linux_old1/drivers/ata/sata_mv.c

3069 lines
82 KiB
C
Raw Normal View History

/*
* sata_mv.c - Marvell SATA support
*
* Copyright 2008: Marvell Corporation, all rights reserved.
* Copyright 2005: EMC Corporation, all rights reserved.
* Copyright 2005 Red Hat, Inc. All rights reserved.
*
* Please ALWAYS copy linux-ide@vger.kernel.org on emails.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
sata_mv TODO list:
1) Needs a full errata audit for all chipsets. I implemented most
of the errata workarounds found in the Marvell vendor driver, but
I distinctly remember a couple workarounds (one related to PCI-X)
are still needed.
2) Improve/fix IRQ and error handling sequences.
3) ATAPI support (Marvell claims the 60xx/70xx chips can do it).
4) Think about TCQ support here, and for libata in general
with controllers that suppport it via host-queuing hardware
(a software-only implementation could be a nightmare).
5) Investigate problems with PCI Message Signalled Interrupts (MSI).
6) Cache frequently-accessed registers in mv_port_priv to reduce overhead.
7) Fix/reenable hot plug/unplug (should happen as a side-effect of (2) above).
8) Develop a low-power-consumption strategy, and implement it.
9) [Experiment, low priority] See if ATAPI can be supported using
"unknown FIS" or "vendor-specific FIS" support, or something creative
like that.
10) [Experiment, low priority] Investigate interrupt coalescing.
Quite often, especially with PCI Message Signalled Interrupts (MSI),
the overhead reduced by interrupt mitigation is quite often not
worth the latency cost.
11) [Experiment, Marvell value added] Is it possible to use target
mode to cross-connect two Linux boxes with Marvell cards? If so,
creating LibATA target mode support would be very interesting.
Target mode, for those without docs, is the ability to directly
connect two SATA controllers.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/ata_platform.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <linux/libata.h>
#define DRV_NAME "sata_mv"
#define DRV_VERSION "1.20"
enum {
/* BAR's are enumerated in terms of pci_resource_start() terms */
MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
MV_IO_BAR = 2, /* offset 0x18: IO space */
MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
MV_PCI_REG_BASE = 0,
MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
MV_SATAHC0_REG_BASE = 0x20000,
MV_FLASH_CTL = 0x1046c,
MV_GPIO_PORT_CTL = 0x104f0,
MV_RESET_CFG = 0x180d8,
MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
MV_MAX_Q_DEPTH = 32,
MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
/* CRQB needs alignment on a 1KB boundary. Size == 1KB
* CRPB needs alignment on a 256B boundary. Size == 256B
* ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
*/
MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
MV_MAX_SG_CT = 256,
MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
MV_PORTS_PER_HC = 4,
/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
MV_PORT_HC_SHIFT = 2,
/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
MV_PORT_MASK = 3,
/* Host Flags */
MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
/* SoC integrated controllers, no PCI interface */
MV_FLAG_SOC = (1 << 28),
MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
ATA_FLAG_PIO_POLLING,
MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
CRQB_FLAG_READ = (1 << 0),
CRQB_TAG_SHIFT = 1,
CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
CRQB_CMD_ADDR_SHIFT = 8,
CRQB_CMD_CS = (0x2 << 11),
CRQB_CMD_LAST = (1 << 15),
CRPB_FLAG_STATUS_SHIFT = 8,
CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
EPRD_FLAG_END_OF_TBL = (1 << 31),
/* PCI interface registers */
PCI_COMMAND_OFS = 0xc00,
PCI_MAIN_CMD_STS_OFS = 0xd30,
STOP_PCI_MASTER = (1 << 2),
PCI_MASTER_EMPTY = (1 << 3),
GLOB_SFT_RST = (1 << 4),
MV_PCI_MODE = 0xd00,
MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
MV_PCI_DISC_TIMER = 0xd04,
MV_PCI_MSI_TRIGGER = 0xc38,
MV_PCI_SERR_MASK = 0xc28,
MV_PCI_XBAR_TMOUT = 0x1d04,
MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
MV_PCI_ERR_ATTRIBUTE = 0x1d48,
MV_PCI_ERR_COMMAND = 0x1d50,
PCI_IRQ_CAUSE_OFS = 0x1d58,
PCI_IRQ_MASK_OFS = 0x1d5c,
PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
PCIE_IRQ_CAUSE_OFS = 0x1900,
PCIE_IRQ_MASK_OFS = 0x1910,
PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
HC_MAIN_IRQ_MASK_OFS = 0x1d64,
HC_SOC_MAIN_IRQ_CAUSE_OFS = 0x20020,
HC_SOC_MAIN_IRQ_MASK_OFS = 0x20024,
PORT0_ERR = (1 << 0), /* shift by port # */
PORT0_DONE = (1 << 1), /* shift by port # */
HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
PCI_ERR = (1 << 18),
TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
PORTS_0_3_COAL_DONE = (1 << 8),
PORTS_4_7_COAL_DONE = (1 << 17),
PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
GPIO_INT = (1 << 22),
SELF_INT = (1 << 23),
TWSI_INT = (1 << 24),
HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
HC_MAIN_RSVD),
HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
HC_MAIN_RSVD_5),
HC_MAIN_MASKED_IRQS_SOC = (PORTS_0_3_COAL_DONE | HC_MAIN_RSVD_SOC),
/* SATAHC registers */
HC_CFG_OFS = 0,
HC_IRQ_CAUSE_OFS = 0x14,
CRPB_DMA_DONE = (1 << 0), /* shift by port # */
HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
DEV_IRQ = (1 << 8), /* shift by port # */
/* Shadow block registers */
SHD_BLK_OFS = 0x100,
SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
/* SATA registers */
SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
SATA_ACTIVE_OFS = 0x350,
SATA_FIS_IRQ_CAUSE_OFS = 0x364,
LTMODE_OFS = 0x30c,
LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
PHY_MODE3 = 0x310,
PHY_MODE4 = 0x314,
PHY_MODE2 = 0x330,
SATA_IFCTL_OFS = 0x344,
SATA_IFSTAT_OFS = 0x34c,
VENDOR_UNIQUE_FIS_OFS = 0x35c,
FIS_CFG_OFS = 0x360,
FIS_CFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
2005-11-14 06:47:51 +08:00
MV5_PHY_MODE = 0x74,
MV5_LT_MODE = 0x30,
MV5_PHY_CTL = 0x0C,
SATA_INTERFACE_CFG = 0x050,
MV_M2_PREAMP_MASK = 0x7e0,
/* Port registers */
EDMA_CFG_OFS = 0,
EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
EDMA_ERR_IRQ_MASK_OFS = 0xc,
EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
EDMA_ERR_DEV = (1 << 2), /* device error */
EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
EDMA_ERR_OVERRUN_5 = (1 << 5),
EDMA_ERR_UNDERRUN_5 = (1 << 6),
EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
EDMA_ERR_LNK_CTRL_RX_1 |
EDMA_ERR_LNK_CTRL_RX_3 |
EDMA_ERR_LNK_CTRL_TX |
/* temporary, until we fix hotplug: */
(EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON),
EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
EDMA_ERR_PRD_PAR |
EDMA_ERR_DEV_DCON |
EDMA_ERR_DEV_CON |
EDMA_ERR_SERR |
EDMA_ERR_SELF_DIS |
EDMA_ERR_CRQB_PAR |
EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR |
EDMA_ERR_IORDY |
EDMA_ERR_LNK_CTRL_RX_2 |
EDMA_ERR_LNK_DATA_RX |
EDMA_ERR_LNK_DATA_TX |
EDMA_ERR_TRANS_PROTO,
EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
EDMA_ERR_PRD_PAR |
EDMA_ERR_DEV_DCON |
EDMA_ERR_DEV_CON |
EDMA_ERR_OVERRUN_5 |
EDMA_ERR_UNDERRUN_5 |
EDMA_ERR_SELF_DIS_5 |
EDMA_ERR_CRQB_PAR |
EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR |
EDMA_ERR_IORDY,
EDMA_REQ_Q_BASE_HI_OFS = 0x10,
EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
EDMA_REQ_Q_PTR_SHIFT = 5,
EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
EDMA_RSP_Q_IN_PTR_OFS = 0x20,
EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
EDMA_RSP_Q_PTR_SHIFT = 3,
EDMA_CMD_OFS = 0x28, /* EDMA command register */
EDMA_EN = (1 << 0), /* enable EDMA */
EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
ATA_RST = (1 << 2), /* reset trans/link/phy */
2005-11-14 06:47:51 +08:00
EDMA_IORDY_TMOUT = 0x34,
EDMA_ARB_CFG = 0x38,
/* Host private flags (hp_flags) */
MV_HP_FLAG_MSI = (1 << 0),
MV_HP_ERRATA_50XXB0 = (1 << 1),
MV_HP_ERRATA_50XXB2 = (1 << 2),
MV_HP_ERRATA_60X1B2 = (1 << 3),
MV_HP_ERRATA_60X1C0 = (1 << 4),
MV_HP_ERRATA_XX42A0 = (1 << 5),
MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
/* Port private flags (pp_flags) */
MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
};
#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
#define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
enum {
/* DMA boundary 0xffff is required by the s/g splitting
* we need on /length/ in mv_fill-sg().
*/
MV_DMA_BOUNDARY = 0xffffU,
/* mask of register bits containing lower 32 bits
* of EDMA request queue DMA address
*/
EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
/* ditto, for response queue */
EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
};
enum chip_type {
chip_504x,
chip_508x,
chip_5080,
chip_604x,
chip_608x,
chip_6042,
chip_7042,
chip_soc,
};
/* Command ReQuest Block: 32B */
struct mv_crqb {
__le32 sg_addr;
__le32 sg_addr_hi;
__le16 ctrl_flags;
__le16 ata_cmd[11];
};
struct mv_crqb_iie {
__le32 addr;
__le32 addr_hi;
__le32 flags;
__le32 len;
__le32 ata_cmd[4];
};
/* Command ResPonse Block: 8B */
struct mv_crpb {
__le16 id;
__le16 flags;
__le32 tmstmp;
};
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
struct mv_sg {
__le32 addr;
__le32 flags_size;
__le32 addr_hi;
__le32 reserved;
};
struct mv_port_priv {
struct mv_crqb *crqb;
dma_addr_t crqb_dma;
struct mv_crpb *crpb;
dma_addr_t crpb_dma;
struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
unsigned int req_idx;
unsigned int resp_idx;
u32 pp_flags;
};
struct mv_port_signal {
u32 amps;
u32 pre;
};
struct mv_host_priv {
u32 hp_flags;
struct mv_port_signal signal[8];
const struct mv_hw_ops *ops;
int n_ports;
void __iomem *base;
void __iomem *main_cause_reg_addr;
void __iomem *main_mask_reg_addr;
u32 irq_cause_ofs;
u32 irq_mask_ofs;
u32 unmask_all_irqs;
/*
* These consistent DMA memory pools give us guaranteed
* alignment for hardware-accessed data structures,
* and less memory waste in accomplishing the alignment.
