get and next_msg_to_pull have
* been copied and are ready to be delivered. ]
*
* E - Messages that have been copied and delivered, but have not yet been
* acknowledged by the recipient as having been received.
*
* F - Messages that have been acknowledged, but XPC has not yet notified the
* sender that the message was received by its intended recipient.
* This is also an area that needs to be prepared for the allocating of
* new messages, by the clearing of the message flags of the acknowledged
* messages.
*/
struct xpc_channel {
partid_t partid; /* ID of remote partition connected */
spinlock_t lock; /* lock for updating this structure */
u32 flags; /* general flags */
enum xpc_retval reason; /* reason why channel is disconnect'g */
int reason_line; /* line# disconnect initiated from */
u16 number; /* channel # */
u16 msg_size; /* sizeof each msg entry */
u16 local_nentries; /* #of msg entries in local msg queue */
u16 remote_nentries; /* #of msg entries in remote msg queue */
void *local_msgqueue_base; /* base address of kmalloc'd space */
struct xpc_msg *local_msgqueue; /* local message queue */
void *remote_msgqueue_base; /* base address of kmalloc'd space */
struct xpc_msg *remote_msgqueue; /* cached copy of remote partition's */
/* local message queue */
u64 remote_msgqueue_pa; /* phys addr of remote partition's */
/* local message queue */
atomic_t references; /* #of external references to queues */
atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */
wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */
u8 delayed_IPI_flags; /* IPI flags received, but delayed */
/* action until channel disconnected */
/* queue of msg senders who want to be notified when msg received */
atomic_t n_to_notify; /* #of msg senders to notify */
struct xpc_notify *notify_queue; /* notify queue for messages sent */
xpc_channel_func func; /* user's channel function */
void *key; /* pointer to user's key */
struct mutex msg_to_pull_mutex; /* next msg to pull serialization */
struct completion wdisconnect_wait; /* wait for channel disconnect */
struct xpc_openclose_args *local_openclose_args; /* args passed on */
/* opening or closing of channel */
/* various flavors of local and remote Get/Put values */
struct xpc_gp *local_GP; /* local Get/Put values */
struct xpc_gp remote_GP; /* remote Get/Put values */
struct xpc_gp w_local_GP; /* working local Get/Put values */
struct xpc_gp w_remote_GP; /* working remote Get/Put values */
s64 next_msg_to_pull; /* Put value of next msg to pull */
/* kthread management related fields */
atomic_t kthreads_assigned; /* #of kthreads assigned to channel */
u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */
atomic_t kthreads_idle; /* #of kthreads idle waiting for work */
u32 kthreads_idle_limit; /* limit on #of kthreads idle */
atomic_t kthreads_active; /* #of kthreads actively working */
wait_queue_head_t idle_wq; /* idle kthread wait queue */
} ____cacheline_aligned;
/* struct xpc_channel flags */
#define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */
#define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */
#define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */
#define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */
#define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */
#define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */
#define XPC_C_CONNECTEDCALLOUT 0x00000040 /* connected callout initiated */
#define XPC_C_CONNECTEDCALLOUT_MADE \
0x00000080 /* connected callout completed */
#define XPC_C_CONNECTED 0x00000100 /* local channel is connected */
#define XPC_C_CONNECTING 0x00000200 /* channel is being connected */
#define XPC_C_RCLOSEREPLY 0x00000400 /* remote close channel reply */
#define XPC_C_CLOSEREPLY 0x00000800 /* local close channel reply */
#define XPC_C_RCLOSEREQUEST 0x00001000 /* remote close channel request */
#define XPC_C_CLOSEREQUEST 0x00002000 /* local close channel request */
#define XPC_C_DISCONNECTED 0x00004000 /* channel is disconnected */
#define XPC_C_DISCONNECTING 0x00008000 /* channel is being disconnected */
#define XPC_C_DISCONNECTINGCALLOUT \
0x00010000 /* disconnecting callout initiated */
#define XPC_C_DISCONNECTINGCALLOUT_MADE \
0x00020000 /* disconnecting callout completed */
#define XPC_C_WDISCONNECT 0x00040000 /* waiting for channel disconnect */
/*
* Manages channels on a partition basis. There is one of these structures
* for each partition (a partition will never utilize the structure that
* represents itself).
