linux_old1/drivers/video/msm/mdp.c

521 lines
14 KiB
C
Raw Normal View History

/* drivers/video/msm_fb/mdp.c
*
* MSM MDP Interface (used by framebuffer core)
*
* Copyright (C) 2007 QUALCOMM Incorporated
* Copyright (C) 2007 Google Incorporated
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/fb.h>
#include <linux/msm_mdp.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/clk.h>
#include <linux/file.h>
#include <linux/major.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/platform_data/video-msm_fb.h>
#include <linux/platform_device.h>
#include <linux/export.h>
#include "mdp_hw.h"
struct class *mdp_class;
#define MDP_CMD_DEBUG_ACCESS_BASE (0x10000)
static uint16_t mdp_default_ccs[] = {
0x254, 0x000, 0x331, 0x254, 0xF38, 0xE61, 0x254, 0x409, 0x000,
0x010, 0x080, 0x080
};
static DECLARE_WAIT_QUEUE_HEAD(mdp_dma2_waitqueue);
static DECLARE_WAIT_QUEUE_HEAD(mdp_ppp_waitqueue);
static struct msmfb_callback *dma_callback;
static struct clk *clk;
static unsigned int mdp_irq_mask;
static DEFINE_SPINLOCK(mdp_lock);
DEFINE_MUTEX(mdp_mutex);
static int enable_mdp_irq(struct mdp_info *mdp, uint32_t mask)
{
unsigned long irq_flags;
int ret = 0;
BUG_ON(!mask);
spin_lock_irqsave(&mdp_lock, irq_flags);
/* if the mask bits are already set return an error, this interrupt
* is already enabled */
if (mdp_irq_mask & mask) {
printk(KERN_ERR "mdp irq already on already on %x %x\n",
mdp_irq_mask, mask);
ret = -1;
}
/* if the mdp irq is not already enabled enable it */
if (!mdp_irq_mask) {
if (clk)
clk_enable(clk);
enable_irq(mdp->irq);
}
/* update the irq mask to reflect the fact that the interrupt is
* enabled */
mdp_irq_mask |= mask;
spin_unlock_irqrestore(&mdp_lock, irq_flags);
return ret;
}
static int locked_disable_mdp_irq(struct mdp_info *mdp, uint32_t mask)
{
/* this interrupt is already disabled! */
if (!(mdp_irq_mask & mask)) {
printk(KERN_ERR "mdp irq already off %x %x\n",
mdp_irq_mask, mask);
return -1;
}
/* update the irq mask to reflect the fact that the interrupt is
* disabled */
mdp_irq_mask &= ~(mask);
/* if no one is waiting on the interrupt, disable it */
if (!mdp_irq_mask) {
disable_irq_nosync(mdp->irq);
if (clk)
clk_disable(clk);
}
return 0;
}
static int disable_mdp_irq(struct mdp_info *mdp, uint32_t mask)
{
unsigned long irq_flags;
int ret;
spin_lock_irqsave(&mdp_lock, irq_flags);
ret = locked_disable_mdp_irq(mdp, mask);
spin_unlock_irqrestore(&mdp_lock, irq_flags);
return ret;
}
static irqreturn_t mdp_isr(int irq, void *data)
{
uint32_t status;
unsigned long irq_flags;
struct mdp_info *mdp = data;
spin_lock_irqsave(&mdp_lock, irq_flags);
status = mdp_readl(mdp, MDP_INTR_STATUS);
mdp_writel(mdp, status, MDP_INTR_CLEAR);
status &= mdp_irq_mask;
if (status & DL0_DMA2_TERM_DONE) {
if (dma_callback) {
dma_callback->func(dma_callback);
dma_callback = NULL;
}
wake_up(&mdp_dma2_waitqueue);
}
if (status & DL0_ROI_DONE)
wake_up(&mdp_ppp_waitqueue);
if (status)
locked_disable_mdp_irq(mdp, status);
spin_unlock_irqrestore(&mdp_lock, irq_flags);
return IRQ_HANDLED;
}
static uint32_t mdp_check_mask(uint32_t mask)
{
uint32_t ret;
unsigned long irq_flags;
spin_lock_irqsave(&mdp_lock, irq_flags);
ret = mdp_irq_mask & mask;
spin_unlock_irqrestore(&mdp_lock, irq_flags);
return ret;