*/
struct dma_pool *crqb_pool;
struct dma_pool *crpb_pool;
struct dma_pool *sg_tbl_pool;
};
struct mv_hw_ops {
void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
2005-11-14 06:47:51 +08:00
int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
};
static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
static int mv_port_start(struct ata_port *ap);
static void mv_port_stop(struct ata_port *ap);
static void mv_qc_prep(struct ata_queued_cmd *qc);
static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
libata: make reset related methods proper port operations Currently reset methods are not specified directly in the ata_port_operations table. If a LLD wants to use custom reset methods, it should construct and use a error_handler which uses those reset methods. It's done this way for two reasons. First, the ops table already contained too many methods and adding four more of them would noticeably increase the amount of necessary boilerplate code all over low level drivers. Second, as ->error_handler uses those reset methods, it can get confusing. ie. By overriding ->error_handler, those reset ops can be made useless making layering a bit hazy. Now that ops table uses inheritance, the first problem doesn't exist anymore. The second isn't completely solved but is relieved by providing default values - most drivers can just override what it has implemented and don't have to concern itself about higher level callbacks. In fact, there currently is no driver which actually modifies error handling behavior. Drivers which override ->error_handler just wraps the standard error handler only to prepare the controller for EH. I don't think making ops layering strict has any noticeable benefit. This patch makes ->prereset, ->softreset, ->hardreset, ->postreset and their PMP counterparts propoer ops. Default ops are provided in the base ops tables and drivers are converted to override individual reset methods instead of creating custom error_handler. * ata_std_error_handler() doesn't use sata_std_hardreset() if SCRs aren't accessible. sata_promise doesn't need to use separate error_handlers for PATA and SATA anymore. * softreset is broken for sata_inic162x and sata_sx4. As libata now always prefers hardreset, this doesn't really matter but the ops are forced to NULL using ATA_OP_NULL for documentation purpose. * pata_hpt374 needs to use different prereset for the first and second PCI functions. This used to be done by branching from hpt374_error_handler(). The proper way to do this is to use separate ops and port_info tables for each function. Converted. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:50 +08:00
static int mv_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline);
static void mv_eh_freeze(struct ata_port *ap);
static void mv_eh_thaw(struct ata_port *ap);
static void mv6_dev_config(struct ata_device *dev);
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
2005-11-14 06:47:51 +08:00
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
2005-11-14 06:47:51 +08:00
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
void __iomem *mmio);
static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
void __iomem *mmio, unsigned int n_hc);
static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
void __iomem *mmio);
static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2005-11-14 06:47:51 +08:00
unsigned int port_no);
static int mv_stop_edma(struct ata_port *ap);
static int mv_stop_edma_engine(void __iomem *port_mmio);
static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
static void mv_pmp_select(struct ata_port *ap, int pmp);
static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline);
static int mv_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline);
/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
* because we have to allow room for worst case splitting of
* PRDs for 64K boundaries in mv_fill_sg().
*/
static struct scsi_host_template mv5_sht = {
ATA_BASE_SHT(DRV_NAME),
.sg_tablesize = MV_MAX_SG_CT / 2,
.dma_boundary = MV_DMA_BOUNDARY,
};
static struct scsi_host_template mv6_sht = {
ATA_NCQ_SHT(DRV_NAME),
.can_queue = MV_MAX_Q_DEPTH - 1,
.sg_tablesize = MV_MAX_SG_CT / 2,
.dma_boundary = MV_DMA_BOUNDARY,
};
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
static struct ata_port_operations mv5_ops = {
.inherits = &ata_sff_port_ops,
2005-11-14 06:47:51 +08:00
.qc_prep = mv_qc_prep,
.qc_issue = mv_qc_issue,
.freeze = mv_eh_freeze,
.thaw = mv_eh_thaw,
libata: make reset related methods proper port operations Currently reset methods are not specified directly in the ata_port_operations table. If a LLD wants to use custom reset methods, it should construct and use a error_handler which uses those reset methods. It's done this way for two reasons. First, the ops table already contained too many methods and adding four more of them would noticeably increase the amount of necessary boilerplate code all over low level drivers. Second, as ->error_handler uses those reset methods, it can get confusing. ie. By overriding ->error_handler, those reset ops can be made useless making layering a bit hazy. Now that ops table uses inheritance, the first problem doesn't exist anymore. The second isn't completely solved but is relieved by providing default values - most drivers can just override what it has implemented and don't have to concern itself about higher level callbacks. In fact, there currently is no driver which actually modifies error handling behavior. Drivers which override ->error_handler just wraps the standard error handler only to prepare the controller for EH. I don't think making ops layering strict has any noticeable benefit. This patch makes ->prereset, ->softreset, ->hardreset, ->postreset and their PMP counterparts propoer ops. Default ops are provided in the base ops tables and drivers are converted to override individual reset methods instead of creating custom error_handler. * ata_std_error_handler() doesn't use sata_std_hardreset() if SCRs aren't accessible. sata_promise doesn't need to use separate error_handlers for PATA and SATA anymore. * softreset is broken for sata_inic162x and sata_sx4. As libata now always prefers hardreset, this doesn't really matter but the ops are forced to NULL using ATA_OP_NULL for documentation purpose. * pata_hpt374 needs to use different prereset for the first and second PCI functions. This used to be done by branching from hpt374_error_handler(). The proper way to do this is to use separate ops and port_info tables for each function. Converted. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:50 +08:00
.hardreset = mv_hardreset,
.error_handler = ata_std_error_handler, /* avoid SFF EH */
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
.post_internal_cmd = ATA_OP_NULL,
2005-11-14 06:47:51 +08:00
.scr_read = mv5_scr_read,
.scr_write = mv5_scr_write,
.port_start = mv_port_start,
.port_stop = mv_port_stop,
};
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
static struct ata_port_operations mv6_ops = {
.inherits = &mv5_ops,
.qc_defer = sata_pmp_qc_defer_cmd_switch,
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
.dev_config = mv6_dev_config,
.scr_read = mv_scr_read,
.scr_write = mv_scr_write,
.pmp_hardreset = mv_pmp_hardreset,
.pmp_softreset = mv_softreset,
.softreset = mv_softreset,
.error_handler = sata_pmp_error_handler,
};
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
static struct ata_port_operations mv_iie_ops = {
.inherits = &mv6_ops,
.qc_defer = ata_std_qc_defer, /* FIS-based switching */
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
.dev_config = ATA_OP_NULL,
.qc_prep = mv_qc_prep_iie,
};
static const struct ata_port_info mv_port_info[] = {
{ /* chip_504x */
.flags = MV_COMMON_FLAGS,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
2005-11-14 06:47:51 +08:00
.port_ops = &mv5_ops,
},
{ /* chip_508x */
.flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
2005-11-14 06:47:51 +08:00
.port_ops = &mv5_ops,
},
{ /* chip_5080 */
.flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
2005-11-14 06:47:51 +08:00
.port_ops = &mv5_ops,
},
{ /* chip_604x */
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
ATA_FLAG_NCQ,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
2005-11-14 06:47:51 +08:00
.port_ops = &mv6_ops,
},
{ /* chip_608x */
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
2005-11-14 06:47:51 +08:00
.port_ops = &mv6_ops,
},
{ /* chip_6042 */
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
ATA_FLAG_NCQ,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
.port_ops = &mv_iie_ops,
},
{ /* chip_7042 */
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
ATA_FLAG_NCQ,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
.port_ops = &mv_iie_ops,
},
{ /* chip_soc */
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
ATA_FLAG_NCQ | MV_FLAG_SOC,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
.port_ops = &mv_iie_ops,
},
};
static const struct pci_device_id mv_pci_tbl[] = {
{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
/* RocketRAID 1740/174x have different identifiers */
{ PCI_VDEVICE(TTI, 0x1740), chip_508x },
{ PCI_VDEVICE(TTI, 0x1742), chip_508x },
{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
/* Adaptec 1430SA */
{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
/* Marvell 7042 support */
{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
/* Highpoint RocketRAID PCIe series */
{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
{ } /* terminate list */
};
static const struct mv_hw_ops mv5xxx_ops = {
.phy_errata = mv5_phy_errata,
.enable_leds = mv5_enable_leds,
.read_preamp = mv5_read_preamp,
.reset_hc = mv5_reset_hc,
.reset_flash = mv5_reset_flash,
.reset_bus = mv5_reset_bus,
};
static const struct mv_hw_ops mv6xxx_ops = {
.phy_errata = mv6_phy_errata,
.enable_leds = mv6_enable_leds,
.read_preamp = mv6_read_preamp,
.reset_hc = mv6_reset_hc,
.reset_flash = mv6_reset_flash,
.reset_bus = mv_reset_pci_bus,
};
static const struct mv_hw_ops mv_soc_ops = {
.phy_errata = mv6_phy_errata,
.enable_leds = mv_soc_enable_leds,
.read_preamp = mv_soc_read_preamp,
.reset_hc = mv_soc_reset_hc,
.reset_flash = mv_soc_reset_flash,
.reset_bus = mv_soc_reset_bus,
};
/*
* Functions
*/
static inline void writelfl(unsigned long data, void __iomem *addr)
{
writel(data, addr);
(void) readl(addr); /* flush to avoid PCI posted write */
}
static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
{
return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
}
2005-11-14 06:47:51 +08:00
static inline unsigned int mv_hc_from_port(unsigned int port)
{
return port >> MV_PORT_HC_SHIFT;
}
static inline unsigned int mv_hardport_from_port(unsigned int port)
{
return port & MV_PORT_MASK;
}
static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
unsigned int port)
{
return mv_hc_base(base, mv_hc_from_port(port));
}
static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
{
2005-11-14 06:47:51 +08:00
return mv_hc_base_from_port(base, port) +
MV_SATAHC_ARBTR_REG_SZ +
2005-11-14 06:47:51 +08:00
(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
}
static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
{
void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
return hc_mmio + ofs;
}
static inline void __iomem *mv_host_base(struct ata_host *host)
{
struct mv_host_priv *hpriv = host->private_data;
return hpriv->base;
}
static inline void __iomem *mv_ap_base(struct ata_port *ap)
{
return mv_port_base(mv_host_base(ap->host), ap->port_no);
}
static inline int mv_get_hc_count(unsigned long port_flags)
{
return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
}
static void mv_set_edma_ptrs(void __iomem *port_mmio,
struct mv_host_priv *hpriv,
struct mv_port_priv *pp)
{
u32 index;
/*
* initialize request queue
*/
index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
WARN_ON(pp->crqb_dma & 0x3ff);
writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
writelfl((pp->crqb_dma & 0xffffffff) | index,
port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
else
writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
/*
* initialize response queue
*/
index = (pp->resp_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_RSP_Q_PTR_SHIFT;
WARN_ON(pp->crpb_dma & 0xff);
writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
writelfl((pp->crpb_dma & 0xffffffff) | index,
port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
else
writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
}
/**
* mv_start_dma - Enable eDMA engine
* @base: port base address
* @pp: port private data
*
* Verify the local cache of the eDMA state is accurate with a
* WARN_ON.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
struct mv_port_priv *pp, u8 protocol)
{
int want_ncq = (protocol == ATA_PROT_NCQ);
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
if (want_ncq != using_ncq)
mv_stop_edma(ap);
}
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
struct mv_host_priv *hpriv = ap->host->private_data;
int hard_port = mv_hardport_from_port(ap->port_no);
void __iomem *hc_mmio = mv_hc_base_from_port(
mv_host_base(ap->host), hard_port);
u32 hc_irq_cause, ipending;
/* clear EDMA event indicators, if any */
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
/* clear EDMA interrupt indicator, if any */
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
ipending = (DEV_IRQ << hard_port) |
(CRPB_DMA_DONE << hard_port);
if (hc_irq_cause & ipending) {
writelfl(hc_irq_cause & ~ipending,
hc_mmio + HC_IRQ_CAUSE_OFS);
}
mv_edma_cfg(ap, want_ncq);
/* clear FIS IRQ Cause */
writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
mv_set_edma_ptrs(port_mmio, hpriv, pp);
writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
}
WARN_ON(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
}
/**
* mv_stop_edma_engine - Disable eDMA engine
* @port_mmio: io base address
*
* LOCKING:
* Inherited from caller.
