linux_old1/init/main.c

873 lines
21 KiB
C
Raw Normal View History

/*
* linux/init/main.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* GK 2/5/95 - Changed to support mounting root fs via NFS
* Added initrd & change_root: Werner Almesberger & Hans Lermen, Feb '96
* Moan early if gcc is old, avoiding bogus kernels - Paul Gortmaker, May '96
* Simplified starting of init: Michael A. Griffith <grif@acm.org>
*/
#include <linux/types.h>
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/initrd.h>
#include <linux/hdreg.h>
#include <linux/bootmem.h>
#include <linux/tty.h>
#include <linux/gfp.h>
#include <linux/percpu.h>
#include <linux/kmod.h>
#include <linux/kernel_stat.h>
#include <linux/start_kernel.h>
#include <linux/security.h>
#include <linux/workqueue.h>
#include <linux/profile.h>
#include <linux/rcupdate.h>
#include <linux/moduleparam.h>
#include <linux/kallsyms.h>
#include <linux/writeback.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/efi.h>
#include <linux/tick.h>
#include <linux/interrupt.h>
#include <linux/taskstats_kern.h>
#include <linux/delayacct.h>
#include <linux/unistd.h>
#include <linux/rmap.h>
#include <linux/mempolicy.h>
#include <linux/key.h>
#include <linux/unwind.h>
#include <linux/buffer_head.h>
#include <linux/debug_locks.h>
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
#include <linux/lockdep.h>
#include <linux/pid_namespace.h>
#include <linux/device.h>
kthread: don't depend on work queues Currently there is a circular reference between work queue initialization and kthread initialization. This prevents the kthread infrastructure from initializing until after work queues have been initialized. We want the properties of tasks created with kthread_create to be as close as possible to the init_task and to not be contaminated by user processes. The later we start our kthreadd that creates these tasks the harder it is to avoid contamination from user processes and the more of a mess we have to clean up because the defaults have changed on us. So this patch modifies the kthread support to not use work queues but to instead use a simple list of structures, and to have kthreadd start from init_task immediately after our kernel thread that execs /sbin/init. By being a true child of init_task we only have to change those process settings that we want to have different from init_task, such as our process name, the cpus that are allowed, blocking all signals and setting SIGCHLD to SIG_IGN so that all of our children are reaped automatically. By being a true child of init_task we also naturally get our ppid set to 0 and do not wind up as a child of PID == 1. Ensuring that tasks generated by kthread_create will not slow down the functioning of the wait family of functions. [akpm@linux-foundation.org: use interruptible sleeps] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:34:32 +08:00
#include <linux/kthread.h>
#include <asm/io.h>
#include <asm/bugs.h>
#include <asm/setup.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/smp.h>
#endif
/*
* This is one of the first .c files built. Error out early if we have compiler
* trouble.
*
* Versions of gcc older than that listed below may actually compile and link
* okay, but the end product can have subtle run time bugs. To avoid associated
* bogus bug reports, we flatly refuse to compile with a gcc that is known to be
* too old from the very beginning.
*/
#if (__GNUC__ < 3) || (__GNUC__ == 3 && __GNUC_MINOR__ < 2)
#error Sorry, your GCC is too old. It builds incorrect kernels.
#endif
#if __GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 0
#warning gcc-4.1.0 is known to miscompile the kernel. A different compiler version is recommended.