*/
struct xpc_partition {
/* XPC HB infrastructure */
u8 remote_rp_version; /* version# of partition's rsvd pg */
struct timespec remote_rp_stamp; /* time when rsvd pg was initialized */
u64 remote_rp_pa; /* phys addr of partition's rsvd pg */
u64 remote_vars_pa; /* phys addr of partition's vars */
u64 remote_vars_part_pa; /* phys addr of partition's vars part */
u64 last_heartbeat; /* HB at last read */
u64 remote_amos_page_pa; /* phys addr of partition's amos page */
int remote_act_nasid; /* active part's act/deact nasid */
int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */
u32 act_IRQ_rcvd; /* IRQs since activation */
spinlock_t act_lock; /* protect updating of act_state */
u8 act_state; /* from XPC HB viewpoint */
u8 remote_vars_version; /* version# of partition's vars */
enum xpc_retval reason; /* reason partition is deactivating */
int reason_line; /* line# deactivation initiated from */
int reactivate_nasid; /* nasid in partition to reactivate */
unsigned long disengage_request_timeout; /* timeout in jiffies */
struct timer_list disengage_request_timer;
/* XPC infrastructure referencing and teardown control */
u8 setup_state; /* infrastructure setup state */
wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */
atomic_t references; /* #of references to infrastructure */
/*
* NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN
* XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION
* COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE
* 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.)
*/
u8 nchannels; /* #of defined channels supported */
atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */
atomic_t nchannels_engaged; /* #of channels engaged with remote part */
struct xpc_channel *channels; /* array of channel structures */
void *local_GPs_base; /* base address of kmalloc'd space */
struct xpc_gp *local_GPs; /* local Get/Put values */
void *remote_GPs_base; /* base address of kmalloc'd space */
struct xpc_gp *remote_GPs; /* copy of remote partition's local */
/* Get/Put values */
u64 remote_GPs_pa; /* phys address of remote partition's local */
/* Get/Put values */
/* fields used to pass args when opening or closing a channel */
void *local_openclose_args_base; /* base address of kmalloc'd space */
struct xpc_openclose_args *local_openclose_args; /* local's args */
void *remote_openclose_args_base; /* base address of kmalloc'd space */
struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */
/* args */
u64 remote_openclose_args_pa; /* phys addr of remote's args */
/* IPI sending, receiving and handling related fields */
int remote_IPI_nasid; /* nasid of where to send IPIs */
int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */
AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */
AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */
u64 local_IPI_amo; /* IPI amo flags yet to be handled */
char IPI_owner[8]; /* IPI owner's name */
struct timer_list dropped_IPI_timer; /* dropped IPI timer */
spinlock_t IPI_lock; /* IPI handler lock */
/* channel manager related fields */
atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */
wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */
} ____cacheline_aligned;
/* struct xpc_partition act_state values (for XPC HB) */
#define XPC_P_INACTIVE 0x00 /* partition is not active */
#define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */
#define XPC_P_ACTIVATING 0x02 /* activation thread started */
#define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */
#define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */
#define XPC_DEACTIVATE_PARTITION(_p, _reason) \
xpc_deactivate_partition(__LINE__, (_p), (_reason))
/* struct xpc_partition setup_state values */
#define XPC_P_UNSET 0x00 /* infrastructure was never setup */
#define XPC_P_SETUP 0x01 /* infrastructure is setup */
#define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */
#define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */
/*
* struct xpc_partition IPI_timer #of seconds to wait before checking for
* dropped IPIs. These occur whenever an IPI amo write doesn't complete until
* after the IPI was received.