*/
static int mv_stop_edma_engine(void __iomem *port_mmio)
{
int i;
/* Disable eDMA. The disable bit auto clears. */
writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
/* Wait for the chip to confirm eDMA is off. */
for (i = 10000; i > 0; i--) {
u32 reg = readl(port_mmio + EDMA_CMD_OFS);
if (!(reg & EDMA_EN))
return 0;
udelay(10);
}
return -EIO;
}
static int mv_stop_edma(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
return 0;
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
if (mv_stop_edma_engine(port_mmio)) {
ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
return -EIO;
}
return 0;
}
#ifdef ATA_DEBUG
static void mv_dump_mem(void __iomem *start, unsigned bytes)
{
int b, w;
for (b = 0; b < bytes; ) {
DPRINTK("%p: ", start + b);
for (w = 0; b < bytes && w < 4; w++) {
printk("%08x ", readl(start + b));
b += sizeof(u32);
}
printk("\n");
}
}
#endif
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
{
#ifdef ATA_DEBUG
int b, w;
u32 dw;
for (b = 0; b < bytes; ) {
DPRINTK("%02x: ", b);
for (w = 0; b < bytes && w < 4; w++) {
(void) pci_read_config_dword(pdev, b, &dw);
printk("%08x ", dw);
b += sizeof(u32);
}
printk("\n");
}
#endif
}
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
struct pci_dev *pdev)
{
#ifdef ATA_DEBUG
void __iomem *hc_base = mv_hc_base(mmio_base,
port >> MV_PORT_HC_SHIFT);
void __iomem *port_base;
int start_port, num_ports, p, start_hc, num_hcs, hc;
if (0 > port) {
start_hc = start_port = 0;
num_ports = 8; /* shld be benign for 4 port devs */
num_hcs = 2;
} else {
start_hc = port >> MV_PORT_HC_SHIFT;
start_port = port;
num_ports = num_hcs = 1;
}
DPRINTK("All registers for port(s) %u-%u:\n", start_port,
num_ports > 1 ? num_ports - 1 : start_port);
if (NULL != pdev) {
DPRINTK("PCI config space regs:\n");
mv_dump_pci_cfg(pdev, 0x68);
}
DPRINTK("PCI regs:\n");
mv_dump_mem(mmio_base+0xc00, 0x3c);
mv_dump_mem(mmio_base+0xd00, 0x34);
mv_dump_mem(mmio_base+0xf00, 0x4);
mv_dump_mem(mmio_base+0x1d00, 0x6c);
for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
hc_base = mv_hc_base(mmio_base, hc);
DPRINTK("HC regs (HC %i):\n", hc);
mv_dump_mem(hc_base, 0x1c);
}
for (p = start_port; p < start_port + num_ports; p++) {
port_base = mv_port_base(mmio_base, p);
DPRINTK("EDMA regs (port %i):\n", p);
mv_dump_mem(port_base, 0x54);
DPRINTK("SATA regs (port %i):\n", p);
mv_dump_mem(port_base+0x300, 0x60);
}
#endif
}
static unsigned int mv_scr_offset(unsigned int sc_reg_in)
{
unsigned int ofs;
switch (sc_reg_in) {
case SCR_STATUS:
case SCR_CONTROL:
case SCR_ERROR:
ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
break;
case SCR_ACTIVE:
ofs = SATA_ACTIVE_OFS; /* active is not with the others */
break;
default:
ofs = 0xffffffffU;
break;
}
return ofs;
}
static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
{
unsigned int ofs = mv_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU) {
*val = readl(mv_ap_base(ap) + ofs);
return 0;
} else
return -EINVAL;
}
static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
{
unsigned int ofs = mv_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU) {
writelfl(val, mv_ap_base(ap) + ofs);
return 0;
} else
return -EINVAL;
}
static void mv6_dev_config(struct ata_device *adev)
{
/*
* Deal with Gen-II ("mv6") hardware quirks/restrictions:
*
* Gen-II does not support NCQ over a port multiplier
* (no FIS-based switching).
*
* We don't have hob_nsect when doing NCQ commands on Gen-II.
* See mv_qc_prep() for more info.
*/
if (adev->flags & ATA_DFLAG_NCQ) {
if (sata_pmp_attached(adev->link->ap))
adev->flags &= ~ATA_DFLAG_NCQ;
else if (adev->max_sectors > ATA_MAX_SECTORS)
adev->max_sectors = ATA_MAX_SECTORS;
}
}
static void mv_config_fbs(void __iomem *port_mmio, int enable_fbs)
{
u32 old_fcfg, new_fcfg, old_ltmode, new_ltmode;
/*
* Various bit settings required for operation
* in FIS-based switching (fbs) mode on GenIIe:
*/
old_fcfg = readl(port_mmio + FIS_CFG_OFS);
old_ltmode = readl(port_mmio + LTMODE_OFS);
if (enable_fbs) {
new_fcfg = old_fcfg | FIS_CFG_SINGLE_SYNC;
new_ltmode = old_ltmode | LTMODE_BIT8;
} else { /* disable fbs */
new_fcfg = old_fcfg & ~FIS_CFG_SINGLE_SYNC;
new_ltmode = old_ltmode & ~LTMODE_BIT8;
}
if (new_fcfg != old_fcfg)
writelfl(new_fcfg, port_mmio + FIS_CFG_OFS);
if (new_ltmode != old_ltmode)
writelfl(new_ltmode, port_mmio + LTMODE_OFS);
}
static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
{
u32 cfg;
struct mv_port_priv *pp = ap->private_data;
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *port_mmio = mv_ap_base(ap);
/* set up non-NCQ EDMA configuration */
cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
if (IS_GEN_I(hpriv))
cfg |= (1 << 8); /* enab config burst size mask */
else if (IS_GEN_II(hpriv))
cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
else if (IS_GEN_IIE(hpriv)) {
cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
cfg |= (1 << 22); /* enab 4-entry host queue cache */
cfg |= (1 << 18); /* enab early completion */
cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
if (want_ncq && sata_pmp_attached(ap)) {
cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
mv_config_fbs(port_mmio, 1);
} else {
mv_config_fbs(port_mmio, 0);
}
}
if (want_ncq) {
cfg |= EDMA_CFG_NCQ;
pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
} else
pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
writelfl(cfg, port_mmio + EDMA_CFG_OFS);
}
static void mv_port_free_dma_mem(struct ata_port *ap)
{
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp = ap->private_data;
int tag;
if (pp->crqb) {
dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
pp->crqb = NULL;
}
if (pp->crpb) {
dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
pp->crpb = NULL;
}
/*
* For GEN_I, there's no NCQ, so we have only a single sg_tbl.
* For later hardware, we have one unique sg_tbl per NCQ tag.
*/
for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
if (pp->sg_tbl[tag]) {
if (tag == 0 || !IS_GEN_I(hpriv))
dma_pool_free(hpriv->sg_tbl_pool,
pp->sg_tbl[tag],
pp->sg_tbl_dma[tag]);
pp->sg_tbl[tag] = NULL;
}
}
}
/**
* mv_port_start - Port specific init/start routine.
* @ap: ATA channel to manipulate
*
* Allocate and point to DMA memory, init port private memory,
* zero indices.
*
* LOCKING:
* Inherited from caller.
*/
static int mv_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp;
libata: eliminate the home grown dma padding in favour of that provided by the block layer ATA requires that all DMA transfers begin and end on word boundaries. Because of this, a large amount of machinery grew up in ide to adjust scatterlists on this basis. However, as of 2.5, the block layer has a dma_alignment variable which ensures both the beginning and length of a DMA transfer are aligned on the dma_alignment boundary. Although the block layer does adjust the beginning of the transfer to ensure this happens, it doesn't actually adjust the length, it merely makes sure that space is allocated for transfers beyond the declared length. The upshot of this is that scatterlists may be padded to any size between the actual length and the length adjusted to the dma_alignment safely knowing that memory is allocated in this region. Right at the moment, SCSI takes the default dma_aligment which is on a 512 byte boundary. Note that this aligment only applies to transfers coming in from user space. However, since all kernel allocations are automatically aligned on a minimum of 32 byte boundaries, it is safe to adjust them in this manner as well. tj: * Adjusting sg after padding is done in block layer. Make libata set queue alignment correctly for ATAPI devices and drop broken sg mangling from ata_sg_setup(). * Use request->raw_data_len for ATAPI transfer chunk size. * Killed qc->raw_nbytes. * Separated out killing qc->n_iter. Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-02-19 18:36:56 +08:00
int tag;
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
ap->private_data = pp;
pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
if (!pp->crqb)
return -ENOMEM;
memset(pp->crqb, 0, MV_CRQB_Q_SZ);
pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
if (!pp->crpb)
goto out_port_free_dma_mem;
memset(pp->crpb, 0, MV_CRPB_Q_SZ);
/*
* For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
* For later hardware, we need one unique sg_tbl per NCQ tag.
*/
for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
if (tag == 0 || !IS_GEN_I(hpriv)) {
pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
GFP_KERNEL, &pp->sg_tbl_dma[tag]);
if (!pp->sg_tbl[tag])
goto out_port_free_dma_mem;
} else {
pp->sg_tbl[tag] = pp->sg_tbl[0];
pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
}
}
return 0;
out_port_free_dma_mem:
mv_port_free_dma_mem(ap);
return -ENOMEM;
}
/**
* mv_port_stop - Port specific cleanup/stop routine.
* @ap: ATA channel to manipulate
*
* Stop DMA, cleanup port memory.
*
* LOCKING:
* This routine uses the host lock to protect the DMA stop.
*/
static void mv_port_stop(struct ata_port *ap)
{
mv_stop_edma(ap);
mv_port_free_dma_mem(ap);
}
/**
* mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
* @qc: queued command whose SG list to source from
*
* Populate the SG list and mark the last entry.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_fill_sg(struct ata_queued_cmd *qc)
{
struct mv_port_priv *pp = qc->ap->private_data;
struct scatterlist *sg;
struct mv_sg *mv_sg, *last_sg = NULL;
unsigned int si;
mv_sg = pp->sg_tbl[qc->tag];
for_each_sg(qc->sg, sg, qc->n_elem, si) {
dma_addr_t addr = sg_dma_address(sg);
u32 sg_len = sg_dma_len(sg);
while (sg_len) {
u32 offset = addr & 0xffff;
u32 len = sg_len;
if ((offset + sg_len > 0x10000))
len = 0x10000 - offset;
mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
mv_sg->flags_size = cpu_to_le32(len & 0xffff);
sg_len -= len;
addr += len;
last_sg = mv_sg;
mv_sg++;
}
}
if (likely(last_sg))
last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
}
static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
{
u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
(last ? CRQB_CMD_LAST : 0);
*cmdw = cpu_to_le16(tmp);
}
/**
* mv_qc_prep - Host specific command preparation.
* @qc: queued command to prepare
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it handles prep of the CRQB
* (command request block), does some sanity checking, and calls
* the SG load routine.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_qc_prep(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct mv_port_priv *pp = ap->private_data;
__le16 *cw;
struct ata_taskfile *tf;
u16 flags = 0;
unsigned in_index;
if ((qc->tf.protocol != ATA_PROT_DMA) &&
(qc->tf.protocol != ATA_PROT_NCQ))
return;
/* Fill in command request block
*/
if (!(qc->tf.flags & ATA_TFLAG_WRITE))
flags |= CRQB_FLAG_READ;
WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
flags |= qc->tag << CRQB_TAG_SHIFT;
flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
/* get current queue index from software */
in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
pp->crqb[in_index].sg_addr =
cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
pp->crqb[in_index].sg_addr_hi =
cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
cw = &pp->crqb[in_index].ata_cmd[0];
tf = &qc->tf;
/* Sadly, the CRQB cannot accomodate all registers--there are
* only 11 bytes...so we must pick and choose required
* registers based on the command. So, we drop feature and
* hob_feature for [RW] DMA commands, but they are needed for
* NCQ. NCQ will drop hob_nsect.
*/
switch (tf->command) {
case ATA_CMD_READ:
case ATA_CMD_READ_EXT:
case ATA_CMD_WRITE:
case ATA_CMD_WRITE_EXT:
case ATA_CMD_WRITE_FUA_EXT:
mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
break;
case ATA_CMD_FPDMA_READ:
case ATA_CMD_FPDMA_WRITE:
mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
break;
default:
/* The only other commands EDMA supports in non-queued and
* non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
* of which are defined/used by Linux. If we get here, this
* driver needs work.
*
* FIXME: modify libata to give qc_prep a return value and
* return error here.
*/
BUG_ON(tf->command);
break;
}
mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
mv_fill_sg(qc);
}
/**
* mv_qc_prep_iie - Host specific command preparation.
