linux_old1/crypto/af_alg.c

1211 lines
26 KiB
C
Raw Normal View History

/*
* af_alg: User-space algorithm interface
*
* This file provides the user-space API for algorithms.
*
* Copyright (c) 2010 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <linux/atomic.h>
#include <crypto/if_alg.h>
#include <linux/crypto.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/net.h>
#include <linux/rwsem.h>
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
#include <linux/sched/signal.h>
#include <linux/security.h>
struct alg_type_list {
const struct af_alg_type *type;
struct list_head list;
};
static atomic_long_t alg_memory_allocated;
static struct proto alg_proto = {
.name = "ALG",
.owner = THIS_MODULE,
.memory_allocated = &alg_memory_allocated,
.obj_size = sizeof(struct alg_sock),
};
static LIST_HEAD(alg_types);
static DECLARE_RWSEM(alg_types_sem);
static const struct af_alg_type *alg_get_type(const char *name)
{
const struct af_alg_type *type = ERR_PTR(-ENOENT);
struct alg_type_list *node;
down_read(&alg_types_sem);
list_for_each_entry(node, &alg_types, list) {
if (strcmp(node->type->name, name))
continue;
if (try_module_get(node->type->owner))
type = node->type;
break;
}
up_read(&alg_types_sem);
return type;
}
int af_alg_register_type(const struct af_alg_type *type)
{
struct alg_type_list *node;
int err = -EEXIST;
down_write(&alg_types_sem);
list_for_each_entry(node, &alg_types, list) {
if (!strcmp(node->type->name, type->name))
goto unlock;
}
node = kmalloc(sizeof(*node), GFP_KERNEL);
err = -ENOMEM;
if (!node)
goto unlock;
type->ops->owner = THIS_MODULE;
if (type->ops_nokey)
type->ops_nokey->owner = THIS_MODULE;
node->type = type;
list_add(&node->list, &alg_types);
err = 0;
unlock:
up_write(&alg_types_sem);
return err;
}
EXPORT_SYMBOL_GPL(af_alg_register_type);
int af_alg_unregister_type(const struct af_alg_type *type)
{
struct alg_type_list *node;
int err = -ENOENT;
down_write(&alg_types_sem);
list_for_each_entry(node, &alg_types, list) {
if (strcmp(node->type->name, type->name))
continue;
list_del(&node->list);
kfree(node);
err = 0;
break;
}
up_write(&alg_types_sem);
return err;
}
EXPORT_SYMBOL_GPL(af_alg_unregister_type);
static void alg_do_release(const struct af_alg_type *type, void *private)
{
if (!type)
return;
type->release(private);
module_put(type->owner);
}
int af_alg_release(struct socket *sock)
{
if (sock->sk)
sock_put(sock->sk);
return 0;
}
EXPORT_SYMBOL_GPL(af_alg_release);
void af_alg_release_parent(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
unsigned int nokey = ask->nokey_refcnt;
bool last = nokey && !ask->refcnt;
sk = ask->parent;
ask = alg_sk(sk);
lock_sock(sk);
ask->nokey_refcnt -= nokey;
if (!last)
last = !--ask->refcnt;
release_sock(sk);
if (last)
sock_put(sk);
}
EXPORT_SYMBOL_GPL(af_alg_release_parent);
static int alg_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
const u32 forbidden = CRYPTO_ALG_INTERNAL;
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct sockaddr_alg *sa = (void *)uaddr;
const struct af_alg_type *type;
void *private;
int err;
if (sock->state == SS_CONNECTED)
return -EINVAL;
if (addr_len < sizeof(*sa))
return -EINVAL;
sa->salg_type[sizeof(sa->salg_type) - 1] = 0;
sa->salg_name[sizeof(sa->salg_name) + addr_len - sizeof(*sa) - 1] = 0;
type = alg_get_type(sa->salg_type);
if (IS_ERR(type) && PTR_ERR(type) == -ENOENT) {
request_module("algif-%s", sa->salg_type);
type = alg_get_type(sa->salg_type);
}
if (IS_ERR(type))
return PTR_ERR(type);