#endif
static int kernel_init(void *);
extern void init_IRQ(void);
extern void fork_init(unsigned long);
extern void mca_init(void);
extern void sbus_init(void);
extern void signals_init(void);
extern void pidhash_init(void);
extern void pidmap_init(void);
extern void prio_tree_init(void);
extern void radix_tree_init(void);
extern void free_initmem(void);
#ifdef CONFIG_ACPI
extern void acpi_early_init(void);
#else
static inline void acpi_early_init(void) { }
#endif
#ifndef CONFIG_DEBUG_RODATA
static inline void mark_rodata_ro(void) { }
#endif
#ifdef CONFIG_TC
extern void tc_init(void);
#endif
enum system_states system_state;
EXPORT_SYMBOL(system_state);
/*
* Boot command-line arguments
*/
#define MAX_INIT_ARGS CONFIG_INIT_ENV_ARG_LIMIT
#define MAX_INIT_ENVS CONFIG_INIT_ENV_ARG_LIMIT
extern void time_init(void);
/* Default late time init is NULL. archs can override this later. */
void (*late_time_init)(void);
extern void softirq_init(void);
[PATCH] Dynamic kernel command-line: common Current implementation stores a static command-line buffer allocated to COMMAND_LINE_SIZE size. Most architectures stores two copies of this buffer, one for future reference and one for parameter parsing. Current kernel command-line size for most architecture is much too small for module parameters, video settings, initramfs paramters and much more. The problem is that setting COMMAND_LINE_SIZE to a grater value, allocates static buffers. In order to allow a greater command-line size, these buffers should be dynamically allocated or marked as init disposable buffers, so unused memory can be released. This patch renames the static saved_command_line variable into boot_command_line adding __initdata attribute, so that it can be disposed after initialization. This rename is required so applications that use saved_command_line will not be affected by this change. It reintroduces saved_command_line as dynamically allocated buffer to match the data in boot_command_line. It also mark secondary command-line buffer as __initdata, and copies it to dynamically allocated static_command_line buffer components may hold reference to it after initialization. This patch is for linux-2.6.20-rc4-mm1 and is divided to target each architecture. I could not check this in any architecture so please forgive me if I got it wrong. The per-architecture modification is very simple, use boot_command_line in place of saved_command_line. The common code is the change into dynamic command-line. This patch: 1. Rename saved_command_line into boot_command_line, mark as init disposable. 2. Add dynamic allocated saved_command_line. 3. Add dynamic allocated static_command_line. 4. During startup copy: boot_command_line into saved_command_line. arch command_line into static_command_line. 5. Parse static_command_line and not arch command_line, so arch command_line may be freed. Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 16:53:52 +08:00
/* Untouched command line saved by arch-specific code. */
char __initdata boot_command_line[COMMAND_LINE_SIZE];
/* Untouched saved command line (eg. for /proc) */
char *saved_command_line;
/* Command line for parameter parsing */
static char *static_command_line;
static char *execute_command;
static char *ramdisk_execute_command;
#ifdef CONFIG_SMP
/* Setup configured maximum number of CPUs to activate */
static unsigned int __initdata max_cpus = NR_CPUS;
/*
* Setup routine for controlling SMP activation
*
* Command-line option of "nosmp" or "maxcpus=0" will disable SMP
* activation entirely (the MPS table probe still happens, though).
*
* Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
* greater than 0, limits the maximum number of CPUs activated in
* SMP mode to <NUM>.
*/
#ifndef CONFIG_X86_IO_APIC
static inline void disable_ioapic_setup(void) {};
#endif
static int __init nosmp(char *str)
{
max_cpus = 0;
disable_ioapic_setup();
return 0;
}
early_param("nosmp", nosmp);
static int __init maxcpus(char *str)
{
get_option(&str, &max_cpus);
if (max_cpus == 0)
disable_ioapic_setup();
return 0;
}
early_param("maxcpus=", maxcpus);
#else
#define max_cpus NR_CPUS
#endif
/*
* If set, this is an indication to the drivers that reset the underlying
* device before going ahead with the initialization otherwise driver might
* rely on the BIOS and skip the reset operation.
*
* This is useful if kernel is booting in an unreliable environment.
* For ex. kdump situaiton where previous kernel has crashed, BIOS has been
* skipped and devices will be in unknown state.
*/
unsigned int reset_devices;
EXPORT_SYMBOL(reset_devices);
static int __init set_reset_devices(char *str)
{
reset_devices = 1;
return 1;
}
__setup("reset_devices", set_reset_devices);
static char * argv_init[MAX_INIT_ARGS+2] = { "init", NULL, };
char * envp_init[MAX_INIT_ENVS+2] = { "HOME=/", "TERM=linux", NULL, };
static const char *panic_later, *panic_param;
extern struct obs_kernel_param __setup_start[], __setup_end[];
static int __init obsolete_checksetup(char *line)
{
struct obs_kernel_param *p;
int had_early_param = 0;
p = __setup_start;
do {
int n = strlen(p->str);
if (!strncmp(line, p->str, n)) {
if (p->early) {
/* Already done in parse_early_param?
* (Needs exact match on param part).