* @qc: queued command to prepare
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it handles prep of the CRQB
* (command request block), does some sanity checking, and calls
* the SG load routine.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct mv_port_priv *pp = ap->private_data;
struct mv_crqb_iie *crqb;
struct ata_taskfile *tf;
unsigned in_index;
u32 flags = 0;
if ((qc->tf.protocol != ATA_PROT_DMA) &&
(qc->tf.protocol != ATA_PROT_NCQ))
return;
/* Fill in Gen IIE command request block */
if (!(qc->tf.flags & ATA_TFLAG_WRITE))
flags |= CRQB_FLAG_READ;
WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
flags |= qc->tag << CRQB_TAG_SHIFT;
flags |= qc->tag << CRQB_HOSTQ_SHIFT;
flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
/* get current queue index from software */
in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
crqb->flags = cpu_to_le32(flags);
tf = &qc->tf;
crqb->ata_cmd[0] = cpu_to_le32(
(tf->command << 16) |
(tf->feature << 24)
);
crqb->ata_cmd[1] = cpu_to_le32(
(tf->lbal << 0) |
(tf->lbam << 8) |
(tf->lbah << 16) |
(tf->device << 24)
);
crqb->ata_cmd[2] = cpu_to_le32(
(tf->hob_lbal << 0) |
(tf->hob_lbam << 8) |
(tf->hob_lbah << 16) |
(tf->hob_feature << 24)
);
crqb->ata_cmd[3] = cpu_to_le32(
(tf->nsect << 0) |
(tf->hob_nsect << 8)
);
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
mv_fill_sg(qc);
}
/**
* mv_qc_issue - Initiate a command to the host
* @qc: queued command to start
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it sanity checks our local
* caches of the request producer/consumer indices then enables
* DMA and bumps the request producer index.
*
* LOCKING:
* Inherited from caller.
*/
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
u32 in_index;
if ((qc->tf.protocol != ATA_PROT_DMA) &&
(qc->tf.protocol != ATA_PROT_NCQ)) {
/*
* We're about to send a non-EDMA capable command to the
* port. Turn off EDMA so there won't be problems accessing
* shadow block, etc registers.
*/
mv_stop_edma(ap);
mv_pmp_select(ap, qc->dev->link->pmp);
return ata_sff_qc_issue(qc);
}
mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
pp->req_idx++;
in_index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
/* and write the request in pointer to kick the EDMA to life */
writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
return 0;
}
/**
* mv_err_intr - Handle error interrupts on the port
* @ap: ATA channel to manipulate
* @reset_allowed: bool: 0 == don't trigger from reset here
*
* In most cases, just clear the interrupt and move on. However,
* some cases require an eDMA reset, which also performs a COMRESET.
* The SERR case requires a clear of pending errors in the SATA
* SERROR register. Finally, if the port disabled DMA,
* update our cached copy to match.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
{
void __iomem *port_mmio = mv_ap_base(ap);
u32 edma_err_cause, eh_freeze_mask, serr = 0;
struct mv_port_priv *pp = ap->private_data;
struct mv_host_priv *hpriv = ap->host->private_data;
unsigned int edma_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
unsigned int action = 0, err_mask = 0;
struct ata_eh_info *ehi = &ap->link.eh_info;
ata_ehi_clear_desc(ehi);
if (!edma_enabled) {
/* just a guess: do we need to do this? should we
* expand this, and do it in all cases?
*/
sata_scr_read(&ap->link, SCR_ERROR, &serr);
sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
}
edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
ata_ehi_push_desc(ehi, "edma_err 0x%08x", edma_err_cause);
/*
* all generations share these EDMA error cause bits
*/
if (edma_err_cause & EDMA_ERR_DEV)
err_mask |= AC_ERR_DEV;
if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR)) {
err_mask |= AC_ERR_ATA_BUS;
libata: prefer hardreset When both soft and hard resets are available, libata preferred softreset till now. The logic behind it was to be softer to devices; however, this doesn't really help much. Rationales for the change: * BIOS may freeze lock certain things during boot and softreset can't unlock those. This by itself is okay but during operation PHY event or other error conditions can trigger hardreset and the device may end up with different configuration. For example, after a hardreset, previously unlockable HPA can be unlocked resulting in different device size and thus revalidation failure. Similar condition can occur during or after resume. * Certain ATAPI devices require hardreset to recover after certain error conditions. On PATA, this is done by issuing the DEVICE RESET command. On SATA, COMRESET has equivalent effect. The problem is that DEVICE RESET needs its own execution protocol. For SFF controllers with bare TF access, it can be easily implemented but more advanced controllers (e.g. ahci and sata_sil24) require specialized implementations. Simply using hardreset solves the problem nicely. * COMRESET initialization sequence is the norm in SATA land and many SATA devices don't work properly if only SRST is used. For example, some PMPs behave this way and libata works around by always issuing hardreset if the host supports PMP. Like the above example, libata has developed a number of mechanisms aiming to promote softreset to hardreset if softreset is not going to work. This approach is time consuming and error prone. Also, note that, dependingon how you read the specs, it could be argued that PMP fan-out ports require COMRESET to start operation. In fact, all the PMPs on the market except one don't work properly if COMRESET is not issued to fan-out ports after PMP reset. * COMRESET is an integral part of SATA connection and any working device should be able to handle COMRESET properly. After all, it's the way to signal hardreset during reboot. This is the most used and recommended (at least by the ahci spec) method of resetting devices. So, this patch makes libata prefer hardreset over softreset by making the following changes. * Rename ATA_EH_RESET_MASK to ATA_EH_RESET and use it whereever ATA_EH_{SOFT|HARD}RESET used to be used. ATA_EH_{SOFT|HARD}RESET is now only used to tell prereset whether soft or hard reset will be issued. * Strip out now unneeded promote-to-hardreset logics from ata_eh_reset(), ata_std_prereset(), sata_pmp_std_prereset() and other places. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-01-23 23:05:14 +08:00
action |= ATA_EH_RESET;
ata_ehi_push_desc(ehi, "parity error");
}
if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
ata_ehi_hotplugged(ehi);
ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
"dev disconnect" : "dev connect");
libata: prefer hardreset When both soft and hard resets are available, libata preferred softreset till now. The logic behind it was to be softer to devices; however, this doesn't really help much. Rationales for the change: * BIOS may freeze lock certain things during boot and softreset can't unlock those. This by itself is okay but during operation PHY event or other error conditions can trigger hardreset and the device may end up with different configuration. For example, after a hardreset, previously unlockable HPA can be unlocked resulting in different device size and thus revalidation failure. Similar condition can occur during or after resume. * Certain ATAPI devices require hardreset to recover after certain error conditions. On PATA, this is done by issuing the DEVICE RESET command. On SATA, COMRESET has equivalent effect. The problem is that DEVICE RESET needs its own execution protocol. For SFF controllers with bare TF access, it can be easily implemented but more advanced controllers (e.g. ahci and sata_sil24) require specialized implementations. Simply using hardreset solves the problem nicely. * COMRESET initialization sequence is the norm in SATA land and many SATA devices don't work properly if only SRST is used. For example, some PMPs behave this way and libata works around by always issuing hardreset if the host supports PMP. Like the above example, libata has developed a number of mechanisms aiming to promote softreset to hardreset if softreset is not going to work. This approach is time consuming and error prone. Also, note that, dependingon how you read the specs, it could be argued that PMP fan-out ports require COMRESET to start operation. In fact, all the PMPs on the market except one don't work properly if COMRESET is not issued to fan-out ports after PMP reset. * COMRESET is an integral part of SATA connection and any working device should be able to handle COMRESET properly. After all, it's the way to signal hardreset during reboot. This is the most used and recommended (at least by the ahci spec) method of resetting devices. So, this patch makes libata prefer hardreset over softreset by making the following changes. * Rename ATA_EH_RESET_MASK to ATA_EH_RESET and use it whereever ATA_EH_{SOFT|HARD}RESET used to be used. ATA_EH_{SOFT|HARD}RESET is now only used to tell prereset whether soft or hard reset will be issued. * Strip out now unneeded promote-to-hardreset logics from ata_eh_reset(), ata_std_prereset(), sata_pmp_std_prereset() and other places. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-01-23 23:05:14 +08:00
action |= ATA_EH_RESET;
}
if (IS_GEN_I(hpriv)) {
eh_freeze_mask = EDMA_EH_FREEZE_5;
if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
pp = ap->private_data;
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
ata_ehi_push_desc(ehi, "EDMA self-disable");
}
} else {
eh_freeze_mask = EDMA_EH_FREEZE;
if (edma_err_cause & EDMA_ERR_SELF_DIS) {
pp = ap->private_data;
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
ata_ehi_push_desc(ehi, "EDMA self-disable");
}
if (edma_err_cause & EDMA_ERR_SERR) {
sata_scr_read(&ap->link, SCR_ERROR, &serr);
sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
err_mask = AC_ERR_ATA_BUS;
libata: prefer hardreset When both soft and hard resets are available, libata preferred softreset till now. The logic behind it was to be softer to devices; however, this doesn't really help much. Rationales for the change: * BIOS may freeze lock certain things during boot and softreset can't unlock those. This by itself is okay but during operation PHY event or other error conditions can trigger hardreset and the device may end up with different configuration. For example, after a hardreset, previously unlockable HPA can be unlocked resulting in different device size and thus revalidation failure. Similar condition can occur during or after resume. * Certain ATAPI devices require hardreset to recover after certain error conditions. On PATA, this is done by issuing the DEVICE RESET command. On SATA, COMRESET has equivalent effect. The problem is that DEVICE RESET needs its own execution protocol. For SFF controllers with bare TF access, it can be easily implemented but more advanced controllers (e.g. ahci and sata_sil24) require specialized implementations. Simply using hardreset solves the problem nicely. * COMRESET initialization sequence is the norm in SATA land and many SATA devices don't work properly if only SRST is used. For example, some PMPs behave this way and libata works around by always issuing hardreset if the host supports PMP. Like the above example, libata has developed a number of mechanisms aiming to promote softreset to hardreset if softreset is not going to work. This approach is time consuming and error prone. Also, note that, dependingon how you read the specs, it could be argued that PMP fan-out ports require COMRESET to start operation. In fact, all the PMPs on the market except one don't work properly if COMRESET is not issued to fan-out ports after PMP reset. * COMRESET is an integral part of SATA connection and any working device should be able to handle COMRESET properly. After all, it's the way to signal hardreset during reboot. This is the most used and recommended (at least by the ahci spec) method of resetting devices. So, this patch makes libata prefer hardreset over softreset by making the following changes. * Rename ATA_EH_RESET_MASK to ATA_EH_RESET and use it whereever ATA_EH_{SOFT|HARD}RESET used to be used. ATA_EH_{SOFT|HARD}RESET is now only used to tell prereset whether soft or hard reset will be issued. * Strip out now unneeded promote-to-hardreset logics from ata_eh_reset(), ata_std_prereset(), sata_pmp_std_prereset() and other places. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-01-23 23:05:14 +08:00
action |= ATA_EH_RESET;
}
}
/* Clear EDMA now that SERR cleanup done */
writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
if (!err_mask) {
err_mask = AC_ERR_OTHER;
libata: prefer hardreset When both soft and hard resets are available, libata preferred softreset till now. The logic behind it was to be softer to devices; however, this doesn't really help much. Rationales for the change: * BIOS may freeze lock certain things during boot and softreset can't unlock those. This by itself is okay but during operation PHY event or other error conditions can trigger hardreset and the device may end up with different configuration. For example, after a hardreset, previously unlockable HPA can be unlocked resulting in different device size and thus revalidation failure. Similar condition can occur during or after resume. * Certain ATAPI devices require hardreset to recover after certain error conditions. On PATA, this is done by issuing the DEVICE RESET command. On SATA, COMRESET has equivalent effect. The problem is that DEVICE RESET needs its own execution protocol. For SFF controllers with bare TF access, it can be easily implemented but more advanced controllers (e.g. ahci and sata_sil24) require specialized implementations. Simply using hardreset solves the problem nicely. * COMRESET initialization sequence is the norm in SATA land and many SATA devices don't work properly if only SRST is used. For example, some PMPs behave this way and libata works around by always issuing hardreset if the host supports PMP. Like the above example, libata has developed a number of mechanisms aiming to promote softreset to hardreset if softreset is not going to work. This approach is time consuming and error prone. Also, note that, dependingon how you read the specs, it could be argued that PMP fan-out ports require COMRESET to start operation. In fact, all the PMPs on the market except one don't work properly if COMRESET is not issued to fan-out ports after PMP reset. * COMRESET is an integral part of SATA connection and any working device should be able to handle COMRESET properly. After all, it's the way to signal hardreset during reboot. This is the most used and recommended (at least by the ahci spec) method of resetting devices. So, this patch makes libata prefer hardreset over softreset by making the following changes. * Rename ATA_EH_RESET_MASK to ATA_EH_RESET and use it whereever ATA_EH_{SOFT|HARD}RESET used to be used. ATA_EH_{SOFT|HARD}RESET is now only used to tell prereset whether soft or hard reset will be issued. * Strip out now unneeded promote-to-hardreset logics from ata_eh_reset(), ata_std_prereset(), sata_pmp_std_prereset() and other places. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-01-23 23:05:14 +08:00
action |= ATA_EH_RESET;
}
ehi->serror |= serr;
ehi->action |= action;
if (qc)
qc->err_mask |= err_mask;
else
ehi->err_mask |= err_mask;
if (edma_err_cause & eh_freeze_mask)
ata_port_freeze(ap);
else
ata_port_abort(ap);
}
static void mv_intr_pio(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
u8 ata_status;
/* ignore spurious intr if drive still BUSY */
ata_status = readb(ap->ioaddr.status_addr);
if (unlikely(ata_status & ATA_BUSY))
return;
/* get active ATA command */
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (unlikely(!qc)) /* no active tag */
return;
if (qc->tf.flags & ATA_TFLAG_POLLING) /* polling; we don't own qc */
return;
/* and finally, complete the ATA command */
qc->err_mask |= ac_err_mask(ata_status);
ata_qc_complete(qc);
}
static void mv_intr_edma(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp = ap->private_data;
struct ata_queued_cmd *qc;
u32 out_index, in_index;
bool work_done = false;
/* get h/w response queue pointer */
in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
while (1) {
u16 status;
unsigned int tag;
/* get s/w response queue last-read pointer, and compare */
out_index = pp->resp_idx & MV_MAX_Q_DEPTH_MASK;
if (in_index == out_index)
break;
/* 50xx: get active ATA command */
if (IS_GEN_I(hpriv))
tag = ap->link.active_tag;
/* Gen II/IIE: get active ATA command via tag, to enable
* support for queueing. this works transparently for
* queued and non-queued modes.