private = type->bind(sa->salg_name,
sa->salg_feat & ~forbidden,
sa->salg_mask & ~forbidden);
if (IS_ERR(private)) {
module_put(type->owner);
return PTR_ERR(private);
}
err = -EBUSY;
lock_sock(sk);
if (ask->refcnt | ask->nokey_refcnt)
goto unlock;
swap(ask->type, type);
swap(ask->private, private);
err = 0;
unlock:
release_sock(sk);
alg_do_release(type, private);
return err;
}
static int alg_setkey(struct sock *sk, char __user *ukey,
unsigned int keylen)
{
struct alg_sock *ask = alg_sk(sk);
const struct af_alg_type *type = ask->type;
u8 *key;
int err;
key = sock_kmalloc(sk, keylen, GFP_KERNEL);
if (!key)
return -ENOMEM;
err = -EFAULT;
if (copy_from_user(key, ukey, keylen))
goto out;
err = type->setkey(ask->private, key, keylen);
out:
sock_kzfree_s(sk, key, keylen);
return err;
}
static int alg_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
const struct af_alg_type *type;
int err = -EBUSY;
lock_sock(sk);
if (ask->refcnt)
goto unlock;
type = ask->type;
err = -ENOPROTOOPT;
if (level != SOL_ALG || !type)
goto unlock;
switch (optname) {
case ALG_SET_KEY:
if (sock->state == SS_CONNECTED)
goto unlock;
if (!type->setkey)
goto unlock;
err = alg_setkey(sk, optval, optlen);
break;
case ALG_SET_AEAD_AUTHSIZE:
if (sock->state == SS_CONNECTED)
goto unlock;
if (!type->setauthsize)
goto unlock;
err = type->setauthsize(ask->private, optlen);
}
unlock:
release_sock(sk);
return err;
}
net: Work around lockdep limitation in sockets that use sockets Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 16:09:05 +08:00
int af_alg_accept(struct sock *sk, struct socket *newsock, bool kern)
{
struct alg_sock *ask = alg_sk(sk);
const struct af_alg_type *type;
struct sock *sk2;
unsigned int nokey;
int err;
lock_sock(sk);
type = ask->type;
err = -EINVAL;
if (!type)
goto unlock;
net: Work around lockdep limitation in sockets that use sockets Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 16:09:05 +08:00
sk2 = sk_alloc(sock_net(sk), PF_ALG, GFP_KERNEL, &alg_proto, kern);
err = -ENOMEM;
if (!sk2)
goto unlock;
sock_init_data(newsock, sk2);
security_sock_graft(sk2, newsock);
security_sk_clone(sk, sk2);
err = type->accept(ask->private, sk2);
nokey = err == -ENOKEY;
if (nokey && type->accept_nokey)
err = type->accept_nokey(ask->private, sk2);
if (err)
goto unlock;
sk2->sk_family = PF_ALG;
if (nokey || !ask->refcnt++)
sock_hold(sk);
ask->nokey_refcnt += nokey;
alg_sk(sk2)->parent = sk;
alg_sk(sk2)->type = type;
alg_sk(sk2)->nokey_refcnt = nokey;
newsock->ops = type->ops;
newsock->state = SS_CONNECTED;
if (nokey)
newsock->ops = type->ops_nokey;
err = 0;
unlock:
release_sock(sk);
return err;
}
EXPORT_SYMBOL_GPL(af_alg_accept);
net: Work around lockdep limitation in sockets that use sockets Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 16:09:05 +08:00
static int alg_accept(struct socket *sock, struct socket *newsock, int flags,
bool kern)
{
net: Work around lockdep limitation in sockets that use sockets Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 16:09:05 +08:00
return af_alg_accept(sock->sk, newsock, kern);
}
static const struct proto_ops alg_proto_ops = {
.family = PF_ALG,
.owner = THIS_MODULE,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.getname = sock_no_getname,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.getsockopt = sock_no_getsockopt,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
.sendmsg = sock_no_sendmsg,
.recvmsg = sock_no_recvmsg,
.poll = sock_no_poll,
.bind = alg_bind,
.release = af_alg_release,