* Keep iterating, as we can have early
* params and __setups of same names 8( */
if (line[n] == '\0' || line[n] == '=')
had_early_param = 1;
} else if (!p->setup_func) {
printk(KERN_WARNING "Parameter %s is obsolete,"
" ignored\n", p->str);
return 1;
} else if (p->setup_func(line + n))
return 1;
}
p++;
} while (p < __setup_end);
return had_early_param;
}
/*
* This should be approx 2 Bo*oMips to start (note initial shift), and will
* still work even if initially too large, it will just take slightly longer
*/
unsigned long loops_per_jiffy = (1<<12);
EXPORT_SYMBOL(loops_per_jiffy);
static int __init debug_kernel(char *str)
{
if (*str)
return 0;
console_loglevel = 10;
return 1;
}
static int __init quiet_kernel(char *str)
{
if (*str)
return 0;
console_loglevel = 4;
return 1;
}
__setup("debug", debug_kernel);
__setup("quiet", quiet_kernel);
static int __init loglevel(char *str)
{
get_option(&str, &console_loglevel);
return 1;
}
__setup("loglevel=", loglevel);
/*
* Unknown boot options get handed to init, unless they look like
* failed parameters
*/
static int __init unknown_bootoption(char *param, char *val)
{
/* Change NUL term back to "=", to make "param" the whole string. */
if (val) {
/* param=val or param="val"? */
if (val == param+strlen(param)+1)
val[-1] = '=';
else if (val == param+strlen(param)+2) {
val[-2] = '=';
memmove(val-1, val, strlen(val)+1);
val--;
} else
BUG();
}
/* Handle obsolete-style parameters */
if (obsolete_checksetup(param))
return 0;
/*
* Preemptive maintenance for "why didn't my mispelled command
* line work?"
*/
if (strchr(param, '.') && (!val || strchr(param, '.') < val)) {
printk(KERN_ERR "Unknown boot option `%s': ignoring\n", param);
return 0;
}
if (panic_later)
return 0;
if (val) {
/* Environment option */
unsigned int i;
for (i = 0; envp_init[i]; i++) {
if (i == MAX_INIT_ENVS) {
panic_later = "Too many boot env vars at `%s'";
panic_param = param;
}
if (!strncmp(param, envp_init[i], val - param))
break;
}
envp_init[i] = param;
} else {
/* Command line option */
unsigned int i;
for (i = 0; argv_init[i]; i++) {
if (i == MAX_INIT_ARGS) {
panic_later = "Too many boot init vars at `%s'";
panic_param = param;
}
}
argv_init[i] = param;
}
return 0;
}
static int __init init_setup(char *str)
{
unsigned int i;
execute_command = str;
/*
* In case LILO is going to boot us with default command line,
* it prepends "auto" before the whole cmdline which makes
* the shell think it should execute a script with such name.
* So we ignore all arguments entered _before_ init=... [MJ]
*/
for (i = 1; i < MAX_INIT_ARGS; i++)
argv_init[i] = NULL;
return 1;
}
__setup("init=", init_setup);
static int __init rdinit_setup(char *str)
{
unsigned int i;
ramdisk_execute_command = str;
/* See "auto" comment in init_setup */
for (i = 1; i < MAX_INIT_ARGS; i++)
argv_init[i] = NULL;
return 1;
}
__setup("rdinit=", rdinit_setup);
#ifndef CONFIG_SMP
#ifdef CONFIG_X86_LOCAL_APIC
static void __init smp_init(void)
{
APIC_init_uniprocessor();
}
#else
#define smp_init() do { } while (0)
#endif
static inline void setup_per_cpu_areas(void) { }
static inline void smp_prepare_cpus(unsigned int maxcpus) { }
#else
#ifdef __GENERIC_PER_CPU
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);
static void __init setup_per_cpu_areas(void)
{
unsigned long size, i;
char *ptr;
unsigned long nr_possible_cpus = num_possible_cpus();
/* Copy section for each CPU (we discard the original) */
size = ALIGN(PERCPU_ENOUGH_ROOM, PAGE_SIZE);
ptr = alloc_bootmem_pages(size * nr_possible_cpus);
for_each_possible_cpu(i) {
__per_cpu_offset[i] = ptr - __per_cpu_start;
memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
ptr += size;
}
}
#endif /* !__GENERIC_PER_CPU */
/* Called by boot processor to activate the rest. */
static void __init smp_init(void)
{
unsigned int cpu;
#ifndef CONFIG_HOTPLUG_CPU
cpu_possible_map = cpu_present_map;
#endif
/* FIXME: This should be done in userspace --RR */
for_each_present_cpu(cpu) {
if (num_online_cpus() >= max_cpus)
break;
if (!cpu_online(cpu))
cpu_up(cpu);
}
/* Any cleanup work */
printk(KERN_INFO "Brought up %ld CPUs\n", (long)num_online_cpus());
smp_cpus_done(max_cpus);
}
#endif
[PATCH] Dynamic kernel command-line: common Current implementation stores a static command-line buffer allocated to COMMAND_LINE_SIZE size. Most architectures stores two copies of this buffer, one for future reference and one for parameter parsing. Current kernel command-line size for most architecture is much too small for module parameters, video settings, initramfs paramters and much more. The problem is that setting COMMAND_LINE_SIZE to a grater value, allocates static buffers. In order to allow a greater command-line size, these buffers should be dynamically allocated or marked as init disposable buffers, so unused memory can be released. This patch renames the static saved_command_line variable into boot_command_line adding __initdata attribute, so that it can be disposed after initialization. This rename is required so applications that use saved_command_line will not be affected by this change. It reintroduces saved_command_line as dynamically allocated buffer to match the data in boot_command_line. It also mark secondary command-line buffer as __initdata, and copies it to dynamically allocated static_command_line buffer components may hold reference to it after initialization. This patch is for linux-2.6.20-rc4-mm1 and is divided to target each architecture. I could not check this in any architecture so please forgive me if I got it wrong. The per-architecture modification is very simple, use boot_command_line in place of saved_command_line. The common code is the change into dynamic command-line. This patch: 1. Rename saved_command_line into boot_command_line, mark as init disposable. 2. Add dynamic allocated saved_command_line. 3. Add dynamic allocated static_command_line. 4. During startup copy: boot_command_line into saved_command_line. arch command_line into static_command_line. 5. Parse static_command_line and not arch command_line, so arch command_line may be freed. Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 16:53:52 +08:00