*/
else
tag = le16_to_cpu(pp->crpb[out_index].id) & 0x1f;
qc = ata_qc_from_tag(ap, tag);
/* For non-NCQ mode, the lower 8 bits of status
* are from EDMA_ERR_IRQ_CAUSE_OFS,
* which should be zero if all went well.
*/
status = le16_to_cpu(pp->crpb[out_index].flags);
if ((status & 0xff) && !(pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
mv_err_intr(ap, qc);
return;
}
/* and finally, complete the ATA command */
if (qc) {
qc->err_mask |=
ac_err_mask(status >> CRPB_FLAG_STATUS_SHIFT);
ata_qc_complete(qc);
}
/* advance software response queue pointer, to
* indicate (after the loop completes) to hardware
* that we have consumed a response queue entry.
*/
work_done = true;
pp->resp_idx++;
}
if (work_done)
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
(out_index << EDMA_RSP_Q_PTR_SHIFT),
port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
}
/**
* mv_host_intr - Handle all interrupts on the given host controller
* @host: host specific structure
* @relevant: port error bits relevant to this host controller
* @hc: which host controller we're to look at
*
* Read then write clear the HC interrupt status then walk each
* port connected to the HC and see if it needs servicing. Port
* success ints are reported in the HC interrupt status reg, the
* port error ints are reported in the higher level main
* interrupt status register and thus are passed in via the
* 'relevant' argument.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
{
struct mv_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->base;
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
u32 hc_irq_cause;
int port, port0, last_port;
if (hc == 0)
port0 = 0;
else
port0 = MV_PORTS_PER_HC;
if (HAS_PCI(host))
last_port = port0 + MV_PORTS_PER_HC;
else
last_port = port0 + hpriv->n_ports;
/* we'll need the HC success int register in most cases */
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
if (!hc_irq_cause)
return;
writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
hc, relevant, hc_irq_cause);
sata_mv: fix loop with last port commit f351b2d638c3cb0b95adde3549b7bfaf3f991dfa sata_mv: Support SoC controllers cause panic: scsi 4:0:0:0: Direct-Access ATA HITACHI HDS7225S V44O PQ: 0 ANSI: 5 sd 4:0:0:0: [sde] 488390625 512-byte hardware sectors (250056 MB) sd 4:0:0:0: [sde] Write Protect is off sd 4:0:0:0: [sde] Mode Sense: 00 3a 00 00 sd 4:0:0:0: [sde] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA sd 4:0:0:0: [sde] 488390625 512-byte hardware sectors (250056 MB) sd 4:0:0:0: [sde] Write Protect is off sd 4:0:0:0: [sde] Mode Sense: 00 3a 00 00 sd 4:0:0:0: [sde] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA sde:<1>BUG: unable to handle kernel NULL pointer dereference at 000000000000001a IP: [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc PGD 0 Oops: 0000 [1] SMP CPU 3 Modules linked in: Pid: 0, comm: swapper Not tainted 2.6.24-smp-08636-g0afc2ed-dirty #26 RIP: 0010:[<ffffffff806262c7>] [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc RSP: 0000:ffff8102050bbec8 EFLAGS: 00010297 RAX: 0000000000000008 RBX: 0000000000000000 RCX: 0000000000000003 RDX: 0000000000008000 RSI: 0000000000000286 RDI: ffff8102035180e0 RBP: 0000000000000001 R08: 0000000000000003 R09: ffff8102036613e0 R10: 0000000000000002 R11: ffffffff8061474c R12: ffff8102035bf828 R13: 0000000000000008 R14: ffff81020348ece8 R15: ffffc20002cb2000 FS: 0000000000000000(0000) GS:ffff810405025700(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000001a CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 0, threadinfo ffff810405094000, task ffff8102050b28c0) Stack: 000000010000000c 0002040000220400 0000001100000002 ffff81020348eda8 0000000000000001 ffff8102035f2cc0 0000000000000000 0000000000000000 0000000000000018 0000000000000000 0000000000000000 ffffffff80269ee8 Call Trace: <IRQ> [<ffffffff80269ee8>] ? handle_IRQ_event+0x25/0x53 [<ffffffff8026b393>] ? handle_fasteoi_irq+0x90/0xc8 [<ffffffff802218e2>] ? do_IRQ+0xf1/0x15f [<ffffffff8021df24>] ? default_idle+0x0/0x55 [<ffffffff8021f361>] ? ret_from_intr+0x0/0xa <EOI> [<ffffffff8023010c>] ? lapic_next_event+0x0/0xa [<ffffffff8021df55>] ? default_idle+0x31/0x55 [<ffffffff8021df50>] ? default_idle+0x2c/0x55 [<ffffffff8021df24>] ? default_idle+0x0/0x55 [<ffffffff8021e00b>] ? cpu_idle+0x92/0xb8 Code: 41 14 85 c0 89 44 24 14 0f 84 9d 02 00 00 f7 d0 01 d6 41 89 d5 89 41 14 8b 41 14 89 34 24 e9 7e 02 00 00 49 63 c5 49 8b 5c c6 48 <f6> 43 1a 80 4c 8b a3 20 37 00 00 0f 85 62 02 00 00 31 c9 41 83 RIP [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc RSP <ffff8102050bbec8> CR2: 000000000000001a ---[ end trace 2583b5f7a5350584 ]--- Kernel panic - not syncing: Aiee, killing interrupt handler! last_port already include port0 base. this patch change use last_port directly, and move pp assignment later. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-02-08 07:06:17 +08:00
for (port = port0; port < last_port; port++) {
struct ata_port *ap = host->ports[port];
sata_mv: fix loop with last port commit f351b2d638c3cb0b95adde3549b7bfaf3f991dfa sata_mv: Support SoC controllers cause panic: scsi 4:0:0:0: Direct-Access ATA HITACHI HDS7225S V44O PQ: 0 ANSI: 5 sd 4:0:0:0: [sde] 488390625 512-byte hardware sectors (250056 MB) sd 4:0:0:0: [sde] Write Protect is off sd 4:0:0:0: [sde] Mode Sense: 00 3a 00 00 sd 4:0:0:0: [sde] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA sd 4:0:0:0: [sde] 488390625 512-byte hardware sectors (250056 MB) sd 4:0:0:0: [sde] Write Protect is off sd 4:0:0:0: [sde] Mode Sense: 00 3a 00 00 sd 4:0:0:0: [sde] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA sde:<1>BUG: unable to handle kernel NULL pointer dereference at 000000000000001a IP: [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc PGD 0 Oops: 0000 [1] SMP CPU 3 Modules linked in: Pid: 0, comm: swapper Not tainted 2.6.24-smp-08636-g0afc2ed-dirty #26 RIP: 0010:[<ffffffff806262c7>] [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc RSP: 0000:ffff8102050bbec8 EFLAGS: 00010297 RAX: 0000000000000008 RBX: 0000000000000000 RCX: 0000000000000003 RDX: 0000000000008000 RSI: 0000000000000286 RDI: ffff8102035180e0 RBP: 0000000000000001 R08: 0000000000000003 R09: ffff8102036613e0 R10: 0000000000000002 R11: ffffffff8061474c R12: ffff8102035bf828 R13: 0000000000000008 R14: ffff81020348ece8 R15: ffffc20002cb2000 FS: 0000000000000000(0000) GS:ffff810405025700(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000001a CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 0, threadinfo ffff810405094000, task ffff8102050b28c0) Stack: 000000010000000c 0002040000220400 0000001100000002 ffff81020348eda8 0000000000000001 ffff8102035f2cc0 0000000000000000 0000000000000000 0000000000000018 0000000000000000 0000000000000000 ffffffff80269ee8 Call Trace: <IRQ> [<ffffffff80269ee8>] ? handle_IRQ_event+0x25/0x53 [<ffffffff8026b393>] ? handle_fasteoi_irq+0x90/0xc8 [<ffffffff802218e2>] ? do_IRQ+0xf1/0x15f [<ffffffff8021df24>] ? default_idle+0x0/0x55 [<ffffffff8021f361>] ? ret_from_intr+0x0/0xa <EOI> [<ffffffff8023010c>] ? lapic_next_event+0x0/0xa [<ffffffff8021df55>] ? default_idle+0x31/0x55 [<ffffffff8021df50>] ? default_idle+0x2c/0x55 [<ffffffff8021df24>] ? default_idle+0x0/0x55 [<ffffffff8021e00b>] ? cpu_idle+0x92/0xb8 Code: 41 14 85 c0 89 44 24 14 0f 84 9d 02 00 00 f7 d0 01 d6 41 89 d5 89 41 14 8b 41 14 89 34 24 e9 7e 02 00 00 49 63 c5 49 8b 5c c6 48 <f6> 43 1a 80 4c 8b a3 20 37 00 00 0f 85 62 02 00 00 31 c9 41 83 RIP [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc RSP <ffff8102050bbec8> CR2: 000000000000001a ---[ end trace 2583b5f7a5350584 ]--- Kernel panic - not syncing: Aiee, killing interrupt handler! last_port already include port0 base. this patch change use last_port directly, and move pp assignment later. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-02-08 07:06:17 +08:00
struct mv_port_priv *pp;
int have_err_bits, hard_port, shift;
if ((!ap) || (ap->flags & ATA_FLAG_DISABLED))
continue;
sata_mv: fix loop with last port commit f351b2d638c3cb0b95adde3549b7bfaf3f991dfa sata_mv: Support SoC controllers cause panic: scsi 4:0:0:0: Direct-Access ATA HITACHI HDS7225S V44O PQ: 0 ANSI: 5 sd 4:0:0:0: [sde] 488390625 512-byte hardware sectors (250056 MB) sd 4:0:0:0: [sde] Write Protect is off sd 4:0:0:0: [sde] Mode Sense: 00 3a 00 00 sd 4:0:0:0: [sde] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA sd 4:0:0:0: [sde] 488390625 512-byte hardware sectors (250056 MB) sd 4:0:0:0: [sde] Write Protect is off sd 4:0:0:0: [sde] Mode Sense: 00 3a 00 00 sd 4:0:0:0: [sde] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA sde:<1>BUG: unable to handle kernel NULL pointer dereference at 000000000000001a IP: [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc PGD 0 Oops: 0000 [1] SMP CPU 3 Modules linked in: Pid: 0, comm: swapper Not tainted 2.6.24-smp-08636-g0afc2ed-dirty #26 RIP: 0010:[<ffffffff806262c7>] [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc RSP: 0000:ffff8102050bbec8 EFLAGS: 00010297 RAX: 0000000000000008 RBX: 0000000000000000 RCX: 0000000000000003 RDX: 0000000000008000 RSI: 0000000000000286 RDI: ffff8102035180e0 RBP: 0000000000000001 R08: 0000000000000003 R09: ffff8102036613e0 R10: 0000000000000002 R11: ffffffff8061474c R12: ffff8102035bf828 R13: 0000000000000008 R14: ffff81020348ece8 R15: ffffc20002cb2000 FS: 0000000000000000(0000) GS:ffff810405025700(0000) knlGS:0000000000000000 CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b CR2: 000000000000001a CR3: 0000000000201000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper (pid: 0, threadinfo ffff810405094000, task ffff8102050b28c0) Stack: 000000010000000c 0002040000220400 0000001100000002 ffff81020348eda8 0000000000000001 ffff8102035f2cc0 0000000000000000 0000000000000000 0000000000000018 0000000000000000 0000000000000000 ffffffff80269ee8 Call Trace: <IRQ> [<ffffffff80269ee8>] ? handle_IRQ_event+0x25/0x53 [<ffffffff8026b393>] ? handle_fasteoi_irq+0x90/0xc8 [<ffffffff802218e2>] ? do_IRQ+0xf1/0x15f [<ffffffff8021df24>] ? default_idle+0x0/0x55 [<ffffffff8021f361>] ? ret_from_intr+0x0/0xa <EOI> [<ffffffff8023010c>] ? lapic_next_event+0x0/0xa [<ffffffff8021df55>] ? default_idle+0x31/0x55 [<ffffffff8021df50>] ? default_idle+0x2c/0x55 [<ffffffff8021df24>] ? default_idle+0x0/0x55 [<ffffffff8021e00b>] ? cpu_idle+0x92/0xb8 Code: 41 14 85 c0 89 44 24 14 0f 84 9d 02 00 00 f7 d0 01 d6 41 89 d5 89 41 14 8b 41 14 89 34 24 e9 7e 02 00 00 49 63 c5 49 8b 5c c6 48 <f6> 43 1a 80 4c 8b a3 20 37 00 00 0f 85 62 02 00 00 31 c9 41 83 RIP [<ffffffff806262c7>] mv_interrupt+0x21c/0x4cc RSP <ffff8102050bbec8> CR2: 000000000000001a ---[ end trace 2583b5f7a5350584 ]--- Kernel panic - not syncing: Aiee, killing interrupt handler! last_port already include port0 base. this patch change use last_port directly, and move pp assignment later. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-02-08 07:06:17 +08:00
