linux_old1/arch/x86/include/asm/nmi.h

47 lines
1.0 KiB
C
Raw Normal View History

#ifndef _ASM_X86_NMI_H
#define _ASM_X86_NMI_H
#include <linux/pm.h>
#include <asm/irq.h>
#include <asm/io.h>
x86, nmi_watchdog: Remove ARCH_HAS_NMI_WATCHDOG and rely on CONFIG_HARDLOCKUP_DETECTOR The x86 arch has shifted its use of the nmi_watchdog from a local implementation to the global one provide by kernel/watchdog.c. This shift has caused a whole bunch of compile problems under different config options. I attempt to simplify things with the patch below. In order to simplify things, I had to come to terms with the meaning of two terms ARCH_HAS_NMI_WATCHDOG and CONFIG_HARDLOCKUP_DETECTOR. Basically they mean the same thing, the former on a local level and the latter on a global level. With the old x86 nmi watchdog gone, there is no need to rely on defining the ARCH_HAS_NMI_WATCHDOG variable because it doesn't make sense any more. x86 will now use the global implementation. The changes below do a few things. First it changes the few places that relied on ARCH_HAS_NMI_WATCHDOG to use CONFIG_X86_LOCAL_APIC (the former was an alias for the latter anyway, so nothing unusual here). Those pieces of code were relying more on local apic functionality the nmi watchdog functionality, so the change should make sense. Second, I removed the x86 implementation of touch_nmi_watchdog(). It isn't need now, instead x86 will rely on kernel/watchdog.c's implementation. Third, I removed the #define ARCH_HAS_NMI_WATCHDOG itself from x86. And tweaked the include/linux/nmi.h file to tell users to look for an externally defined touch_nmi_watchdog in the case of ARCH_HAS_NMI_WATCHDOG _or_ CONFIG_HARDLOCKUP_DETECTOR. This changes removes some of the ugliness in that file. Finally, I added a Kconfig dependency for CONFIG_HARDLOCKUP_DETECTOR that said you can't have ARCH_HAS_NMI_WATCHDOG _and_ CONFIG_HARDLOCKUP_DETECTOR. You can only have one nmi_watchdog. Tested with ARCH=i386: allnoconfig, defconfig, allyesconfig, (various broken configs) ARCH=x86_64: allnoconfig, defconfig, allyesconfig, (various broken configs) Hopefully, after this patch I won't get any more compile broken emails. :-) v3: changed a couple of 'linux/nmi.h' -> 'asm/nmi.h' to pick-up correct function prototypes when CONFIG_HARDLOCKUP_DETECTOR is not set. Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: fweisbec@gmail.com LKML-Reference: <1293044403-14117-1-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-12-23 03:00:03 +08:00
#ifdef CONFIG_X86_LOCAL_APIC
extern int avail_to_resrv_perfctr_nmi_bit(unsigned int);
extern int reserve_perfctr_nmi(unsigned int);
extern void release_perfctr_nmi(unsigned int);
extern int reserve_evntsel_nmi(unsigned int);
extern void release_evntsel_nmi(unsigned int);
struct ctl_table;
extern int proc_nmi_enabled(struct ctl_table *, int ,
void __user *, size_t *, loff_t *);
extern int unknown_nmi_panic;
void arch_trigger_all_cpu_backtrace(void);
#define arch_trigger_all_cpu_backtrace arch_trigger_all_cpu_backtrace
#endif
x86, nmi: Create new NMI handler routines The NMI handlers used to rely on the notifier infrastructure. This worked great until we wanted to support handling multiple events better. One of the key ideas to the nmi handling is to process _all_ the handlers for each NMI. The reason behind this switch is because NMIs are edge triggered. If enough NMIs are triggered, then they could be lost because the cpu can only latch at most one NMI (besides the one currently being processed). In order to deal with this we have decided to process all the NMI handlers for each NMI. This allows the handlers to determine if they recieved an event or not (the ones that can not determine this will be left to fend for themselves on the unknown NMI list). As a result of this change it is now possible to have an extra NMI that was destined to be received for an already processed event. Because the event was processed in the previous NMI, this NMI gets dropped and becomes an 'unknown' NMI. This of course will cause printks that scare people. However, we prefer to have extra NMIs as opposed to losing NMIs and as such are have developed a basic mechanism to catch most of them. That will be a later patch. To accomplish this idea, I unhooked the nmi handlers from the notifier routines and created a new mechanism loosely based on doIRQ. The reason for this is the notifier routines have a couple of shortcomings. One we could't guarantee all future NMI handlers used NOTIFY_OK instead of NOTIFY_STOP. Second, we couldn't keep track of the number of events being handled in each routine (most only handle one, perf can handle more than one). Third, I wanted to eventually display which nmi handlers are registered in the system in /proc/interrupts to help see who is generating NMIs. The patch below just implements the new infrastructure but doesn't wire it up yet (that is the next patch). Its design is based on doIRQ structs and the atomic notifier routines. So the rcu stuff in the patch isn't entirely untested (as the notifier routines have soaked it) but it should be double checked in case I copied the code wrong. Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1317409584-23662-3-git-send-email-dzickus@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-01 03:06:20 +08:00
#define NMI_FLAG_FIRST 1
enum {
NMI_LOCAL=0,
NMI_UNKNOWN,
NMI_MAX
};
#define NMI_DONE 0
#define NMI_HANDLED 1
typedef int (*nmi_handler_t)(unsigned int, struct pt_regs *);
int register_nmi_handler(unsigned int, nmi_handler_t, unsigned long,
const char *);
void unregister_nmi_handler(unsigned int, const char *);
void stop_nmi(void);
void restart_nmi(void);
#endif /* _ASM_X86_NMI_H */