*/
#define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ)
/* number of seconds to wait for other partitions to disengage */
#define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT 90
/* interval in seconds to print 'waiting disengagement' messages */
#define XPC_DISENGAGE_PRINTMSG_INTERVAL 10
#define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0]))
/* found in xp_main.c */
extern struct xpc_registration xpc_registrations[];
/* found in xpc_main.c */
extern struct device *xpc_part;
extern struct device *xpc_chan;
extern int xpc_disengage_request_timelimit;
extern int xpc_disengage_request_timedout;
extern irqreturn_t xpc_notify_IRQ_handler(int, void *);
extern void xpc_dropped_IPI_check(struct xpc_partition *);
extern void xpc_activate_partition(struct xpc_partition *);
extern void xpc_activate_kthreads(struct xpc_channel *, int);
extern void xpc_create_kthreads(struct xpc_channel *, int, int);
extern void xpc_disconnect_wait(int);
/* found in xpc_partition.c */
extern int xpc_exiting;
extern struct xpc_vars *xpc_vars;
extern struct xpc_rsvd_page *xpc_rsvd_page;
extern struct xpc_vars_part *xpc_vars_part;
extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1];
extern char *xpc_remote_copy_buffer;
extern void *xpc_remote_copy_buffer_base;
extern void *xpc_kmalloc_cacheline_aligned(size_t, gfp_t, void **);
extern struct xpc_rsvd_page *xpc_rsvd_page_init(void);
extern void xpc_allow_IPI_ops(void);
extern void xpc_restrict_IPI_ops(void);
extern int xpc_identify_act_IRQ_sender(void);
extern int xpc_partition_disengaged(struct xpc_partition *);
extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *);
extern void xpc_mark_partition_inactive(struct xpc_partition *);
extern void xpc_discovery(void);
extern void xpc_check_remote_hb(void);
extern void xpc_deactivate_partition(const int, struct xpc_partition *,
enum xpc_retval);
extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *);
/* found in xpc_channel.c */
extern void xpc_initiate_connect(int);
extern void xpc_initiate_disconnect(int);
extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **);
extern enum xpc_retval xpc_initiate_send(partid_t, int, void *);
extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *,
xpc_notify_func, void *);
extern void xpc_initiate_received(partid_t, int, void *);
extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *);
extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *);
extern void xpc_process_channel_activity(struct xpc_partition *);
extern void xpc_connected_callout(struct xpc_channel *);
extern void xpc_deliver_msg(struct xpc_channel *);
extern void xpc_disconnect_channel(const int, struct xpc_channel *,
enum xpc_retval, unsigned long *);
extern void xpc_disconnect_callout(struct xpc_channel *, enum xpc_retval);
extern void xpc_partition_going_down(struct xpc_partition *, enum xpc_retval);
extern void xpc_teardown_infrastructure(struct xpc_partition *);
static inline void
xpc_wakeup_channel_mgr(struct xpc_partition *part)
{
if (atomic_inc_return(&part->channel_mgr_requests) == 1)
wake_up(&part->channel_mgr_wq);
}
/*
* These next two inlines are used to keep us from tearing down a channel's
* msg queues while a thread may be referencing them.
*/
static inline void
xpc_msgqueue_ref(struct xpc_channel *ch)
{
atomic_inc(&ch->references);
}
static inline void
xpc_msgqueue_deref(struct xpc_channel *ch)
{
s32 refs = atomic_dec_return(&ch->references);
DBUG_ON(refs < 0);
if (refs == 0)
xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]);
}
#define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \
xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs)
/*
* These two inlines are used to keep us from tearing down a partition's
* setup infrastructure while a thread may be referencing it.