/*
* We need to store the untouched command line for future reference.
* We also need to store the touched command line since the parameter
* parsing is performed in place, and we should allow a component to
* store reference of name/value for future reference.
*/
static void __init setup_command_line(char *command_line)
{
saved_command_line = alloc_bootmem(strlen (boot_command_line)+1);
static_command_line = alloc_bootmem(strlen (command_line)+1);
strcpy (saved_command_line, boot_command_line);
strcpy (static_command_line, command_line);
}
/*
* We need to finalize in a non-__init function or else race conditions
* between the root thread and the init thread may cause start_kernel to
* be reaped by free_initmem before the root thread has proceeded to
* cpu_idle.
*
* gcc-3.4 accidentally inlines this function, so use noinline.
*/
static void noinline __init_refok rest_init(void)
__releases(kernel_lock)
{
kthread: don't depend on work queues Currently there is a circular reference between work queue initialization and kthread initialization. This prevents the kthread infrastructure from initializing until after work queues have been initialized. We want the properties of tasks created with kthread_create to be as close as possible to the init_task and to not be contaminated by user processes. The later we start our kthreadd that creates these tasks the harder it is to avoid contamination from user processes and the more of a mess we have to clean up because the defaults have changed on us. So this patch modifies the kthread support to not use work queues but to instead use a simple list of structures, and to have kthreadd start from init_task immediately after our kernel thread that execs /sbin/init. By being a true child of init_task we only have to change those process settings that we want to have different from init_task, such as our process name, the cpus that are allowed, blocking all signals and setting SIGCHLD to SIG_IGN so that all of our children are reaped automatically. By being a true child of init_task we also naturally get our ppid set to 0 and do not wind up as a child of PID == 1. Ensuring that tasks generated by kthread_create will not slow down the functioning of the wait family of functions. [akpm@linux-foundation.org: use interruptible sleeps] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:34:32 +08:00
int pid;
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
numa_default_policy();
kthread: don't depend on work queues Currently there is a circular reference between work queue initialization and kthread initialization. This prevents the kthread infrastructure from initializing until after work queues have been initialized. We want the properties of tasks created with kthread_create to be as close as possible to the init_task and to not be contaminated by user processes. The later we start our kthreadd that creates these tasks the harder it is to avoid contamination from user processes and the more of a mess we have to clean up because the defaults have changed on us. So this patch modifies the kthread support to not use work queues but to instead use a simple list of structures, and to have kthreadd start from init_task immediately after our kernel thread that execs /sbin/init. By being a true child of init_task we only have to change those process settings that we want to have different from init_task, such as our process name, the cpus that are allowed, blocking all signals and setting SIGCHLD to SIG_IGN so that all of our children are reaped automatically. By being a true child of init_task we also naturally get our ppid set to 0 and do not wind up as a child of PID == 1. Ensuring that tasks generated by kthread_create will not slow down the functioning of the wait family of functions. [akpm@linux-foundation.org: use interruptible sleeps] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:34:32 +08:00
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
kthreadd_task = find_task_by_pid(pid);
unlock_kernel();
/*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
preempt_enable_no_resched();
schedule();
preempt_disable();
/* Call into cpu_idle with preempt disabled */
cpu_idle();
}
/* Check for early params. */
static int __init do_early_param(char *param, char *val)
{
struct obs_kernel_param *p;
for (p = __setup_start; p < __setup_end; p++) {
if ((p->early && strcmp(param, p->str) == 0) ||
(strcmp(param, "console") == 0 &&
strcmp(p->str, "earlycon") == 0)
) {
if (p->setup_func(val) != 0)
printk(KERN_WARNING
"Malformed early option '%s'\n", param);
}
}
/* We accept everything at this stage. */
return 0;
}
/* Arch code calls this early on, or if not, just before other parsing. */
void __init parse_early_param(void)
{
static __initdata int done = 0;
static __initdata char tmp_cmdline[COMMAND_LINE_SIZE];
if (done)
return;
/* All fall through to do_early_param. */
