linux_old1/drivers/net/wireless/wl1251/init.c

424 lines
9.0 KiB
C
Raw Normal View History

/*
* This file is part of wl1251
*
* Copyright (C) 2009 Nokia Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include "init.h"
#include "wl12xx_80211.h"
#include "acx.h"
#include "cmd.h"
#include "reg.h"
int wl1251_hw_init_hwenc_config(struct wl1251 *wl)
{
int ret;
ret = wl1251_acx_feature_cfg(wl);
if (ret < 0) {
wl1251_warning("couldn't set feature config");
return ret;
}
ret = wl1251_acx_default_key(wl, wl->default_key);
if (ret < 0) {
wl1251_warning("couldn't set default key");
return ret;
}
return 0;
}
int wl1251_hw_init_templates_config(struct wl1251 *wl)
{
int ret;
u8 partial_vbm[PARTIAL_VBM_MAX];
/* send empty templates for fw memory reservation */
ret = wl1251_cmd_template_set(wl, CMD_PROBE_REQ, NULL,
sizeof(struct wl12xx_probe_req_template));
if (ret < 0)
return ret;
ret = wl1251_cmd_template_set(wl, CMD_NULL_DATA, NULL,
sizeof(struct wl12xx_null_data_template));
if (ret < 0)
return ret;
ret = wl1251_cmd_template_set(wl, CMD_PS_POLL, NULL,
sizeof(struct wl12xx_ps_poll_template));
if (ret < 0)
return ret;
ret = wl1251_cmd_template_set(wl, CMD_QOS_NULL_DATA, NULL,
sizeof
(struct wl12xx_qos_null_data_template));
if (ret < 0)
return ret;
ret = wl1251_cmd_template_set(wl, CMD_PROBE_RESP, NULL,
sizeof
(struct wl12xx_probe_resp_template));
if (ret < 0)
return ret;
ret = wl1251_cmd_template_set(wl, CMD_BEACON, NULL,
sizeof
(struct wl12xx_beacon_template));
if (ret < 0)
return ret;
/* tim templates, first reserve space then allocate an empty one */
memset(partial_vbm, 0, PARTIAL_VBM_MAX);
ret = wl1251_cmd_vbm(wl, TIM_ELE_ID, partial_vbm, PARTIAL_VBM_MAX, 0);
if (ret < 0)
return ret;
ret = wl1251_cmd_vbm(wl, TIM_ELE_ID, partial_vbm, 1, 0);
if (ret < 0)
return ret;
return 0;
}
int wl1251_hw_init_rx_config(struct wl1251 *wl, u32 config, u32 filter)
{
int ret;
ret = wl1251_acx_rx_msdu_life_time(wl, RX_MSDU_LIFETIME_DEF);
if (ret < 0)
return ret;
ret = wl1251_acx_rx_config(wl, config, filter);
if (ret < 0)
return ret;
return 0;
}
int wl1251_hw_init_phy_config(struct wl1251 *wl)
{
int ret;
ret = wl1251_acx_pd_threshold(wl);
if (ret < 0)
return ret;
ret = wl1251_acx_slot(wl, DEFAULT_SLOT_TIME);
if (ret < 0)
return ret;
ret = wl1251_acx_group_address_tbl(wl);
if (ret < 0)
return ret;
ret = wl1251_acx_service_period_timeout(wl);
if (ret < 0)
return ret;
ret = wl1251_acx_rts_threshold(wl, RTS_THRESHOLD_DEF);
if (ret < 0)
return ret;
return 0;
}
int wl1251_hw_init_beacon_filter(struct wl1251 *wl)
{
int ret;
/* disable beacon filtering at this stage */
ret = wl1251_acx_beacon_filter_opt(wl, false);
if (ret < 0)
return ret;
ret = wl1251_acx_beacon_filter_table(wl);
if (ret < 0)
return ret;
return 0;
}
int wl1251_hw_init_pta(struct wl1251 *wl)
{
int ret;
ret = wl1251_acx_sg_enable(wl);
if (ret < 0)
return ret;
ret = wl1251_acx_sg_cfg(wl);
if (ret < 0)
return ret;
return 0;
}
int wl1251_hw_init_energy_detection(struct wl1251 *wl)
{
int ret;
ret = wl1251_acx_cca_threshold(wl);
if (ret < 0)
return ret;
return 0;
}
int wl1251_hw_init_beacon_broadcast(struct wl1251 *wl)
{
int ret;
ret = wl1251_acx_bcn_dtim_options(wl);
if (ret < 0)
return ret;
return 0;
}
int wl1251_hw_init_power_auth(struct wl1251 *wl)
{
return wl1251_acx_sleep_auth(wl, WL1251_PSM_CAM);
}
int wl1251_hw_init_mem_config(struct wl1251 *wl)
{
int ret;
ret = wl1251_acx_mem_cfg(wl);
if (ret < 0)
return ret;
wl->target_mem_map = kzalloc(sizeof(struct wl1251_acx_mem_map),
GFP_KERNEL);
if (!wl->target_mem_map) {
wl1251_error("couldn't allocate target memory map");
return -ENOMEM;
}
/* we now ask for the firmware built memory map */
ret = wl1251_acx_mem_map(wl, wl->target_mem_map,
sizeof(struct wl1251_acx_mem_map));
if (ret < 0) {
wl1251_error("couldn't retrieve firmware memory map");
kfree(wl->target_mem_map);
wl->target_mem_map = NULL;
return ret;
}
return 0;
}
static int wl1251_hw_init_txq_fill(u8 qid,
struct acx_tx_queue_qos_config *config,
u32 num_blocks)
{
config->qid = qid;