.setsockopt = alg_setsockopt,
.accept = alg_accept,
};
static void alg_sock_destruct(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
alg_do_release(ask->type, ask->private);
}
static int alg_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
int err;
if (sock->type != SOCK_SEQPACKET)
return -ESOCKTNOSUPPORT;
if (protocol != 0)
return -EPROTONOSUPPORT;
err = -ENOMEM;
sk = sk_alloc(net, PF_ALG, GFP_KERNEL, &alg_proto, kern);
if (!sk)
goto out;
sock->ops = &alg_proto_ops;
sock_init_data(sock, sk);
sk->sk_family = PF_ALG;
sk->sk_destruct = alg_sock_destruct;
return 0;
out:
return err;
}
static const struct net_proto_family alg_family = {
.family = PF_ALG,
.create = alg_create,
.owner = THIS_MODULE,
};
int af_alg_make_sg(struct af_alg_sgl *sgl, struct iov_iter *iter, int len)
{
size_t off;
ssize_t n;
int npages, i;
n = iov_iter_get_pages(iter, sgl->pages, len, ALG_MAX_PAGES, &off);
if (n < 0)
return n;
npages = (off + n + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (WARN_ON(npages == 0))
return -EINVAL;
/* Add one extra for linking */
sg_init_table(sgl->sg, npages + 1);
for (i = 0, len = n; i < npages; i++) {
int plen = min_t(int, len, PAGE_SIZE - off);
sg_set_page(sgl->sg + i, sgl->pages[i], plen, off);
off = 0;
len -= plen;
}
sg_mark_end(sgl->sg + npages - 1);
sgl->npages = npages;
return n;
}
EXPORT_SYMBOL_GPL(af_alg_make_sg);
void af_alg_link_sg(struct af_alg_sgl *sgl_prev, struct af_alg_sgl *sgl_new)
{
sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
sg_chain(sgl_prev->sg, sgl_prev->npages + 1, sgl_new->sg);
}
EXPORT_SYMBOL_GPL(af_alg_link_sg);
void af_alg_free_sg(struct af_alg_sgl *sgl)
{
int i;
for (i = 0; i < sgl->npages; i++)
put_page(sgl->pages[i]);
}
EXPORT_SYMBOL_GPL(af_alg_free_sg);
int af_alg_cmsg_send(struct msghdr *msg, struct af_alg_control *con)
{
struct cmsghdr *cmsg;
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_ALG)
continue;
switch (cmsg->cmsg_type) {
case ALG_SET_IV:
if (cmsg->cmsg_len < CMSG_LEN(sizeof(*con->iv)))
return -EINVAL;
con->iv = (void *)CMSG_DATA(cmsg);
if (cmsg->cmsg_len < CMSG_LEN(con->iv->ivlen +
sizeof(*con->iv)))
return -EINVAL;
break;
case ALG_SET_OP:
if (cmsg->cmsg_len < CMSG_LEN(sizeof(u32)))
return -EINVAL;
con->op = *(u32 *)CMSG_DATA(cmsg);
break;
case ALG_SET_AEAD_ASSOCLEN:
if (cmsg->cmsg_len < CMSG_LEN(sizeof(u32)))
return -EINVAL;
con->aead_assoclen = *(u32 *)CMSG_DATA(cmsg);
break;
default:
return -EINVAL;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(af_alg_cmsg_send);
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
/**
* af_alg_alloc_tsgl - allocate the TX SGL
*
* @sk socket of connection to user space
* @return: 0 upon success, < 0 upon error
*/
int af_alg_alloc_tsgl(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl;
struct scatterlist *sg = NULL;
sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl, list);
if (!list_empty(&ctx->tsgl_list))
sg = sgl->sg;
if (!sg || sgl->cur >= MAX_SGL_ENTS) {
sgl = sock_kmalloc(sk, sizeof(*sgl) +
sizeof(sgl->sg[0]) * (MAX_SGL_ENTS + 1),
GFP_KERNEL);
if (!sgl)
return -ENOMEM;
sg_init_table(sgl->sg, MAX_SGL_ENTS + 1);
sgl->cur = 0;
if (sg)
sg_chain(sg, MAX_SGL_ENTS + 1, sgl->sg);
list_add_tail(&sgl->list, &ctx->tsgl_list);
}
return 0;
}
EXPORT_SYMBOL_GPL(af_alg_alloc_tsgl);
/**
* aead_count_tsgl - Count number of TX SG entries
*
* The counting starts from the beginning of the SGL to @bytes. If
* an offset is provided, the counting of the SG entries starts at the offset.