[PATCH] Dynamic kernel command-line: common Current implementation stores a static command-line buffer allocated to COMMAND_LINE_SIZE size. Most architectures stores two copies of this buffer, one for future reference and one for parameter parsing. Current kernel command-line size for most architecture is much too small for module parameters, video settings, initramfs paramters and much more. The problem is that setting COMMAND_LINE_SIZE to a grater value, allocates static buffers. In order to allow a greater command-line size, these buffers should be dynamically allocated or marked as init disposable buffers, so unused memory can be released. This patch renames the static saved_command_line variable into boot_command_line adding __initdata attribute, so that it can be disposed after initialization. This rename is required so applications that use saved_command_line will not be affected by this change. It reintroduces saved_command_line as dynamically allocated buffer to match the data in boot_command_line. It also mark secondary command-line buffer as __initdata, and copies it to dynamically allocated static_command_line buffer components may hold reference to it after initialization. This patch is for linux-2.6.20-rc4-mm1 and is divided to target each architecture. I could not check this in any architecture so please forgive me if I got it wrong. The per-architecture modification is very simple, use boot_command_line in place of saved_command_line. The common code is the change into dynamic command-line. This patch: 1. Rename saved_command_line into boot_command_line, mark as init disposable. 2. Add dynamic allocated saved_command_line. 3. Add dynamic allocated static_command_line. 4. During startup copy: boot_command_line into saved_command_line. arch command_line into static_command_line. 5. Parse static_command_line and not arch command_line, so arch command_line may be freed. Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 16:53:52 +08:00
strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE);
parse_args("early options", tmp_cmdline, NULL, 0, do_early_param);
done = 1;
}
/*
* Activate the first processor.
*/
static void __init boot_cpu_init(void)
{
int cpu = smp_processor_id();
/* Mark the boot cpu "present", "online" etc for SMP and UP case */
cpu_set(cpu, cpu_online_map);
cpu_set(cpu, cpu_present_map);
cpu_set(cpu, cpu_possible_map);
}
void __init __attribute__((weak)) smp_setup_processor_id(void)
{
}
asmlinkage void __init start_kernel(void)
{
char * command_line;
extern struct kernel_param __start___param[], __stop___param[];
smp_setup_processor_id();
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
/*
* Need to run as early as possible, to initialize the
* lockdep hash:
*/
unwind_init();
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
lockdep_init();
local_irq_disable();
early_boot_irqs_off();
early_init_irq_lock_class();
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
/*
* Interrupts are still disabled. Do necessary setups, then
* enable them
*/
lock_kernel();
tick_init();
boot_cpu_init();
page_address_init();
printk(KERN_NOTICE);
printk(linux_banner);
setup_arch(&command_line);
[PATCH] Dynamic kernel command-line: common Current implementation stores a static command-line buffer allocated to COMMAND_LINE_SIZE size. Most architectures stores two copies of this buffer, one for future reference and one for parameter parsing. Current kernel command-line size for most architecture is much too small for module parameters, video settings, initramfs paramters and much more. The problem is that setting COMMAND_LINE_SIZE to a grater value, allocates static buffers. In order to allow a greater command-line size, these buffers should be dynamically allocated or marked as init disposable buffers, so unused memory can be released. This patch renames the static saved_command_line variable into boot_command_line adding __initdata attribute, so that it can be disposed after initialization. This rename is required so applications that use saved_command_line will not be affected by this change. It reintroduces saved_command_line as dynamically allocated buffer to match the data in boot_command_line. It also mark secondary command-line buffer as __initdata, and copies it to dynamically allocated static_command_line buffer components may hold reference to it after initialization. This patch is for linux-2.6.20-rc4-mm1 and is divided to target each architecture. I could not check this in any architecture so please forgive me if I got it wrong. The per-architecture modification is very simple, use boot_command_line in place of saved_command_line. The common code is the change into dynamic command-line. This patch: 1. Rename saved_command_line into boot_command_line, mark as init disposable. 2. Add dynamic allocated saved_command_line. 3. Add dynamic allocated static_command_line. 4. During startup copy: boot_command_line into saved_command_line. arch command_line into static_command_line. 5. Parse static_command_line and not arch command_line, so arch command_line may be freed. Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 16:53:52 +08:00
setup_command_line(command_line);
unwind_setup();
#ifndef CONFIG_HOTPLUG_CPU
if (max_cpus < 2)
cpu_possible_map = cpu_online_map;
#endif
setup_per_cpu_areas();
smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */
/*
* Set up the scheduler prior starting any interrupts (such as the
* timer interrupt). Full topology setup happens at smp_init()
* time - but meanwhile we still have a functioning scheduler.