pp = ap->private_data;
shift = port << 1; /* (port * 2) */
if (port >= MV_PORTS_PER_HC)
shift++; /* skip bit 8 in the HC Main IRQ reg */
have_err_bits = ((PORT0_ERR << shift) & relevant);
if (unlikely(have_err_bits)) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
continue;
mv_err_intr(ap, qc);
continue;
}
hard_port = mv_hardport_from_port(port); /* range 0..3 */
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause)
mv_intr_edma(ap);
} else {
if ((DEV_IRQ << hard_port) & hc_irq_cause)
mv_intr_pio(ap);
}
}
VPRINTK("EXIT\n");
}
static void mv_pci_error(struct ata_host *host, void __iomem *mmio)
{
struct mv_host_priv *hpriv = host->private_data;
struct ata_port *ap;
struct ata_queued_cmd *qc;
struct ata_eh_info *ehi;
unsigned int i, err_mask, printed = 0;
u32 err_cause;
err_cause = readl(mmio + hpriv->irq_cause_ofs);
dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
err_cause);
DPRINTK("All regs @ PCI error\n");
mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
writelfl(0, mmio + hpriv->irq_cause_ofs);
for (i = 0; i < host->n_ports; i++) {
ap = host->ports[i];
if (!ata_link_offline(&ap->link)) {
ehi = &ap->link.eh_info;
ata_ehi_clear_desc(ehi);
if (!printed++)
ata_ehi_push_desc(ehi,
"PCI err cause 0x%08x", err_cause);
err_mask = AC_ERR_HOST_BUS;
libata: prefer hardreset When both soft and hard resets are available, libata preferred softreset till now. The logic behind it was to be softer to devices; however, this doesn't really help much. Rationales for the change: * BIOS may freeze lock certain things during boot and softreset can't unlock those. This by itself is okay but during operation PHY event or other error conditions can trigger hardreset and the device may end up with different configuration. For example, after a hardreset, previously unlockable HPA can be unlocked resulting in different device size and thus revalidation failure. Similar condition can occur during or after resume. * Certain ATAPI devices require hardreset to recover after certain error conditions. On PATA, this is done by issuing the DEVICE RESET command. On SATA, COMRESET has equivalent effect. The problem is that DEVICE RESET needs its own execution protocol. For SFF controllers with bare TF access, it can be easily implemented but more advanced controllers (e.g. ahci and sata_sil24) require specialized implementations. Simply using hardreset solves the problem nicely. * COMRESET initialization sequence is the norm in SATA land and many SATA devices don't work properly if only SRST is used. For example, some PMPs behave this way and libata works around by always issuing hardreset if the host supports PMP. Like the above example, libata has developed a number of mechanisms aiming to promote softreset to hardreset if softreset is not going to work. This approach is time consuming and error prone. Also, note that, dependingon how you read the specs, it could be argued that PMP fan-out ports require COMRESET to start operation. In fact, all the PMPs on the market except one don't work properly if COMRESET is not issued to fan-out ports after PMP reset. * COMRESET is an integral part of SATA connection and any working device should be able to handle COMRESET properly. After all, it's the way to signal hardreset during reboot. This is the most used and recommended (at least by the ahci spec) method of resetting devices. So, this patch makes libata prefer hardreset over softreset by making the following changes. * Rename ATA_EH_RESET_MASK to ATA_EH_RESET and use it whereever ATA_EH_{SOFT|HARD}RESET used to be used. ATA_EH_{SOFT|HARD}RESET is now only used to tell prereset whether soft or hard reset will be issued. * Strip out now unneeded promote-to-hardreset logics from ata_eh_reset(), ata_std_prereset(), sata_pmp_std_prereset() and other places. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-01-23 23:05:14 +08:00
ehi->action = ATA_EH_RESET;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc)
qc->err_mask |= err_mask;
else
ehi->err_mask |= err_mask;
ata_port_freeze(ap);
}
}
}
/**
* mv_interrupt - Main interrupt event handler
* @irq: unused
* @dev_instance: private data; in this case the host structure
*
* Read the read only register to determine if any host
* controllers have pending interrupts. If so, call lower level
* routine to handle. Also check for PCI errors which are only
* reported here.
*
* LOCKING:
* This routine holds the host lock while processing pending
* interrupts.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t mv_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct mv_host_priv *hpriv = host->private_data;
unsigned int hc, handled = 0, n_hcs;
void __iomem *mmio = hpriv->base;
u32 irq_stat, irq_mask;
/* Note to self: &host->lock == &ap->host->lock == ap->lock */
spin_lock(&host->lock);
irq_stat = readl(hpriv->main_cause_reg_addr);
irq_mask = readl(hpriv->main_mask_reg_addr);
/* check the cases where we either have nothing pending or have read
* a bogus register value which can indicate HW removal or PCI fault
*/
if (!(irq_stat & irq_mask) || (0xffffffffU == irq_stat))
goto out_unlock;
n_hcs = mv_get_hc_count(host->ports[0]->flags);
if (unlikely((irq_stat & PCI_ERR) && HAS_PCI(host))) {
mv_pci_error(host, mmio);
handled = 1;
goto out_unlock; /* skip all other HC irq handling */
}
for (hc = 0; hc < n_hcs; hc++) {
u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
if (relevant) {
mv_host_intr(host, relevant, hc);
handled = 1;
}
}
out_unlock:
spin_unlock(&host->lock);
return IRQ_RETVAL(handled);
}
2005-11-14 06:47:51 +08:00
static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
{
unsigned int ofs;
switch (sc_reg_in) {
case SCR_STATUS:
case SCR_ERROR:
case SCR_CONTROL:
ofs = sc_reg_in * sizeof(u32);
break;
default:
ofs = 0xffffffffU;
break;
}
return ofs;
}
static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
2005-11-14 06:47:51 +08:00
{
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *mmio = hpriv->base;
void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2005-11-14 06:47:51 +08:00
unsigned int ofs = mv5_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU) {
*val = readl(addr + ofs);
return 0;
} else
return -EINVAL;
2005-11-14 06:47:51 +08:00
}
static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
2005-11-14 06:47:51 +08:00
{
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *mmio = hpriv->base;
void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2005-11-14 06:47:51 +08:00
unsigned int ofs = mv5_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU) {
writelfl(val, addr + ofs);
return 0;
} else
return -EINVAL;
2005-11-14 06:47:51 +08:00
}
static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
int early_5080;
early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
if (!early_5080) {
u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
tmp |= (1 << 0);
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
}
mv_reset_pci_bus(host, mmio);
}
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
writel(0x0fcfffff, mmio + MV_FLASH_CTL);
}
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio)
{
2005-11-14 06:47:51 +08:00
void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
u32 tmp;
tmp = readl(phy_mmio + MV5_PHY_MODE);
hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
}
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
{
u32 tmp;
writel(0, mmio + MV_GPIO_PORT_CTL);
/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
tmp |= ~(1 << 0);
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
}
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
2005-11-14 06:47:51 +08:00
void __iomem *phy_mmio = mv5_phy_base(mmio, port);
const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
u32 tmp;
int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
if (fix_apm_sq) {
tmp = readl(phy_mmio + MV5_LT_MODE);
tmp |= (1 << 19);
writel(tmp, phy_mmio + MV5_LT_MODE);
tmp = readl(phy_mmio + MV5_PHY_CTL);
tmp &= ~0x3;
tmp |= 0x1;
writel(tmp, phy_mmio + MV5_PHY_CTL);
}
tmp = readl(phy_mmio + MV5_PHY_MODE);
tmp &= ~mask;
tmp |= hpriv->signal[port].pre;
tmp |= hpriv->signal[port].amps;
writel(tmp, phy_mmio + MV5_PHY_MODE);
}
2005-11-14 06:47:51 +08:00
#undef ZERO
#define ZERO(reg) writel(0, port_mmio + (reg))
static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
void __iomem *port_mmio = mv_port_base(mmio, port);
/*
* The datasheet warns against setting ATA_RST when EDMA is active
* (but doesn't say what the problem might be). So we first try
* to disable the EDMA engine before doing the ATA_RST operation.
*/
mv_reset_channel(hpriv, mmio, port);
2005-11-14 06:47:51 +08:00
ZERO(0x028); /* command */
writel(0x11f, port_mmio + EDMA_CFG_OFS);
ZERO(0x004); /* timer */
ZERO(0x008); /* irq err cause */
ZERO(0x00c); /* irq err mask */
ZERO(0x010); /* rq bah */
ZERO(0x014); /* rq inp */
ZERO(0x018); /* rq outp */
ZERO(0x01c); /* respq bah */
ZERO(0x024); /* respq outp */
ZERO(0x020); /* respq inp */
ZERO(0x02c); /* test control */
writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
}
#undef ZERO
#define ZERO(reg) writel(0, hc_mmio + (reg))
static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int hc)
{
2005-11-14 06:47:51 +08:00
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
u32 tmp;
ZERO(0x00c);
ZERO(0x010);
ZERO(0x014);
ZERO(0x018);
tmp = readl(hc_mmio + 0x20);
tmp &= 0x1c1c1c1c;
tmp |= 0x03030303;
writel(tmp, hc_mmio + 0x20);
}
#undef ZERO
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc)
{
unsigned int hc, port;
for (hc = 0; hc < n_hc; hc++) {
for (port = 0; port < MV_PORTS_PER_HC; port++)
mv5_reset_hc_port(hpriv, mmio,
(hc * MV_PORTS_PER_HC) + port);
mv5_reset_one_hc(hpriv, mmio, hc);
}
return 0;
}
#undef ZERO
#define ZERO(reg) writel(0, mmio + (reg))
static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
{
struct mv_host_priv *hpriv = host->private_data;
u32 tmp;
tmp = readl(mmio + MV_PCI_MODE);
tmp &= 0xff00ffff;
writel(tmp, mmio + MV_PCI_MODE);
ZERO(MV_PCI_DISC_TIMER);
ZERO(MV_PCI_MSI_TRIGGER);
writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
ZERO(HC_MAIN_IRQ_MASK_OFS);
ZERO(MV_PCI_SERR_MASK);
ZERO(hpriv->irq_cause_ofs);
ZERO(hpriv->irq_mask_ofs);
ZERO(MV_PCI_ERR_LOW_ADDRESS);
ZERO(MV_PCI_ERR_HIGH_ADDRESS);
ZERO(MV_PCI_ERR_ATTRIBUTE);
ZERO(MV_PCI_ERR_COMMAND);
}
#undef ZERO
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
u32 tmp;
mv5_reset_flash(hpriv, mmio);
tmp = readl(mmio + MV_GPIO_PORT_CTL);
tmp &= 0x3;
tmp |= (1 << 5) | (1 << 6);
writel(tmp, mmio + MV_GPIO_PORT_CTL);
}
/**
* mv6_reset_hc - Perform the 6xxx global soft reset
* @mmio: base address of the HBA
*
* This routine only applies to 6xxx parts.