*
* @sk socket of connection to user space
* @bytes Count the number of SG entries holding given number of bytes.
* @offset Start the counting of SG entries from the given offset.
* @return Number of TX SG entries found given the constraints
*/
unsigned int af_alg_count_tsgl(struct sock *sk, size_t bytes, size_t offset)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl, *tmp;
unsigned int i;
unsigned int sgl_count = 0;
if (!bytes)
return 0;
list_for_each_entry_safe(sgl, tmp, &ctx->tsgl_list, list) {
struct scatterlist *sg = sgl->sg;
for (i = 0; i < sgl->cur; i++) {
size_t bytes_count;
/* Skip offset */
if (offset >= sg[i].length) {
offset -= sg[i].length;
bytes -= sg[i].length;
continue;
}
bytes_count = sg[i].length - offset;
offset = 0;
sgl_count++;
/* If we have seen requested number of bytes, stop */
if (bytes_count >= bytes)
return sgl_count;
bytes -= bytes_count;
}
}
return sgl_count;
}
EXPORT_SYMBOL_GPL(af_alg_count_tsgl);
/**
* aead_pull_tsgl - Release the specified buffers from TX SGL
*
* If @dst is non-null, reassign the pages to dst. The caller must release
* the pages. If @dst_offset is given only reassign the pages to @dst starting
* at the @dst_offset (byte). The caller must ensure that @dst is large
* enough (e.g. by using af_alg_count_tsgl with the same offset).
*
* @sk socket of connection to user space
* @used Number of bytes to pull from TX SGL
* @dst If non-NULL, buffer is reassigned to dst SGL instead of releasing. The
* caller must release the buffers in dst.
* @dst_offset Reassign the TX SGL from given offset. All buffers before
* reaching the offset is released.
*/
void af_alg_pull_tsgl(struct sock *sk, size_t used, struct scatterlist *dst,
size_t dst_offset)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl;
struct scatterlist *sg;
unsigned int i, j = 0;
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
while (!list_empty(&ctx->tsgl_list)) {
sgl = list_first_entry(&ctx->tsgl_list, struct af_alg_tsgl,
list);
sg = sgl->sg;
for (i = 0; i < sgl->cur; i++) {
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
size_t plen = min_t(size_t, used, sg[i].length);
struct page *page = sg_page(sg + i);
if (!page)
continue;
/*
* Assumption: caller created af_alg_count_tsgl(len)
* SG entries in dst.