*/
sched_init();
/*
* Disable preemption - early bootup scheduling is extremely
* fragile until we cpu_idle() for the first time.
*/
preempt_disable();
build_all_zonelists();
page_alloc_init();
[PATCH] Dynamic kernel command-line: common Current implementation stores a static command-line buffer allocated to COMMAND_LINE_SIZE size. Most architectures stores two copies of this buffer, one for future reference and one for parameter parsing. Current kernel command-line size for most architecture is much too small for module parameters, video settings, initramfs paramters and much more. The problem is that setting COMMAND_LINE_SIZE to a grater value, allocates static buffers. In order to allow a greater command-line size, these buffers should be dynamically allocated or marked as init disposable buffers, so unused memory can be released. This patch renames the static saved_command_line variable into boot_command_line adding __initdata attribute, so that it can be disposed after initialization. This rename is required so applications that use saved_command_line will not be affected by this change. It reintroduces saved_command_line as dynamically allocated buffer to match the data in boot_command_line. It also mark secondary command-line buffer as __initdata, and copies it to dynamically allocated static_command_line buffer components may hold reference to it after initialization. This patch is for linux-2.6.20-rc4-mm1 and is divided to target each architecture. I could not check this in any architecture so please forgive me if I got it wrong. The per-architecture modification is very simple, use boot_command_line in place of saved_command_line. The common code is the change into dynamic command-line. This patch: 1. Rename saved_command_line into boot_command_line, mark as init disposable. 2. Add dynamic allocated saved_command_line. 3. Add dynamic allocated static_command_line. 4. During startup copy: boot_command_line into saved_command_line. arch command_line into static_command_line. 5. Parse static_command_line and not arch command_line, so arch command_line may be freed. Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 16:53:52 +08:00
printk(KERN_NOTICE "Kernel command line: %s\n", boot_command_line);
parse_early_param();
[PATCH] Dynamic kernel command-line: common Current implementation stores a static command-line buffer allocated to COMMAND_LINE_SIZE size. Most architectures stores two copies of this buffer, one for future reference and one for parameter parsing. Current kernel command-line size for most architecture is much too small for module parameters, video settings, initramfs paramters and much more. The problem is that setting COMMAND_LINE_SIZE to a grater value, allocates static buffers. In order to allow a greater command-line size, these buffers should be dynamically allocated or marked as init disposable buffers, so unused memory can be released. This patch renames the static saved_command_line variable into boot_command_line adding __initdata attribute, so that it can be disposed after initialization. This rename is required so applications that use saved_command_line will not be affected by this change. It reintroduces saved_command_line as dynamically allocated buffer to match the data in boot_command_line. It also mark secondary command-line buffer as __initdata, and copies it to dynamically allocated static_command_line buffer components may hold reference to it after initialization. This patch is for linux-2.6.20-rc4-mm1 and is divided to target each architecture. I could not check this in any architecture so please forgive me if I got it wrong. The per-architecture modification is very simple, use boot_command_line in place of saved_command_line. The common code is the change into dynamic command-line. This patch: 1. Rename saved_command_line into boot_command_line, mark as init disposable. 2. Add dynamic allocated saved_command_line. 3. Add dynamic allocated static_command_line. 4. During startup copy: boot_command_line into saved_command_line. arch command_line into static_command_line. 5. Parse static_command_line and not arch command_line, so arch command_line may be freed. Signed-off-by: Alon Bar-Lev <alon.barlev@gmail.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 16:53:52 +08:00
parse_args("Booting kernel", static_command_line, __start___param,
__stop___param - __start___param,
&unknown_bootoption);
if (!irqs_disabled()) {
printk(KERN_WARNING "start_kernel(): bug: interrupts were "
"enabled *very* early, fixing it\n");
local_irq_disable();
}
sort_main_extable();
trap_init();
rcu_init();
init_IRQ();
pidhash_init();
init_timers();
hrtimers_init();
softirq_init();
timekeeping_init();
time_init();
profile_init();
if (!irqs_disabled())
printk("start_kernel(): bug: interrupts were enabled early\n");
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
early_boot_irqs_on();
local_irq_enable();
/*
* HACK ALERT! This is early. We're enabling the console before
* we've done PCI setups etc, and console_init() must be aware of
* this. But we do want output early, in case something goes wrong.