*/
static inline void
xpc_part_deref(struct xpc_partition *part)
{
s32 refs = atomic_dec_return(&part->references);
DBUG_ON(refs < 0);
if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN)
wake_up(&part->teardown_wq);
}
static inline int
xpc_part_ref(struct xpc_partition *part)
{
int setup;
atomic_inc(&part->references);
setup = (part->setup_state == XPC_P_SETUP);
if (!setup)
xpc_part_deref(part);
return setup;
}
/*
* The following macro is to be used for the setting of the reason and
* reason_line fields in both the struct xpc_channel and struct xpc_partition
* structures.
*/
#define XPC_SET_REASON(_p, _reason, _line) \
{ \
(_p)->reason = _reason; \
(_p)->reason_line = _line; \
}
/*
* This next set of inlines are used to keep track of when a partition is
* potentially engaged in accessing memory belonging to another partition.
*/
static inline void
xpc_mark_partition_engaged(struct xpc_partition *part)
{
unsigned long irq_flags;
AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa +
(XPC_ENGAGED_PARTITIONS_AMO *
sizeof(AMO_t)));
local_irq_save(irq_flags);
/* set bit corresponding to our partid in remote partition's AMO */
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
(1UL << sn_partition_id));
/*
* We must always use the nofault function regardless of whether we
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
* didn't, we'd never know that the other partition is down and would
* keep sending IPIs and AMOs to it until the heartbeat times out.
*/
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
variable),
xp_nofault_PIOR_target));
local_irq_restore(irq_flags);
}
static inline void
xpc_mark_partition_disengaged(struct xpc_partition *part)
{
unsigned long irq_flags;
AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa +
(XPC_ENGAGED_PARTITIONS_AMO *
sizeof(AMO_t)));
local_irq_save(irq_flags);
/* clear bit corresponding to our partid in remote partition's AMO */
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
~(1UL << sn_partition_id));
/*
* We must always use the nofault function regardless of whether we
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
* didn't, we'd never know that the other partition is down and would
* keep sending IPIs and AMOs to it until the heartbeat times out.
*/
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
variable),
xp_nofault_PIOR_target));
local_irq_restore(irq_flags);
}
static inline void
xpc_request_partition_disengage(struct xpc_partition *part)
{
unsigned long irq_flags;
AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa +
(XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t)));
local_irq_save(irq_flags);
/* set bit corresponding to our partid in remote partition's AMO */
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
(1UL << sn_partition_id));
/*
* We must always use the nofault function regardless of whether we
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
* didn't, we'd never know that the other partition is down and would
* keep sending IPIs and AMOs to it until the heartbeat times out.
*/
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
variable),
xp_nofault_PIOR_target));
local_irq_restore(irq_flags);
}
static inline void
xpc_cancel_partition_disengage_request(struct xpc_partition *part)
{
unsigned long irq_flags;
AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa +
(XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t)));
local_irq_save(irq_flags);
/* clear bit corresponding to our partid in remote partition's AMO */
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
~(1UL << sn_partition_id));
/*
* We must always use the nofault function regardless of whether we
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
* didn't, we'd never know that the other partition is down and would
* keep sending IPIs and AMOs to it until the heartbeat times out.
*/
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
variable),
xp_nofault_PIOR_target));
local_irq_restore(irq_flags);
}
static inline u64
xpc_partition_engaged(u64 partid_mask)
{
AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
/* return our partition's AMO variable ANDed with partid_mask */
return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
partid_mask);
}
static inline u64
xpc_partition_disengage_requested(u64 partid_mask)
{
AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO;
/* return our partition's AMO variable ANDed with partid_mask */
return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
partid_mask);
}
static inline void
xpc_clear_partition_engaged(u64 partid_mask)
{
AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
/* clear bit(s) based on partid_mask in our partition's AMO */
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
~partid_mask);
}
static inline void
xpc_clear_partition_disengage_request(u64 partid_mask)
{
AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO;
/* clear bit(s) based on partid_mask in our partition's AMO */
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
~partid_mask);
}
/*
* The following set of macros and inlines are used for the sending and
* receiving of IPIs (also known as IRQs). There are two flavors of IPIs,
* one that is associated with partition activity (SGI_XPC_ACTIVATE) and
* the other that is associated with channel activity (SGI_XPC_NOTIFY).