*/
if (dst) {
if (dst_offset >= plen) {
/* discard page before offset */
dst_offset -= plen;
} else {
/* reassign page to dst after offset */
get_page(page);
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
sg_set_page(dst + j, page,
plen - dst_offset,
sg[i].offset + dst_offset);
dst_offset = 0;
j++;
}
}
sg[i].length -= plen;
sg[i].offset += plen;
used -= plen;
ctx->used -= plen;
if (sg[i].length)
return;
put_page(page);
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
sg_assign_page(sg + i, NULL);
}
list_del(&sgl->list);
sock_kfree_s(sk, sgl, sizeof(*sgl) + sizeof(sgl->sg[0]) *
(MAX_SGL_ENTS + 1));
}
if (!ctx->used)
ctx->merge = 0;
}
EXPORT_SYMBOL_GPL(af_alg_pull_tsgl);
/**
* af_alg_free_areq_sgls - Release TX and RX SGLs of the request
*
* @areq Request holding the TX and RX SGL
*/
void af_alg_free_areq_sgls(struct af_alg_async_req *areq)
{
struct sock *sk = areq->sk;
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_rsgl *rsgl, *tmp;
struct scatterlist *tsgl;
struct scatterlist *sg;
unsigned int i;
list_for_each_entry_safe(rsgl, tmp, &areq->rsgl_list, list) {
ctx->rcvused -= rsgl->sg_num_bytes;
af_alg_free_sg(&rsgl->sgl);
list_del(&rsgl->list);
if (rsgl != &areq->first_rsgl)
sock_kfree_s(sk, rsgl, sizeof(*rsgl));
}
tsgl = areq->tsgl;
if (tsgl) {
for_each_sg(tsgl, sg, areq->tsgl_entries, i) {
if (!sg_page(sg))
continue;
put_page(sg_page(sg));
}
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
sock_kfree_s(sk, tsgl, areq->tsgl_entries * sizeof(*tsgl));
}
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
}
EXPORT_SYMBOL_GPL(af_alg_free_areq_sgls);
/**
* af_alg_wait_for_wmem - wait for availability of writable memory
*
* @sk socket of connection to user space
* @flags If MSG_DONTWAIT is set, then only report if function would sleep
* @return 0 when writable memory is available, < 0 upon error
*/
int af_alg_wait_for_wmem(struct sock *sk, unsigned int flags)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
int err = -ERESTARTSYS;
long timeout;
if (flags & MSG_DONTWAIT)
return -EAGAIN;
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
add_wait_queue(sk_sleep(sk), &wait);
for (;;) {
if (signal_pending(current))
break;
timeout = MAX_SCHEDULE_TIMEOUT;
if (sk_wait_event(sk, &timeout, af_alg_writable(sk), &wait)) {
err = 0;
break;
}
}
remove_wait_queue(sk_sleep(sk), &wait);
return err;
}
EXPORT_SYMBOL_GPL(af_alg_wait_for_wmem);
/**
* af_alg_wmem_wakeup - wakeup caller when writable memory is available
*
* @sk socket of connection to user space
*/
void af_alg_wmem_wakeup(struct sock *sk)
{
struct socket_wq *wq;
if (!af_alg_writable(sk))
return;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
POLLRDNORM |
POLLRDBAND);
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(af_alg_wmem_wakeup);
/**
* af_alg_wait_for_data - wait for availability of TX data
*
* @sk socket of connection to user space
* @flags If MSG_DONTWAIT is set, then only report if function would sleep
* @return 0 when writable memory is available, < 0 upon error
*/
int af_alg_wait_for_data(struct sock *sk, unsigned flags)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
long timeout;
int err = -ERESTARTSYS;
if (flags & MSG_DONTWAIT)
return -EAGAIN;
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
add_wait_queue(sk_sleep(sk), &wait);
for (;;) {
if (signal_pending(current))
break;
timeout = MAX_SCHEDULE_TIMEOUT;
if (sk_wait_event(sk, &timeout, (ctx->used || !ctx->more),
&wait)) {
err = 0;
break;
}
}
remove_wait_queue(sk_sleep(sk), &wait);
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
return err;
}
EXPORT_SYMBOL_GPL(af_alg_wait_for_data);
/**
* af_alg_data_wakeup - wakeup caller when new data can be sent to kernel
*
* @sk socket of connection to user space
*/
void af_alg_data_wakeup(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct socket_wq *wq;
if (!ctx->used)
return;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
POLLRDNORM |
POLLRDBAND);
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(af_alg_data_wakeup);
/**
* af_alg_sendmsg - implementation of sendmsg system call handler
*
* The sendmsg system call handler obtains the user data and stores it
* in ctx->tsgl_list. This implies allocation of the required numbers of
* struct af_alg_tsgl.
*
* In addition, the ctx is filled with the information sent via CMSG.