*
* LOCKING:
* Inherited from caller.
*/
2005-11-14 06:47:51 +08:00
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc)
{
void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
int i, rc = 0;
u32 t;
/* Following procedure defined in PCI "main command and status
* register" table.
*/
t = readl(reg);
writel(t | STOP_PCI_MASTER, reg);
for (i = 0; i < 1000; i++) {
udelay(1);
t = readl(reg);
if (PCI_MASTER_EMPTY & t)
break;
}
if (!(PCI_MASTER_EMPTY & t)) {
printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
rc = 1;
goto done;
}
/* set reset */
i = 5;
do {
writel(t | GLOB_SFT_RST, reg);
t = readl(reg);
udelay(1);
} while (!(GLOB_SFT_RST & t) && (i-- > 0));
if (!(GLOB_SFT_RST & t)) {
printk(KERN_ERR DRV_NAME ": can't set global reset\n");
rc = 1;
goto done;
}
/* clear reset and *reenable the PCI master* (not mentioned in spec) */
i = 5;
do {
writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
t = readl(reg);
udelay(1);
} while ((GLOB_SFT_RST & t) && (i-- > 0));
if (GLOB_SFT_RST & t) {
printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
rc = 1;
}
done:
return rc;
}
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio)
{
void __iomem *port_mmio;
u32 tmp;
tmp = readl(mmio + MV_RESET_CFG);
if ((tmp & (1 << 0)) == 0) {
hpriv->signal[idx].amps = 0x7 << 8;
hpriv->signal[idx].pre = 0x1 << 5;
return;
}
port_mmio = mv_port_base(mmio, idx);
tmp = readl(port_mmio + PHY_MODE2);
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
}
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
{
writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
}
2005-11-14 06:47:51 +08:00
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
2005-11-14 06:47:51 +08:00
void __iomem *port_mmio = mv_port_base(mmio, port);
u32 hp_flags = hpriv->hp_flags;
int fix_phy_mode2 =
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
int fix_phy_mode4 =
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
u32 m2, tmp;
if (fix_phy_mode2) {
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~(1 << 16);
m2 |= (1 << 31);
writel(m2, port_mmio + PHY_MODE2);
udelay(200);
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~((1 << 16) | (1 << 31));
writel(m2, port_mmio + PHY_MODE2);
udelay(200);
}
/* who knows what this magic does */
tmp = readl(port_mmio + PHY_MODE3);
tmp &= ~0x7F800000;
tmp |= 0x2A800000;
writel(tmp, port_mmio + PHY_MODE3);
if (fix_phy_mode4) {
u32 m4;
m4 = readl(port_mmio + PHY_MODE4);
if (hp_flags & MV_HP_ERRATA_60X1B2)
tmp = readl(port_mmio + PHY_MODE3);
/* workaround for errata FEr SATA#10 (part 1) */
m4 = (m4 & ~(1 << 1)) | (1 << 0);
writel(m4, port_mmio + PHY_MODE4);
if (hp_flags & MV_HP_ERRATA_60X1B2)
writel(tmp, port_mmio + PHY_MODE3);
}
/* Revert values of pre-emphasis and signal amps to the saved ones */
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~MV_M2_PREAMP_MASK;
m2 |= hpriv->signal[port].amps;
m2 |= hpriv->signal[port].pre;
m2 &= ~(1 << 16);
/* according to mvSata 3.6.1, some IIE values are fixed */
if (IS_GEN_IIE(hpriv)) {
m2 &= ~0xC30FF01F;
m2 |= 0x0000900F;
}
writel(m2, port_mmio + PHY_MODE2);
}
/* TODO: use the generic LED interface to configure the SATA Presence */
/* & Acitivy LEDs on the board */
static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
void __iomem *mmio)
{
return;
}
static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio)
{
void __iomem *port_mmio;
u32 tmp;
port_mmio = mv_port_base(mmio, idx);
tmp = readl(port_mmio + PHY_MODE2);
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
}
#undef ZERO
#define ZERO(reg) writel(0, port_mmio + (reg))
static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
void __iomem *mmio, unsigned int port)
{
void __iomem *port_mmio = mv_port_base(mmio, port);
/*
* The datasheet warns against setting ATA_RST when EDMA is active
* (but doesn't say what the problem might be). So we first try
* to disable the EDMA engine before doing the ATA_RST operation.
*/
mv_reset_channel(hpriv, mmio, port);
ZERO(0x028); /* command */
writel(0x101f, port_mmio + EDMA_CFG_OFS);
ZERO(0x004); /* timer */
ZERO(0x008); /* irq err cause */
ZERO(0x00c); /* irq err mask */
ZERO(0x010); /* rq bah */
ZERO(0x014); /* rq inp */
ZERO(0x018); /* rq outp */
ZERO(0x01c); /* respq bah */
ZERO(0x024); /* respq outp */
ZERO(0x020); /* respq inp */
ZERO(0x02c); /* test control */
writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
}
#undef ZERO
#define ZERO(reg) writel(0, hc_mmio + (reg))
static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
void __iomem *mmio)
{
void __iomem *hc_mmio = mv_hc_base(mmio, 0);
ZERO(0x00c);
ZERO(0x010);
ZERO(0x014);
}
#undef ZERO
static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
void __iomem *mmio, unsigned int n_hc)
{
unsigned int port;
for (port = 0; port < hpriv->n_ports; port++)
mv_soc_reset_hc_port(hpriv, mmio, port);
mv_soc_reset_one_hc(hpriv, mmio);
return 0;
}
static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
void __iomem *mmio)
{
return;
}
static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
{
return;
}
static void mv_setup_ifctl(void __iomem *port_mmio, int want_gen2i)
{
u32 ifctl = readl(port_mmio + SATA_INTERFACE_CFG);
ifctl = (ifctl & 0xf7f) | 0x9b1000; /* from chip spec */
if (want_gen2i)
ifctl |= (1 << 7); /* enable gen2i speed */
writelfl(ifctl, port_mmio + SATA_INTERFACE_CFG);
}
/*
* Caller must ensure that EDMA is not active,
* by first doing mv_stop_edma() where needed.
*/
static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2005-11-14 06:47:51 +08:00
unsigned int port_no)
{
void __iomem *port_mmio = mv_port_base(mmio, port_no);
mv_stop_edma_engine(port_mmio);
2005-11-14 06:47:51 +08:00
writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
if (!IS_GEN_I(hpriv)) {
/* Enable 3.0gb/s link speed */
mv_setup_ifctl(port_mmio, 1);
2005-11-14 06:47:51 +08:00
}
/*
* Strobing ATA_RST here causes a hard reset of the SATA transport,
* link, and physical layers. It resets all SATA interface registers
* (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2005-11-14 06:47:51 +08:00
*/
writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
udelay(25); /* allow reset propagation */
2005-11-14 06:47:51 +08:00
writelfl(0, port_mmio + EDMA_CMD_OFS);
hpriv->ops->phy_errata(hpriv, mmio, port_no);
if (IS_GEN_I(hpriv))
2005-11-14 06:47:51 +08:00
mdelay(1);
}
static void mv_pmp_select(struct ata_port *ap, int pmp)
{
if (sata_pmp_supported(ap)) {
void __iomem *port_mmio = mv_ap_base(ap);
u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
int old = reg & 0xf;
if (old != pmp) {
reg = (reg & ~0xf) | pmp;
writelfl(reg, port_mmio + SATA_IFCTL_OFS);
}
}
}
static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
mv_pmp_select(link->ap, sata_srst_pmp(link));
return sata_std_hardreset(link, class, deadline);
}
static int mv_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
mv_pmp_select(link->ap, sata_srst_pmp(link));
return ata_sff_softreset(link, class, deadline);
}
static int mv_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp = ap->private_data;
void __iomem *mmio = hpriv->base;
int rc, attempts = 0, extra = 0;
u32 sstatus;
bool online;
mv_reset_channel(hpriv, mmio, ap->port_no);
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
/* Workaround for errata FEr SATA#10 (part 2) */
do {
const unsigned long *timing =
sata_ehc_deb_timing(&link->eh_context);
rc = sata_link_hardreset(link, timing, deadline + extra,
&online, NULL);
if (rc)
return rc;
sata_scr_read(link, SCR_STATUS, &sstatus);
if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
/* Force 1.5gb/s link speed and try again */
mv_setup_ifctl(mv_ap_base(ap), 0);
if (time_after(jiffies + HZ, deadline))
extra = HZ; /* only extend it once, max */
}
} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
return rc;
}
static void mv_eh_freeze(struct ata_port *ap)
{
struct mv_host_priv *hpriv = ap->host->private_data;
unsigned int hc = (ap->port_no > 3) ? 1 : 0;
u32 tmp, mask;
unsigned int shift;
/* FIXME: handle coalescing completion events properly */
shift = ap->port_no * 2;
if (hc > 0)
shift++;
mask = 0x3 << shift;
/* disable assertion of portN err, done events */
tmp = readl(hpriv->main_mask_reg_addr);
writelfl(tmp & ~mask, hpriv->main_mask_reg_addr);
}
static void mv_eh_thaw(struct ata_port *ap)
{
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *mmio = hpriv->base;
unsigned int hc = (ap->port_no > 3) ? 1 : 0;
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
void __iomem *port_mmio = mv_ap_base(ap);
u32 tmp, mask, hc_irq_cause;
unsigned int shift, hc_port_no = ap->port_no;
/* FIXME: handle coalescing completion events properly */
shift = ap->port_no * 2;
if (hc > 0) {
shift++;
hc_port_no -= 4;
}
mask = 0x3 << shift;
/* clear EDMA errors on this port */
writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
/* clear pending irq events */
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
hc_irq_cause &= ~(1 << hc_port_no); /* clear CRPB-done */
hc_irq_cause &= ~(1 << (hc_port_no + 8)); /* clear Device int */
writel(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
/* enable assertion of portN err, done events */
tmp = readl(hpriv->main_mask_reg_addr);
writelfl(tmp | mask, hpriv->main_mask_reg_addr);
}
/**
* mv_port_init - Perform some early initialization on a single port.