*/
static inline u64
xpc_IPI_receive(AMO_t *amo)
{
return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
}
static inline enum xpc_retval
xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector)
{
int ret = 0;
unsigned long irq_flags;
local_irq_save(irq_flags);
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
/*
* We must always use the nofault function regardless of whether we
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
* didn't, we'd never know that the other partition is down and would
* keep sending IPIs and AMOs to it until the heartbeat times out.
*/
ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
xp_nofault_PIOR_target));
local_irq_restore(irq_flags);
return ((ret == 0) ? xpcSuccess : xpcPioReadError);
}
/*
* IPIs associated with SGI_XPC_ACTIVATE IRQ.
*/
/*
* Flag the appropriate AMO variable and send an IPI to the specified node.
*/
static inline void
xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid,
int to_phys_cpuid)
{
int w_index = XPC_NASID_W_INDEX(from_nasid);
int b_index = XPC_NASID_B_INDEX(from_nasid);
AMO_t *amos = (AMO_t *)__va(amos_page_pa +
(XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t)));
(void)xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid,
to_phys_cpuid, SGI_XPC_ACTIVATE);
}
static inline void
xpc_IPI_send_activate(struct xpc_vars *vars)
{
xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0),
vars->act_nasid, vars->act_phys_cpuid);
}
static inline void
xpc_IPI_send_activated(struct xpc_partition *part)
{
xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
part->remote_act_nasid,
part->remote_act_phys_cpuid);
}
static inline void
xpc_IPI_send_reactivate(struct xpc_partition *part)
{
xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid,
xpc_vars->act_nasid, xpc_vars->act_phys_cpuid);
}
static inline void
xpc_IPI_send_disengage(struct xpc_partition *part)
{
xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
part->remote_act_nasid,
part->remote_act_phys_cpuid);
}
/*
* IPIs associated with SGI_XPC_NOTIFY IRQ.
*/
/*
* Send an IPI to the remote partition that is associated with the
* specified channel.
*/
#define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \
xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f)
static inline void
xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string,
unsigned long *irq_flags)
{
struct xpc_partition *part = &xpc_partitions[ch->partid];
enum xpc_retval ret;
if (likely(part->act_state != XPC_P_DEACTIVATING)) {
ret = xpc_IPI_send(part->remote_IPI_amo_va,
(u64)ipi_flag << (ch->number * 8),
part->remote_IPI_nasid,
part->remote_IPI_phys_cpuid, SGI_XPC_NOTIFY);
dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
ipi_flag_string, ch->partid, ch->number, ret);
if (unlikely(ret != xpcSuccess)) {
if (irq_flags != NULL)
spin_unlock_irqrestore(&ch->lock, *irq_flags);
XPC_DEACTIVATE_PARTITION(part, ret);
if (irq_flags != NULL)
spin_lock_irqsave(&ch->lock, *irq_flags);
}
}
}
/*
* Make it look like the remote partition, which is associated with the
* specified channel, sent us an IPI. This faked IPI will be handled
* by xpc_dropped_IPI_check().
*/
#define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \
xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f)
static inline void
xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag,
char *ipi_flag_string)
{
struct xpc_partition *part = &xpc_partitions[ch->partid];
FETCHOP_STORE_OP(TO_AMO((u64)&part->local_IPI_amo_va->variable),
FETCHOP_OR, ((u64)ipi_flag << (ch->number * 8)));
dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
ipi_flag_string, ch->partid, ch->number);
}
/*
* The sending and receiving of IPIs includes the setting of an AMO variable
* to indicate the reason the IPI was sent. The 64-bit variable is divided
* up into eight bytes, ordered from right to left. Byte zero pertains to
* channel 0, byte one to channel 1, and so on. Each byte is described by
* the following IPI flags.