*
* @sock socket of connection to user space
* @msg message from user space
* @size size of message from user space
* @ivsize the size of the IV for the cipher operation to verify that the
* user-space-provided IV has the right size
* @return the number of copied data upon success, < 0 upon error
*/
int af_alg_sendmsg(struct socket *sock, struct msghdr *msg, size_t size,
unsigned int ivsize)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl;
struct af_alg_control con = {};
long copied = 0;
bool enc = 0;
bool init = 0;
int err = 0;
if (msg->msg_controllen) {
err = af_alg_cmsg_send(msg, &con);
if (err)
return err;
init = 1;
switch (con.op) {
case ALG_OP_ENCRYPT:
enc = 1;
break;
case ALG_OP_DECRYPT:
enc = 0;
break;
default:
return -EINVAL;
}
if (con.iv && con.iv->ivlen != ivsize)
return -EINVAL;
}
lock_sock(sk);
if (!ctx->more && ctx->used) {
err = -EINVAL;
goto unlock;
}
if (init) {
ctx->enc = enc;
if (con.iv)
memcpy(ctx->iv, con.iv->iv, ivsize);
ctx->aead_assoclen = con.aead_assoclen;
}
while (size) {
struct scatterlist *sg;
size_t len = size;
size_t plen;
/* use the existing memory in an allocated page */
if (ctx->merge) {
sgl = list_entry(ctx->tsgl_list.prev,
struct af_alg_tsgl, list);
sg = sgl->sg + sgl->cur - 1;
len = min_t(size_t, len,
PAGE_SIZE - sg->offset - sg->length);
err = memcpy_from_msg(page_address(sg_page(sg)) +
sg->offset + sg->length,
msg, len);
if (err)
goto unlock;
sg->length += len;
ctx->merge = (sg->offset + sg->length) &
(PAGE_SIZE - 1);
ctx->used += len;
copied += len;
size -= len;
continue;
}
if (!af_alg_writable(sk)) {
err = af_alg_wait_for_wmem(sk, msg->msg_flags);
if (err)
goto unlock;
}
/* allocate a new page */
len = min_t(unsigned long, len, af_alg_sndbuf(sk));
err = af_alg_alloc_tsgl(sk);
if (err)
goto unlock;
sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl,
list);
sg = sgl->sg;
if (sgl->cur)
sg_unmark_end(sg + sgl->cur - 1);
do {
unsigned int i = sgl->cur;
plen = min_t(size_t, len, PAGE_SIZE);
sg_assign_page(sg + i, alloc_page(GFP_KERNEL));
if (!sg_page(sg + i)) {
err = -ENOMEM;
goto unlock;
}
err = memcpy_from_msg(page_address(sg_page(sg + i)),
msg, plen);
if (err) {
__free_page(sg_page(sg + i));
sg_assign_page(sg + i, NULL);
goto unlock;
}
sg[i].length = plen;
len -= plen;
ctx->used += plen;
copied += plen;
size -= plen;
sgl->cur++;
} while (len && sgl->cur < MAX_SGL_ENTS);
if (!size)
sg_mark_end(sg + sgl->cur - 1);
ctx->merge = plen & (PAGE_SIZE - 1);
}
err = 0;
ctx->more = msg->msg_flags & MSG_MORE;
unlock:
af_alg_data_wakeup(sk);
release_sock(sk);
return copied ?: err;
}
EXPORT_SYMBOL_GPL(af_alg_sendmsg);
/**
* af_alg_sendpage - sendpage system call handler
*
* This is a generic implementation of sendpage to fill ctx->tsgl_list.
*/
ssize_t af_alg_sendpage(struct socket *sock, struct page *page,
int offset, size_t size, int flags)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl;
int err = -EINVAL;
if (flags & MSG_SENDPAGE_NOTLAST)
flags |= MSG_MORE;
lock_sock(sk);
if (!ctx->more && ctx->used)
goto unlock;
if (!size)
goto done;
if (!af_alg_writable(sk)) {
err = af_alg_wait_for_wmem(sk, flags);
if (err)
goto unlock;
}
err = af_alg_alloc_tsgl(sk);
if (err)
goto unlock;
ctx->merge = 0;
sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl, list);
if (sgl->cur)
sg_unmark_end(sgl->sg + sgl->cur - 1);
sg_mark_end(sgl->sg + sgl->cur);
get_page(page);
sg_set_page(sgl->sg + sgl->cur, page, size, offset);
sgl->cur++;
ctx->used += size;
done:
ctx->more = flags & MSG_MORE;
unlock:
af_alg_data_wakeup(sk);
release_sock(sk);
return err ?: size;
}
EXPORT_SYMBOL_GPL(af_alg_sendpage);
/**
* af_alg_free_resources - release resources required for crypto request
*/
void af_alg_free_resources(struct af_alg_async_req *areq)
{
struct sock *sk = areq->sk;
af_alg_free_areq_sgls(areq);
sock_kfree_s(sk, areq, areq->areqlen);
}
EXPORT_SYMBOL_GPL(af_alg_free_resources);
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
/**
* af_alg_async_cb - AIO callback handler
*
* This handler cleans up the struct af_alg_async_req upon completion of the
* AIO operation.