*/
console_init();
if (panic_later)
panic(panic_later, panic_param);
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 15:24:50 +08:00
lockdep_info();
/*
* Need to run this when irqs are enabled, because it wants
* to self-test [hard/soft]-irqs on/off lock inversion bugs
* too:
*/
locking_selftest();
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start && !initrd_below_start_ok &&
initrd_start < min_low_pfn << PAGE_SHIFT) {
printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - "
"disabling it.\n",initrd_start,min_low_pfn << PAGE_SHIFT);
initrd_start = 0;
}
#endif
vfs_caches_init_early();
cpuset_init_early();
mem_init();
kmem_cache_init();
[PATCH] node local per-cpu-pages This patch modifies the way pagesets in struct zone are managed. Each zone has a per-cpu array of pagesets. So any particular CPU has some memory in each zone structure which belongs to itself. Even if that CPU is not local to that zone. So the patch relocates the pagesets for each cpu to the node that is nearest to the cpu instead of allocating the pagesets in the (possibly remote) target zone. This means that the operations to manage pages on remote zone can be done with information available locally. We play a macro trick so that non-NUMA pmachines avoid the additional pointer chase on the page allocator fastpath. AIM7 benchmark on a 32 CPU SGI Altix w/o patches: Tasks jobs/min jti jobs/min/task real cpu 1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005 100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005 200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005 300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005 400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005 500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005 600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005 700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005 800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005 900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005 1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005 with slab API changes and pageset patch: Tasks jobs/min jti jobs/min/task real cpu 1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005 100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005 200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005 300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005 400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005 500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005 600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005 700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005 800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005 900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005 1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Shai Fultheim <Shai@Scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 08:14:47 +08:00
setup_per_cpu_pageset();
numa_policy_init();
if (late_time_init)
late_time_init();
calibrate_delay();
pidmap_init();
pgtable_cache_init();
prio_tree_init();
anon_vma_init();
#ifdef CONFIG_X86
if (efi_enabled)
efi_enter_virtual_mode();
#endif
fork_init(num_physpages);
proc_caches_init();
buffer_init();
unnamed_dev_init();
key_init();
security_init();
vfs_caches_init(num_physpages);
radix_tree_init();
signals_init();
/* rootfs populating might need page-writeback */
page_writeback_init();
#ifdef CONFIG_PROC_FS
proc_root_init();
#endif
cpuset_init();
taskstats_init_early();
delayacct_init();
check_bugs();
acpi_early_init(); /* before LAPIC and SMP init */
/* Do the rest non-__init'ed, we're now alive */
rest_init();
}
static int __initdata initcall_debug;
static int __init initcall_debug_setup(char *str)
{
initcall_debug = 1;
return 1;
}
__setup("initcall_debug", initcall_debug_setup);
extern initcall_t __initcall_start[], __initcall_end[];
static void __init do_initcalls(void)
{
initcall_t *call;
int count = preempt_count();
for (call = __initcall_start; call < __initcall_end; call++) {
ktime_t t0, t1, delta;
char *msg = NULL;
char msgbuf[40];
int result;
if (initcall_debug) {
printk("Calling initcall 0x%p", *call);
print_fn_descriptor_symbol(": %s()",
(unsigned long) *call);
printk("\n");
t0 = ktime_get();
}
result = (*call)();
if (initcall_debug) {
t1 = ktime_get();
delta = ktime_sub(t1, t0);
printk("initcall 0x%p", *call);
print_fn_descriptor_symbol(": %s()",
(unsigned long) *call);
printk(" returned %d.\n", result);
printk("initcall 0x%p ran for %Ld msecs: ",
*call, (unsigned long long)delta.tv64 >> 20);
print_fn_descriptor_symbol("%s()\n",
(unsigned long) *call);
}
if (result && result != -ENODEV && initcall_debug) {
sprintf(msgbuf, "error code %d", result);
msg = msgbuf;
}
if (preempt_count() != count) {
msg = "preemption imbalance";
preempt_count() = count;
}
if (irqs_disabled()) {
msg = "disabled interrupts";
local_irq_enable();
}
if (msg) {
printk(KERN_WARNING "initcall at 0x%p", *call);
print_fn_descriptor_symbol(": %s()",
(unsigned long) *call);
printk(": returned with %s\n", msg);
}
}
/* Make sure there is no pending stuff from the initcall sequence */
flush_scheduled_work();
}
/*
* Ok, the machine is now initialized. None of the devices
* have been touched yet, but the CPU subsystem is up and
* running, and memory and process management works.