}
static int mdp_wait(struct mdp_info *mdp, uint32_t mask, wait_queue_head_t *wq)
{
int ret = 0;
unsigned long irq_flags;
wait_event_timeout(*wq, !mdp_check_mask(mask), HZ);
spin_lock_irqsave(&mdp_lock, irq_flags);
if (mdp_irq_mask & mask) {
locked_disable_mdp_irq(mdp, mask);
printk(KERN_WARNING "timeout waiting for mdp to complete %x\n",
mask);
ret = -ETIMEDOUT;
}
spin_unlock_irqrestore(&mdp_lock, irq_flags);
return ret;
}
void mdp_dma_wait(struct mdp_device *mdp_dev)
{
#define MDP_MAX_TIMEOUTS 20
static int timeout_count;
struct mdp_info *mdp = container_of(mdp_dev, struct mdp_info, mdp_dev);
if (mdp_wait(mdp, DL0_DMA2_TERM_DONE, &mdp_dma2_waitqueue) == -ETIMEDOUT)
timeout_count++;
else
timeout_count = 0;
if (timeout_count > MDP_MAX_TIMEOUTS) {
printk(KERN_ERR "mdp: dma failed %d times, somethings wrong!\n",
MDP_MAX_TIMEOUTS);
BUG();
}
}
static int mdp_ppp_wait(struct mdp_info *mdp)
{
return mdp_wait(mdp, DL0_ROI_DONE, &mdp_ppp_waitqueue);
}
void mdp_dma_to_mddi(struct mdp_info *mdp, uint32_t addr, uint32_t stride,
uint32_t width, uint32_t height, uint32_t x, uint32_t y,
struct msmfb_callback *callback)
{
uint32_t dma2_cfg;
uint16_t ld_param = 0; /* 0=PRIM, 1=SECD, 2=EXT */
if (enable_mdp_irq(mdp, DL0_DMA2_TERM_DONE)) {
printk(KERN_ERR "mdp_dma_to_mddi: busy\n");
return;
}
dma_callback = callback;
dma2_cfg = DMA_PACK_TIGHT |
DMA_PACK_ALIGN_LSB |
DMA_PACK_PATTERN_RGB |
DMA_OUT_SEL_AHB |
DMA_IBUF_NONCONTIGUOUS;
dma2_cfg |= DMA_IBUF_FORMAT_RGB565;
dma2_cfg |= DMA_OUT_SEL_MDDI;
dma2_cfg |= DMA_MDDI_DMAOUT_LCD_SEL_PRIMARY;
dma2_cfg |= DMA_DITHER_EN;
/* setup size, address, and stride */
mdp_writel(mdp, (height << 16) | (width),
MDP_CMD_DEBUG_ACCESS_BASE + 0x0184);
mdp_writel(mdp, addr, MDP_CMD_DEBUG_ACCESS_BASE + 0x0188);
mdp_writel(mdp, stride, MDP_CMD_DEBUG_ACCESS_BASE + 0x018C);
/* 666 18BPP */
dma2_cfg |= DMA_DSTC0G_6BITS | DMA_DSTC1B_6BITS | DMA_DSTC2R_6BITS;
/* set y & x offset and MDDI transaction parameters */
mdp_writel(mdp, (y << 16) | (x), MDP_CMD_DEBUG_ACCESS_BASE + 0x0194);
mdp_writel(mdp, ld_param, MDP_CMD_DEBUG_ACCESS_BASE + 0x01a0);
mdp_writel(mdp, (MDDI_VDO_PACKET_DESC << 16) | MDDI_VDO_PACKET_PRIM,
MDP_CMD_DEBUG_ACCESS_BASE + 0x01a4);
mdp_writel(mdp, dma2_cfg, MDP_CMD_DEBUG_ACCESS_BASE + 0x0180);
/* start DMA2 */
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0044);
}
void mdp_dma(struct mdp_device *mdp_dev, uint32_t addr, uint32_t stride,
uint32_t width, uint32_t height, uint32_t x, uint32_t y,
struct msmfb_callback *callback, int interface)
{
struct mdp_info *mdp = container_of(mdp_dev, struct mdp_info, mdp_dev);
if (interface == MSM_MDDI_PMDH_INTERFACE) {
mdp_dma_to_mddi(mdp, addr, stride, width, height, x, y,
callback);
}
}
int get_img(struct mdp_img *img, struct fb_info *info,
unsigned long *start, unsigned long *len,
struct file **filep)
{
int ret = 0;
struct fd f = fdget(img->memory_id);
if (f.file == NULL)
return -1;
if (MAJOR(f.file->f_dentry->d_inode->i_rdev) == FB_MAJOR) {
*start = info->fix.smem_start;
*len = info->fix.smem_len;
} else
ret = -1;
fdput(f);
return ret;
}
void put_img(struct file *src_file, struct file *dst_file)
{
}
int mdp_blit(struct mdp_device *mdp_dev, struct fb_info *fb,
struct mdp_blit_req *req)
{
int ret;