*
* The number of bytes to be generated with the AIO operation must be set
* in areq->outlen before the AIO callback handler is invoked.
*/
void af_alg_async_cb(struct crypto_async_request *_req, int err)
{
struct af_alg_async_req *areq = _req->data;
struct sock *sk = areq->sk;
struct kiocb *iocb = areq->iocb;
unsigned int resultlen;
/* Buffer size written by crypto operation. */
resultlen = areq->outlen;
af_alg_free_resources(areq);
sock_put(sk);
crypto: af_alg - consolidation of duplicate code Consolidate following data structures: skcipher_async_req, aead_async_req -> af_alg_async_req skcipher_rsgl, aead_rsql -> af_alg_rsgl skcipher_tsgl, aead_tsql -> af_alg_tsgl skcipher_ctx, aead_ctx -> af_alg_ctx Consolidate following functions: skcipher_sndbuf, aead_sndbuf -> af_alg_sndbuf skcipher_writable, aead_writable -> af_alg_writable skcipher_rcvbuf, aead_rcvbuf -> af_alg_rcvbuf skcipher_readable, aead_readable -> af_alg_readable aead_alloc_tsgl, skcipher_alloc_tsgl -> af_alg_alloc_tsgl aead_count_tsgl, skcipher_count_tsgl -> af_alg_count_tsgl aead_pull_tsgl, skcipher_pull_tsgl -> af_alg_pull_tsgl aead_free_areq_sgls, skcipher_free_areq_sgls -> af_alg_free_areq_sgls aead_wait_for_wmem, skcipher_wait_for_wmem -> af_alg_wait_for_wmem aead_wmem_wakeup, skcipher_wmem_wakeup -> af_alg_wmem_wakeup aead_wait_for_data, skcipher_wait_for_data -> af_alg_wait_for_data aead_data_wakeup, skcipher_data_wakeup -> af_alg_data_wakeup aead_sendmsg, skcipher_sendmsg -> af_alg_sendmsg aead_sendpage, skcipher_sendpage -> af_alg_sendpage aead_async_cb, skcipher_async_cb -> af_alg_async_cb aead_poll, skcipher_poll -> af_alg_poll Split out the following common code from recvmsg: af_alg_alloc_areq: allocation of the request data structure for the cipher operation af_alg_get_rsgl: creation of the RX SGL anchored in the request data structure The following changes to the implementation without affecting the functionality have been applied to synchronize slightly different code bases in algif_skcipher and algif_aead: The wakeup in af_alg_wait_for_data is triggered when either more data is received or the indicator that more data is to be expected is released. The first is triggered by user space, the second is triggered by the kernel upon finishing the processing of data (i.e. the kernel is ready for more). af_alg_sendmsg uses size_t in min_t calculation for obtaining len. Return code determination is consistent with algif_skcipher. The scope of the variable i is reduced to match algif_aead. The type of the variable i is switched from int to unsigned int to match algif_aead. af_alg_sendpage does not contain the superfluous err = 0 from aead_sendpage. af_alg_async_cb requires to store the number of output bytes in areq->outlen before the AIO callback is triggered. The POLLIN / POLLRDNORM is now set when either not more data is given or the kernel is supplied with data. This is consistent to the wakeup from sleep when the kernel waits for data. The request data structure is extended by the field last_rsgl which points to the last RX SGL list entry. This shall help recvmsg implementation to chain the RX SGL to other SG(L)s if needed. It is currently used by algif_aead which chains the tag SGL to the RX SGL during decryption. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-08-02 13:56:19 +08:00