* @port: libata data structure storing shadow register addresses
* @port_mmio: base address of the port
*
* Initialize shadow register mmio addresses, clear outstanding
* interrupts on the port, and unmask interrupts for the future
* start of the port.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
{
void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
unsigned serr_ofs;
/* PIO related setup
*/
port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
port->error_addr =
port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
port->status_addr =
port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
/* special case: control/altstatus doesn't have ATA_REG_ address */
port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
/* unused: */
port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
/* Clear any currently outstanding port interrupt conditions */
serr_ofs = mv_scr_offset(SCR_ERROR);
writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
/* unmask all non-transient EDMA error interrupts */
writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
readl(port_mmio + EDMA_CFG_OFS),
readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
}
static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
struct mv_host_priv *hpriv = host->private_data;
u32 hp_flags = hpriv->hp_flags;
switch (board_idx) {
case chip_5080:
hpriv->ops = &mv5xxx_ops;
hp_flags |= MV_HP_GEN_I;
switch (pdev->revision) {
case 0x1:
hp_flags |= MV_HP_ERRATA_50XXB0;
break;
case 0x3:
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
default:
dev_printk(KERN_WARNING, &pdev->dev,
"Applying 50XXB2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
}
break;
case chip_504x:
case chip_508x:
hpriv->ops = &mv5xxx_ops;
hp_flags |= MV_HP_GEN_I;
switch (pdev->revision) {
case 0x0:
hp_flags |= MV_HP_ERRATA_50XXB0;
break;
case 0x3:
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
default:
dev_printk(KERN_WARNING, &pdev->dev,
"Applying B2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
}
break;
case chip_604x:
case chip_608x:
hpriv->ops = &mv6xxx_ops;
hp_flags |= MV_HP_GEN_II;
switch (pdev->revision) {
case 0x7:
hp_flags |= MV_HP_ERRATA_60X1B2;
break;
case 0x9:
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
default:
dev_printk(KERN_WARNING, &pdev->dev,
"Applying B2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_60X1B2;
break;
}
break;
case chip_7042:
hp_flags |= MV_HP_PCIE;
if (pdev->vendor == PCI_VENDOR_ID_TTI &&
(pdev->device == 0x2300 || pdev->device == 0x2310))
{
/*
* Highpoint RocketRAID PCIe 23xx series cards:
*
* Unconfigured drives are treated as "Legacy"
* by the BIOS, and it overwrites sector 8 with
* a "Lgcy" metadata block prior to Linux boot.
*
* Configured drives (RAID or JBOD) leave sector 8
* alone, but instead overwrite a high numbered
* sector for the RAID metadata. This sector can
* be determined exactly, by truncating the physical
* drive capacity to a nice even GB value.
*
* RAID metadata is at: (dev->n_sectors & ~0xfffff)
*
* Warn the user, lest they think we're just buggy.
*/
printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
" BIOS CORRUPTS DATA on all attached drives,"
" regardless of if/how they are configured."
" BEWARE!\n");
printk(KERN_WARNING DRV_NAME ": For data safety, do not"
" use sectors 8-9 on \"Legacy\" drives,"
" and avoid the final two gigabytes on"
" all RocketRAID BIOS initialized drives.\n");
}
case chip_6042:
hpriv->ops = &mv6xxx_ops;
hp_flags |= MV_HP_GEN_IIE;
switch (pdev->revision) {
case 0x0:
hp_flags |= MV_HP_ERRATA_XX42A0;
break;
case 0x1:
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
default:
dev_printk(KERN_WARNING, &pdev->dev,
"Applying 60X1C0 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
}
break;
case chip_soc:
hpriv->ops = &mv_soc_ops;
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
default:
dev_printk(KERN_ERR, host->dev,
"BUG: invalid board index %u\n", board_idx);
return 1;
}
hpriv->hp_flags = hp_flags;
if (hp_flags & MV_HP_PCIE) {
hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
} else {
hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
}
return 0;
}
/**
* mv_init_host - Perform some early initialization of the host.
* @host: ATA host to initialize
* @board_idx: controller index
*
* If possible, do an early global reset of the host. Then do
* our port init and clear/unmask all/relevant host interrupts.
*
* LOCKING:
* Inherited from caller.
*/
static int mv_init_host(struct ata_host *host, unsigned int board_idx)
{
int rc = 0, n_hc, port, hc;
struct mv_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->base;
rc = mv_chip_id(host, board_idx);
if (rc)
goto done;
if (HAS_PCI(host)) {
hpriv->main_cause_reg_addr = hpriv->base +
HC_MAIN_IRQ_CAUSE_OFS;
hpriv->main_mask_reg_addr = hpriv->base + HC_MAIN_IRQ_MASK_OFS;
} else {
hpriv->main_cause_reg_addr = hpriv->base +
HC_SOC_MAIN_IRQ_CAUSE_OFS;
hpriv->main_mask_reg_addr = hpriv->base +
HC_SOC_MAIN_IRQ_MASK_OFS;
}
/* global interrupt mask */
writel(0, hpriv->main_mask_reg_addr);
n_hc = mv_get_hc_count(host->ports[0]->flags);
for (port = 0; port < host->n_ports; port++)
hpriv->ops->read_preamp(hpriv, port, mmio);
2005-11-14 06:47:51 +08:00
rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
if (rc)
goto done;
hpriv->ops->reset_flash(hpriv, mmio);
hpriv->ops->reset_bus(host, mmio);
hpriv->ops->enable_leds(hpriv, mmio);
for (port = 0; port < host->n_ports; port++) {
struct ata_port *ap = host->ports[port];
void __iomem *port_mmio = mv_port_base(mmio, port);
mv_port_init(&ap->ioaddr, port_mmio);
#ifdef CONFIG_PCI
if (HAS_PCI(host)) {
unsigned int offset = port_mmio - mmio;
ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
}
#endif
}
for (hc = 0; hc < n_hc; hc++) {
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
"(before clear)=0x%08x\n", hc,
readl(hc_mmio + HC_CFG_OFS),
readl(hc_mmio + HC_IRQ_CAUSE_OFS));
/* Clear any currently outstanding hc interrupt conditions */
writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
}
if (HAS_PCI(host)) {
/* Clear any currently outstanding host interrupt conditions */
writelfl(0, mmio + hpriv->irq_cause_ofs);
/* and unmask interrupt generation for host regs */
writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
if (IS_GEN_I(hpriv))
writelfl(~HC_MAIN_MASKED_IRQS_5,
hpriv->main_mask_reg_addr);
else
writelfl(~HC_MAIN_MASKED_IRQS,
hpriv->main_mask_reg_addr);
VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
"PCI int cause/mask=0x%08x/0x%08x\n",
readl(hpriv->main_cause_reg_addr),
readl(hpriv->main_mask_reg_addr),
readl(mmio + hpriv->irq_cause_ofs),
readl(mmio + hpriv->irq_mask_ofs));
} else {
writelfl(~HC_MAIN_MASKED_IRQS_SOC,
hpriv->main_mask_reg_addr);
VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
readl(hpriv->main_cause_reg_addr),
readl(hpriv->main_mask_reg_addr));
}
done:
return rc;
}
static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
{
hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
MV_CRQB_Q_SZ, 0);
if (!hpriv->crqb_pool)
return -ENOMEM;
hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
MV_CRPB_Q_SZ, 0);
if (!hpriv->crpb_pool)
return -ENOMEM;
hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
MV_SG_TBL_SZ, 0);
if (!hpriv->sg_tbl_pool)
return -ENOMEM;
return 0;
}
/**
* mv_platform_probe - handle a positive probe of an soc Marvell
* host
* @pdev: platform device found
*
* LOCKING:
* Inherited from caller.
*/
static int mv_platform_probe(struct platform_device *pdev)
{
static int printed_version;
const struct mv_sata_platform_data *mv_platform_data;
const struct ata_port_info *ppi[] =
{ &mv_port_info[chip_soc], NULL };
struct ata_host *host;
struct mv_host_priv *hpriv;
struct resource *res;
int n_ports, rc;
if (!printed_version++)
dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
/*
* Simple resource validation ..
*/
if (unlikely(pdev->num_resources != 2)) {
dev_err(&pdev->dev, "invalid number of resources\n");
return -EINVAL;
}
/*
* Get the register base first
*/
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL)
return -EINVAL;
/* allocate host */
mv_platform_data = pdev->dev.platform_data;
n_ports = mv_platform_data->n_ports;
host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
if (!host || !hpriv)
return -ENOMEM;
host->private_data = hpriv;
hpriv->n_ports = n_ports;
host->iomap = NULL;
hpriv->base = devm_ioremap(&pdev->dev, res->start,
res->end - res->start + 1);
hpriv->base -= MV_SATAHC0_REG_BASE;
rc = mv_create_dma_pools(hpriv, &pdev->dev);
if (rc)
return rc;
/* initialize adapter */
rc = mv_init_host(host, chip_soc);
if (rc)
return rc;
dev_printk(KERN_INFO, &pdev->dev,
"slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
host->n_ports);
return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
IRQF_SHARED, &mv6_sht);
}
/*
*
* mv_platform_remove - unplug a platform interface
* @pdev: platform device
*
* A platform bus SATA device has been unplugged. Perform the needed
* cleanup. Also called on module unload for any active devices.
*/
static int __devexit mv_platform_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ata_host *host = dev_get_drvdata(dev);
ata_host_detach(host);
return 0;
}
static struct platform_driver mv_platform_driver = {
.probe = mv_platform_probe,
.remove = __devexit_p(mv_platform_remove),
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
#ifdef CONFIG_PCI
static int mv_pci_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent);
static struct pci_driver mv_pci_driver = {
.name = DRV_NAME,
.id_table = mv_pci_tbl,
.probe = mv_pci_init_one,
.remove = ata_pci_remove_one,
};
/*
* module options
*/
static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
/* move to PCI layer or libata core? */
static int pci_go_64(struct pci_dev *pdev)
{
int rc;
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
if (rc) {
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"64-bit DMA enable failed\n");
return rc;
}
}
} else {
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit DMA enable failed\n");
return rc;
}
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit consistent DMA enable failed\n");
return rc;
}
}
return rc;
}
/**
* mv_print_info - Dump key info to kernel log for perusal.
* @host: ATA host to print info about
*
* FIXME: complete this.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_print_info(struct ata_host *host)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
struct mv_host_priv *hpriv = host->private_data;
u8 scc;
const char *scc_s, *gen;
/* Use this to determine the HW stepping of the chip so we know
* what errata to workaround
*/
pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
if (scc == 0)
scc_s = "SCSI";
else if (scc == 0x01)
scc_s = "RAID";
else
scc_s = "?";
if (IS_GEN_I(hpriv))
gen = "I";
else if (IS_GEN_II(hpriv))
gen = "II";
else if (IS_GEN_IIE(hpriv))
gen = "IIE";
else
gen = "?";
dev_printk(KERN_INFO, &pdev->dev,
"Gen-%s %u slots %u ports %s mode IRQ via %s\n",
gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
}
/**
* mv_pci_init_one - handle a positive probe of a PCI Marvell host
* @pdev: PCI device found
* @ent: PCI device ID entry for the matched host
*
* LOCKING:
* Inherited from caller.
*/
static int mv_pci_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int printed_version;
unsigned int board_idx = (unsigned int)ent->driver_data;
const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
struct ata_host *host;
struct mv_host_priv *hpriv;
int n_ports, rc;
if (!printed_version++)
dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
/* allocate host */
n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
if (!host || !hpriv)
return -ENOMEM;
host->private_data = hpriv;
hpriv->n_ports = n_ports;
/* acquire resources */
rc = pcim_enable_device(pdev);
if (rc)
return rc;
rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
if (rc == -EBUSY)
pcim_pin_device(pdev);
if (rc)
return rc;
host->iomap = pcim_iomap_table(pdev);
hpriv->base = host->iomap[MV_PRIMARY_BAR];
rc = pci_go_64(pdev);
if (rc)
return rc;
rc = mv_create_dma_pools(hpriv, &pdev->dev);
if (rc)
return rc;
/* initialize adapter */
rc = mv_init_host(host, board_idx);
if (rc)
return rc;
/* Enable interrupts */
if (msi && pci_enable_msi(pdev))
pci_intx(pdev, 1);
mv_dump_pci_cfg(pdev, 0x68);
mv_print_info(host);
pci_set_master(pdev);
pci_try_set_mwi(pdev);
return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
}
#endif
static int mv_platform_probe(struct platform_device *pdev);
static int __devexit mv_platform_remove(struct platform_device *pdev);
static int __init mv_init(void)
{
int rc = -ENODEV;
#ifdef CONFIG_PCI
rc = pci_register_driver(&mv_pci_driver);
if (rc < 0)
return rc;
#endif
rc = platform_driver_register(&mv_platform_driver);
#ifdef CONFIG_PCI
if (rc < 0)
pci_unregister_driver(&mv_pci_driver);
#endif
return rc;
}
static void __exit mv_exit(void)
{
#ifdef CONFIG_PCI
pci_unregister_driver(&mv_pci_driver);
#endif
platform_driver_unregister(&mv_platform_driver);
}
MODULE_AUTHOR("Brett Russ");
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
MODULE_VERSION(DRV_VERSION);
MODULE_ALIAS("platform:" DRV_NAME);
#ifdef CONFIG_PCI
module_param(msi, int, 0444);
MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
#endif
module_init(mv_init);
module_exit(mv_exit);