switch (qid) {
case QOS_AC_BE:
config->high_threshold =
(QOS_TX_HIGH_BE_DEF * num_blocks) / 100;
config->low_threshold =
(QOS_TX_LOW_BE_DEF * num_blocks) / 100;
break;
case QOS_AC_BK:
config->high_threshold =
(QOS_TX_HIGH_BK_DEF * num_blocks) / 100;
config->low_threshold =
(QOS_TX_LOW_BK_DEF * num_blocks) / 100;
break;
case QOS_AC_VI:
config->high_threshold =
(QOS_TX_HIGH_VI_DEF * num_blocks) / 100;
config->low_threshold =
(QOS_TX_LOW_VI_DEF * num_blocks) / 100;
break;
case QOS_AC_VO:
config->high_threshold =
(QOS_TX_HIGH_VO_DEF * num_blocks) / 100;
config->low_threshold =
(QOS_TX_LOW_VO_DEF * num_blocks) / 100;
break;
default:
wl1251_error("Invalid TX queue id: %d", qid);
return -EINVAL;
}
return 0;
}
static int wl1251_hw_init_tx_queue_config(struct wl1251 *wl)
{
struct acx_tx_queue_qos_config *config;
struct wl1251_acx_mem_map *wl_mem_map = wl->target_mem_map;
int ret, i;
wl1251_debug(DEBUG_ACX, "acx tx queue config");
config = kzalloc(sizeof(*config), GFP_KERNEL);
if (!config) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < MAX_NUM_OF_AC; i++) {
ret = wl1251_hw_init_txq_fill(i, config,
wl_mem_map->num_tx_mem_blocks);
if (ret < 0)
goto out;
ret = wl1251_cmd_configure(wl, ACX_TX_QUEUE_CFG,
config, sizeof(*config));
if (ret < 0)
goto out;
}
wl1251_acx_ac_cfg(wl, AC_BE, CWMIN_BE, CWMAX_BE, AIFS_DIFS, TXOP_BE);
wl1251_acx_ac_cfg(wl, AC_BK, CWMIN_BK, CWMAX_BK, AIFS_DIFS, TXOP_BK);
wl1251_acx_ac_cfg(wl, AC_VI, CWMIN_VI, CWMAX_VI, AIFS_DIFS, TXOP_VI);
wl1251_acx_ac_cfg(wl, AC_VO, CWMIN_VO, CWMAX_VO, AIFS_DIFS, TXOP_VO);
out:
kfree(config);
return ret;
}
static int wl1251_hw_init_data_path_config(struct wl1251 *wl)
{
int ret;
/* asking for the data path parameters */
wl->data_path = kzalloc(sizeof(struct acx_data_path_params_resp),
GFP_KERNEL);
if (!wl->data_path) {
wl1251_error("Couldnt allocate data path parameters");
return -ENOMEM;
}
ret = wl1251_acx_data_path_params(wl, wl->data_path);
if (ret < 0) {
kfree(wl->data_path);
wl->data_path = NULL;
return ret;
}
return 0;
}
int wl1251_hw_init(struct wl1251 *wl)
{
struct wl1251_acx_mem_map *wl_mem_map;
int ret;
ret = wl1251_hw_init_hwenc_config(wl);
if (ret < 0)
return ret;
/* Template settings */
ret = wl1251_hw_init_templates_config(wl);
if (ret < 0)
return ret;
/* Default memory configuration */
ret = wl1251_hw_init_mem_config(wl);
if (ret < 0)
return ret;
/* Default data path configuration */
ret = wl1251_hw_init_data_path_config(wl);
if (ret < 0)
goto out_free_memmap;
/* RX config */
ret = wl1251_hw_init_rx_config(wl,
RX_CFG_PROMISCUOUS | RX_CFG_TSF,
RX_FILTER_OPTION_DEF);
/* RX_CONFIG_OPTION_ANY_DST_ANY_BSS,
RX_FILTER_OPTION_FILTER_ALL); */
if (ret < 0)
goto out_free_data_path;
/* TX queues config */
ret = wl1251_hw_init_tx_queue_config(wl);
if (ret < 0)
goto out_free_data_path;
/* PHY layer config */
ret = wl1251_hw_init_phy_config(wl);
if (ret < 0)
goto out_free_data_path;
/* Initialize connection monitoring thresholds */
ret = wl1251_acx_conn_monit_params(wl);
if (ret < 0)
goto out_free_data_path;
/* Beacon filtering */
ret = wl1251_hw_init_beacon_filter(wl);
if (ret < 0)
goto out_free_data_path;
/* Bluetooth WLAN coexistence */
ret = wl1251_hw_init_pta(wl);
if (ret < 0)
goto out_free_data_path;
/* Energy detection */
ret = wl1251_hw_init_energy_detection(wl);
if (ret < 0)
goto out_free_data_path;
/* Beacons and boradcast settings */
ret = wl1251_hw_init_beacon_broadcast(wl);
if (ret < 0)
goto out_free_data_path;
/* Enable data path */
ret = wl1251_cmd_data_path(wl, wl->channel, 1);
if (ret < 0)
goto out_free_data_path;
/* Default power state */
ret = wl1251_hw_init_power_auth(wl);
if (ret < 0)
goto out_free_data_path;
wl_mem_map = wl->target_mem_map;
wl1251_info("%d tx blocks at 0x%x, %d rx blocks at 0x%x",
wl_mem_map->num_tx_mem_blocks,
wl->data_path->tx_control_addr,
wl_mem_map->num_rx_mem_blocks,
wl->data_path->rx_control_addr);
return 0;
out_free_data_path:
kfree(wl->data_path);
out_free_memmap:
kfree(wl->target_mem_map);
return ret;
}