iocb->ki_complete(iocb, err ? err : resultlen, 0);
}
EXPORT_SYMBOL_GPL(af_alg_async_cb);
/**
* af_alg_poll - poll system call handler
*/
unsigned int af_alg_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
unsigned int mask;
sock_poll_wait(file, sk_sleep(sk), wait);
mask = 0;
if (!ctx->more || ctx->used)
mask |= POLLIN | POLLRDNORM;
if (af_alg_writable(sk))
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
return mask;
}
EXPORT_SYMBOL_GPL(af_alg_poll);
/**
* af_alg_alloc_areq - allocate struct af_alg_async_req
*
* @sk socket of connection to user space
* @areqlen size of struct af_alg_async_req + crypto_*_reqsize
* @return allocated data structure or ERR_PTR upon error
*/
struct af_alg_async_req *af_alg_alloc_areq(struct sock *sk,
unsigned int areqlen)
{
struct af_alg_async_req *areq = sock_kmalloc(sk, areqlen, GFP_KERNEL);
if (unlikely(!areq))
return ERR_PTR(-ENOMEM);
areq->areqlen = areqlen;
areq->sk = sk;
areq->last_rsgl = NULL;
INIT_LIST_HEAD(&areq->rsgl_list);
areq->tsgl = NULL;
areq->tsgl_entries = 0;
return areq;
}
EXPORT_SYMBOL_GPL(af_alg_alloc_areq);
/**
* af_alg_get_rsgl - create the RX SGL for the output data from the crypto
* operation
*
* @sk socket of connection to user space
* @msg user space message
* @flags flags used to invoke recvmsg with
* @areq instance of the cryptographic request that will hold the RX SGL
* @maxsize maximum number of bytes to be pulled from user space
* @outlen number of bytes in the RX SGL
* @return 0 on success, < 0 upon error
*/
int af_alg_get_rsgl(struct sock *sk, struct msghdr *msg, int flags,
struct af_alg_async_req *areq, size_t maxsize,
size_t *outlen)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
size_t len = 0;
while (maxsize > len && msg_data_left(msg)) {
struct af_alg_rsgl *rsgl;
size_t seglen;
int err;
/* limit the amount of readable buffers */
if (!af_alg_readable(sk))
break;
if (!ctx->used) {
err = af_alg_wait_for_data(sk, flags);
if (err)
return err;
}
seglen = min_t(size_t, (maxsize - len),
msg_data_left(msg));
if (list_empty(&areq->rsgl_list)) {
rsgl = &areq->first_rsgl;
} else {
rsgl = sock_kmalloc(sk, sizeof(*rsgl), GFP_KERNEL);
if (unlikely(!rsgl))
return -ENOMEM;
}
rsgl->sgl.npages = 0;
list_add_tail(&rsgl->list, &areq->rsgl_list);
/* make one iovec available as scatterlist */
err = af_alg_make_sg(&rsgl->sgl, &msg->msg_iter, seglen);
if (err < 0)
return err;
/* chain the new scatterlist with previous one */
if (areq->last_rsgl)
af_alg_link_sg(&areq->last_rsgl->sgl, &rsgl->sgl);
areq->last_rsgl = rsgl;
len += err;
ctx->rcvused += err;
rsgl->sg_num_bytes = err;
iov_iter_advance(&msg->msg_iter, err);
}
*outlen = len;
return 0;
}
EXPORT_SYMBOL_GPL(af_alg_get_rsgl);
static int __init af_alg_init(void)
{
int err = proto_register(&alg_proto, 0);
if (err)
goto out;
err = sock_register(&alg_family);
if (err != 0)
goto out_unregister_proto;
out:
return err;
out_unregister_proto:
proto_unregister(&alg_proto);
goto out;
}
static void __exit af_alg_exit(void)
{
sock_unregister(PF_ALG);
proto_unregister(&alg_proto);
}
module_init(af_alg_init);
module_exit(af_alg_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(AF_ALG);