linux_old1/arch/arm/mach-omap2/mcbsp.c

123 lines
3.0 KiB
C
Raw Normal View History

/*
* linux/arch/arm/mach-omap2/mcbsp.c
*
* Copyright (C) 2008 Instituto Nokia de Tecnologia
* Contact: Eduardo Valentin <eduardo.valentin@indt.org.br>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Multichannel mode not supported.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/platform_device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/platform_data/asoc-ti-mcbsp.h>
#include <linux/pm_runtime.h>
ARM: OMAP: Move plat-omap/dma-omap.h to include/linux/omap-dma.h Based on earlier discussions[1] we attempted to find a suitable location for the omap DMA header in commit 2b6c4e73 (ARM: OMAP: DMA: Move plat/dma.h to plat-omap/dma-omap.h) until the conversion to dmaengine is complete. Unfortunately that was before I was able to try to test compile of the ARM multiplatform builds for omap2+, and the end result was not very good. So I'm creating yet another all over the place patch to cut the last dependency for building omap2+ for ARM multiplatform. After this, we have finally removed the driver dependencies to the arch/arm code, except for few drivers that are being worked on. The other option was to make the <plat-omap/dma-omap.h> path to work, but we'd have to add some new header directory to for multiplatform builds. Or we would have to manually include arch/arm/plat-omap/include again from arch/arm/Makefile for omap2+. Neither of these alternatives sound appealing as they will likely lead addition of various other headers exposed to the drivers, which we want to avoid for the multiplatform kernels. Since we already have a minimal include/linux/omap-dma.h, let's just use that instead and add a note to it to not use the custom omap DMA functions any longer where possible. Note that converting omap DMA to dmaengine depends on dmaengine supporting automatically incrementing the FIFO address at the device end, and converting all the remaining legacy drivers. So it's going to be few more merge windows. [1] https://patchwork.kernel.org/patch/1519591/# cc: Russell King <linux@arm.linux.org.uk> cc: Kevin Hilman <khilman@ti.com> cc: "Benoît Cousson" <b-cousson@ti.com> cc: Herbert Xu <herbert@gondor.apana.org.au> cc: "David S. Miller" <davem@davemloft.net> cc: Vinod Koul <vinod.koul@intel.com> cc: Dan Williams <djbw@fb.com> cc: Mauro Carvalho Chehab <mchehab@infradead.org> cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> cc: Guennadi Liakhovetski <g.liakhovetski@gmx.de> cc: David Woodhouse <dwmw2@infradead.org> cc: Kyungmin Park <kyungmin.park@samsung.com> cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> cc: Tomi Valkeinen <tomi.valkeinen@ti.com> cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> cc: Hans Verkuil <hans.verkuil@cisco.com> cc: Vaibhav Hiremath <hvaibhav@ti.com> cc: Lokesh Vutla <lokeshvutla@ti.com> cc: Rusty Russell <rusty@rustcorp.com.au> cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> cc: Afzal Mohammed <afzal@ti.com> cc: linux-crypto@vger.kernel.org cc: linux-media@vger.kernel.org cc: linux-mtd@lists.infradead.org cc: linux-usb@vger.kernel.org cc: linux-fbdev@vger.kernel.org Acked-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com>
2012-12-01 00:41:50 +08:00
#include <linux/omap-dma.h>
#include "soc.h"
#include "omap_device.h"
/*
* FIXME: Find a mechanism to enable/disable runtime the McBSP ICLK autoidle.
* Sidetone needs non-gated ICLK and sidetone autoidle is broken.
*/
#include "cm3xxx.h"
#include "cm-regbits-34xx.h"
static int omap3_enable_st_clock(unsigned int id, bool enable)
{
unsigned int w;
/*
* Sidetone uses McBSP ICLK - which must not idle when sidetones
* are enabled or sidetones start sounding ugly.
*/
w = omap2_cm_read_mod_reg(OMAP3430_PER_MOD, CM_AUTOIDLE);
if (enable)
w &= ~(1 << (id - 2));
else
w |= 1 << (id - 2);
omap2_cm_write_mod_reg(w, OMAP3430_PER_MOD, CM_AUTOIDLE);
return 0;
}
static int __init omap_init_mcbsp(struct omap_hwmod *oh, void *unused)
{
int id, count = 1;
char *name = "omap-mcbsp";
struct omap_hwmod *oh_device[2];
struct omap_mcbsp_platform_data *pdata = NULL;
struct platform_device *pdev;
sscanf(oh->name, "mcbsp%d", &id);
pdata = kzalloc(sizeof(struct omap_mcbsp_platform_data), GFP_KERNEL);
if (!pdata) {
pr_err("%s: No memory for mcbsp\n", __func__);
return -ENOMEM;
}
pdata->reg_step = 4;
if (oh->class->rev < MCBSP_CONFIG_TYPE2) {
pdata->reg_size = 2;
} else {
pdata->reg_size = 4;
pdata->has_ccr = true;
}
if (oh->class->rev == MCBSP_CONFIG_TYPE2) {
/* The FIFO has 128 locations */
pdata->buffer_size = 0x80;
} else if (oh->class->rev == MCBSP_CONFIG_TYPE3) {
if (id == 2)
/* The FIFO has 1024 + 256 locations */
pdata->buffer_size = 0x500;
else
/* The FIFO has 128 locations */
pdata->buffer_size = 0x80;
} else if (oh->class->rev == MCBSP_CONFIG_TYPE4) {
/* The FIFO has 128 locations for all instances */
pdata->buffer_size = 0x80;
}
if (oh->class->rev >= MCBSP_CONFIG_TYPE3)
pdata->has_wakeup = true;
oh_device[0] = oh;
if (oh->dev_attr) {
oh_device[1] = omap_hwmod_lookup((
(struct omap_mcbsp_dev_attr *)(oh->dev_attr))->sidetone);
pdata->enable_st_clock = omap3_enable_st_clock;
count++;
}
pdev = omap_device_build_ss(name, id, oh_device, count, pdata,
sizeof(*pdata));
kfree(pdata);
if (IS_ERR(pdev)) {
pr_err("%s: Can't build omap_device for %s:%s.\n", __func__,
name, oh->name);
return PTR_ERR(pdev);
}
return 0;
}
static int __init omap2_mcbsp_init(void)
{
if (!of_have_populated_dt())
omap_hwmod_for_each_by_class("mcbsp", omap_init_mcbsp, NULL);
return 0;
}
omap_arch_initcall(omap2_mcbsp_init);