*
* Now we can finally start doing some real work..
*/
static void __init do_basic_setup(void)
{
/* drivers will send hotplug events */
init_workqueues();
usermodehelper_init();
driver_init();
init_irq_proc();
do_initcalls();
}
static int __initdata nosoftlockup;
static int __init nosoftlockup_setup(char *str)
{
nosoftlockup = 1;
return 1;
}
__setup("nosoftlockup", nosoftlockup_setup);
static void __init do_pre_smp_initcalls(void)
{
extern int spawn_ksoftirqd(void);
#ifdef CONFIG_SMP
extern int migration_init(void);
migration_init();
#endif
spawn_ksoftirqd();
if (!nosoftlockup)
spawn_softlockup_task();
}
static void run_init_process(char *init_filename)
{
argv_init[0] = init_filename;
[PATCH] introduce kernel_execve The use of execve() in the kernel is dubious, since it relies on the __KERNEL_SYSCALLS__ mechanism that stores the result in a global errno variable. As a first step of getting rid of this, change all users to a global kernel_execve function that returns a proper error code. This function is a terrible hack, and a later patch removes it again after the kernel syscalls are gone. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Hirokazu Takata <takata.hirokazu@renesas.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-02 17:18:26 +08:00
kernel_execve(init_filename, argv_init, envp_init);
}
/* This is a non __init function. Force it to be noinline otherwise gcc
* makes it inline to init() and it becomes part of init.text section
*/
static int noinline init_post(void)
{
free_initmem();
unlock_kernel();
mark_rodata_ro();
system_state = SYSTEM_RUNNING;
numa_default_policy();
if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
printk(KERN_WARNING "Warning: unable to open an initial console.\n");
(void) sys_dup(0);
(void) sys_dup(0);
if (ramdisk_execute_command) {
run_init_process(ramdisk_execute_command);
printk(KERN_WARNING "Failed to execute %s\n",
ramdisk_execute_command);
}
/*
* We try each of these until one succeeds.
*
* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine.
*/
if (execute_command) {
run_init_process(execute_command);
printk(KERN_WARNING "Failed to execute %s. Attempting "
"defaults...\n", execute_command);
}
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");
panic("No init found. Try passing init= option to kernel.");
}
static int __init kernel_init(void * unused)
{
lock_kernel();
/*
* init can run on any cpu.
*/
set_cpus_allowed(current, CPU_MASK_ALL);
/*
* Tell the world that we're going to be the grim
* reaper of innocent orphaned children.
*
* We don't want people to have to make incorrect
* assumptions about where in the task array this
* can be found.
*/
init_pid_ns.child_reaper = current;
__set_special_pids(1, 1);
cad_pid = task_pid(current);
smp_prepare_cpus(max_cpus);
do_pre_smp_initcalls();
smp_init();
sched_init_smp();
cpuset_init_smp();
do_basic_setup();
/*
* check if there is an early userspace init. If yes, let it do all
* the work
*/
if (!ramdisk_execute_command)
ramdisk_execute_command = "/init";
if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
ramdisk_execute_command = NULL;
prepare_namespace();
}
/*
* Ok, we have completed the initial bootup, and
* we're essentially up and running. Get rid of the
* initmem segments and start the user-mode stuff..
*/
init_post();
return 0;
}