*/
#define XPC_IPI_CLOSEREQUEST 0x01
#define XPC_IPI_CLOSEREPLY 0x02
#define XPC_IPI_OPENREQUEST 0x04
#define XPC_IPI_OPENREPLY 0x08
#define XPC_IPI_MSGREQUEST 0x10
/* given an AMO variable and a channel#, get its associated IPI flags */
#define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff))
#define XPC_SET_IPI_FLAGS(_amo, _c, _f) (_amo) |= ((u64) (_f) << ((_c) * 8))
#define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0fUL)
#define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010UL)
static inline void
xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags)
{
struct xpc_openclose_args *args = ch->local_openclose_args;
args->reason = ch->reason;
XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags);
}
static inline void
xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags)
{
XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags);
}
static inline void
xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags)
{
struct xpc_openclose_args *args = ch->local_openclose_args;
args->msg_size = ch->msg_size;
args->local_nentries = ch->local_nentries;
XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags);
}
static inline void
xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags)
{
struct xpc_openclose_args *args = ch->local_openclose_args;
args->remote_nentries = ch->remote_nentries;
args->local_nentries = ch->local_nentries;
args->local_msgqueue_pa = __pa(ch->local_msgqueue);
XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags);
}
static inline void
xpc_IPI_send_msgrequest(struct xpc_channel *ch)
{
XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL);
}
static inline void
xpc_IPI_send_local_msgrequest(struct xpc_channel *ch)
{
XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST);
}
/*
* Memory for XPC's AMO variables is allocated by the MSPEC driver. These
* pages are located in the lowest granule. The lowest granule uses 4k pages
* for cached references and an alternate TLB handler to never provide a
* cacheable mapping for the entire region. This will prevent speculative
* reading of cached copies of our lines from being issued which will cause
* a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
* AMO variables (based on XP_MAX_PARTITIONS) for message notification and an
* additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition
* activation and 2 AMO variables for partition deactivation.
*/
static inline AMO_t *
xpc_IPI_init(int index)
{
AMO_t *amo = xpc_vars->amos_page + index;
(void)xpc_IPI_receive(amo); /* clear AMO variable */
return amo;
}
static inline enum xpc_retval
xpc_map_bte_errors(bte_result_t error)
{
if (error == BTE_SUCCESS)
return xpcSuccess;
if (is_shub2()) {
if (BTE_VALID_SH2_ERROR(error))
return xpcBteSh2Start + error;
return xpcBteUnmappedError;
}
switch (error) {
case BTE_SUCCESS:
return xpcSuccess;
case BTEFAIL_DIR:
return xpcBteDirectoryError;
case BTEFAIL_POISON:
return xpcBtePoisonError;
case BTEFAIL_WERR:
return xpcBteWriteError;
case BTEFAIL_ACCESS:
return xpcBteAccessError;
case BTEFAIL_PWERR:
return xpcBtePWriteError;
case BTEFAIL_PRERR:
return xpcBtePReadError;
case BTEFAIL_TOUT:
return xpcBteTimeOutError;
case BTEFAIL_XTERR:
return xpcBteXtalkError;
case BTEFAIL_NOTAVAIL:
return xpcBteNotAvailable;
default:
return xpcBteUnmappedError;
}
}
/*
* Check to see if there is any channel activity to/from the specified
* partition.
*/
static inline void
xpc_check_for_channel_activity(struct xpc_partition *part)
{
u64 IPI_amo;
unsigned long irq_flags;
IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va);
if (IPI_amo == 0)
return;
spin_lock_irqsave(&part->IPI_lock, irq_flags);
part->local_IPI_amo |= IPI_amo;
spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n",
XPC_PARTID(part), IPI_amo);
xpc_wakeup_channel_mgr(part);
}
#endif /* _DRIVERS_MISC_SGIXP_XPC_H */