unsigned long src_start = 0, src_len = 0, dst_start = 0, dst_len = 0;
struct mdp_info *mdp = container_of(mdp_dev, struct mdp_info, mdp_dev);
struct file *src_file = 0, *dst_file = 0;
/* WORKAROUND FOR HARDWARE BUG IN BG TILE FETCH */
if (unlikely(req->src_rect.h == 0 ||
req->src_rect.w == 0)) {
printk(KERN_ERR "mpd_ppp: src img of zero size!\n");
return -EINVAL;
}
if (unlikely(req->dst_rect.h == 0 ||
req->dst_rect.w == 0))
return -EINVAL;
/* do this first so that if this fails, the caller can always
* safely call put_img */
if (unlikely(get_img(&req->src, fb, &src_start, &src_len, &src_file))) {
printk(KERN_ERR "mpd_ppp: could not retrieve src image from "
"memory\n");
return -EINVAL;
}
if (unlikely(get_img(&req->dst, fb, &dst_start, &dst_len, &dst_file))) {
printk(KERN_ERR "mpd_ppp: could not retrieve dst image from "
"memory\n");
return -EINVAL;
}
mutex_lock(&mdp_mutex);
/* transp_masking unimplemented */
req->transp_mask = MDP_TRANSP_NOP;
if (unlikely((req->transp_mask != MDP_TRANSP_NOP ||
req->alpha != MDP_ALPHA_NOP ||
HAS_ALPHA(req->src.format)) &&
(req->flags & MDP_ROT_90 &&
req->dst_rect.w <= 16 && req->dst_rect.h >= 16))) {
int i;
unsigned int tiles = req->dst_rect.h / 16;
unsigned int remainder = req->dst_rect.h % 16;
req->src_rect.w = 16*req->src_rect.w / req->dst_rect.h;
req->dst_rect.h = 16;
for (i = 0; i < tiles; i++) {
enable_mdp_irq(mdp, DL0_ROI_DONE);
ret = mdp_ppp_blit(mdp, req, src_file, src_start,
src_len, dst_file, dst_start,
dst_len);
if (ret)
goto err_bad_blit;
ret = mdp_ppp_wait(mdp);
if (ret)
goto err_wait_failed;
req->dst_rect.y += 16;
req->src_rect.x += req->src_rect.w;
}
if (!remainder)
goto end;
req->src_rect.w = remainder*req->src_rect.w / req->dst_rect.h;
req->dst_rect.h = remainder;
}
enable_mdp_irq(mdp, DL0_ROI_DONE);
ret = mdp_ppp_blit(mdp, req, src_file, src_start, src_len, dst_file,
dst_start,
dst_len);
if (ret)
goto err_bad_blit;
ret = mdp_ppp_wait(mdp);
if (ret)
goto err_wait_failed;
end:
put_img(src_file, dst_file);
mutex_unlock(&mdp_mutex);
return 0;
err_bad_blit:
disable_mdp_irq(mdp, DL0_ROI_DONE);
err_wait_failed:
put_img(src_file, dst_file);
mutex_unlock(&mdp_mutex);
return ret;
}
void mdp_set_grp_disp(struct mdp_device *mdp_dev, unsigned disp_id)
{
struct mdp_info *mdp = container_of(mdp_dev, struct mdp_info, mdp_dev);
disp_id &= 0xf;
mdp_writel(mdp, disp_id, MDP_FULL_BYPASS_WORD43);
}
int register_mdp_client(struct class_interface *cint)
{
if (!mdp_class) {
pr_err("mdp: no mdp_class when registering mdp client\n");
return -ENODEV;
}
cint->class = mdp_class;
return class_interface_register(cint);
}
#include "mdp_csc_table.h"
#include "mdp_scale_tables.h"
int mdp_probe(struct platform_device *pdev)
{
struct resource *resource;
int ret;
int n;
struct mdp_info *mdp;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!resource) {
pr_err("mdp: can not get mdp mem resource!\n");
return -ENOMEM;
}
mdp = kzalloc(sizeof(struct mdp_info), GFP_KERNEL);
if (!mdp)
return -ENOMEM;
mdp->irq = platform_get_irq(pdev, 0);
if (mdp->irq < 0) {
pr_err("mdp: can not get mdp irq\n");
ret = mdp->irq;
goto error_get_irq;
}
mdp->base = ioremap(resource->start, resource_size(resource));
if (mdp->base == 0) {
printk(KERN_ERR "msmfb: cannot allocate mdp regs!\n");
ret = -ENOMEM;
goto error_ioremap;
}
mdp->mdp_dev.dma = mdp_dma;
mdp->mdp_dev.dma_wait = mdp_dma_wait;
mdp->mdp_dev.blit = mdp_blit;
mdp->mdp_dev.set_grp_disp = mdp_set_grp_disp;
clk = clk_get(&pdev->dev, "mdp_clk");
if (IS_ERR(clk)) {
printk(KERN_INFO "mdp: failed to get mdp clk");
ret = PTR_ERR(clk);
goto error_get_clk;
}
ret = request_irq(mdp->irq, mdp_isr, 0, "msm_mdp", mdp);
if (ret)
goto error_request_irq;
disable_irq(mdp->irq);
mdp_irq_mask = 0;
/* debug interface write access */
mdp_writel(mdp, 1, 0x60);
mdp_writel(mdp, MDP_ANY_INTR_MASK, MDP_INTR_ENABLE);
mdp_writel(mdp, 1, MDP_EBI2_PORTMAP_MODE);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x01f8);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x01fc);
for (n = 0; n < ARRAY_SIZE(csc_table); n++)
mdp_writel(mdp, csc_table[n].val, csc_table[n].reg);
/* clear up unused fg/main registers */
/* comp.plane 2&3 ystride */
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0120);
/* unpacked pattern */
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x012c);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0130);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0134);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0158);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x015c);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0160);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0170);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0174);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x017c);
/* comp.plane 2 & 3 */
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0114);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x0118);
/* clear unused bg registers */
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x01c8);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x01d0);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x01dc);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x01e0);
mdp_writel(mdp, 0, MDP_CMD_DEBUG_ACCESS_BASE + 0x01e4);
for (n = 0; n < ARRAY_SIZE(mdp_upscale_table); n++)
mdp_writel(mdp, mdp_upscale_table[n].val,
mdp_upscale_table[n].reg);
for (n = 0; n < 9; n++)
mdp_writel(mdp, mdp_default_ccs[n], 0x40440 + 4 * n);
mdp_writel(mdp, mdp_default_ccs[9], 0x40500 + 4 * 0);
mdp_writel(mdp, mdp_default_ccs[10], 0x40500 + 4 * 0);
mdp_writel(mdp, mdp_default_ccs[11], 0x40500 + 4 * 0);
/* register mdp device */
mdp->mdp_dev.dev.parent = &pdev->dev;
mdp->mdp_dev.dev.class = mdp_class;
dev_set_name(&mdp->mdp_dev.dev, "mdp%d", pdev->id);
/* if you can remove the platform device you'd have to implement
* this:
mdp_dev.release = mdp_class; */
ret = device_register(&mdp->mdp_dev.dev);
if (ret)
goto error_device_register;
return 0;
error_device_register:
free_irq(mdp->irq, mdp);
error_request_irq:
error_get_clk:
iounmap(mdp->base);
error_get_irq:
error_ioremap:
kfree(mdp);
return ret;
}
static struct platform_driver msm_mdp_driver = {
.probe = mdp_probe,
.driver = {.name = "msm_mdp"},
};
static int __init mdp_init(void)
{
mdp_class = class_create(THIS_MODULE, "msm_mdp");
if (IS_ERR(mdp_class)) {
printk(KERN_ERR "Error creating mdp class\n");
return PTR_ERR(mdp_class);
}
return platform_driver_register(&msm_mdp_driver);
}
subsys_initcall(mdp_init);