linux_old1/drivers/acpi/scan.c

1596 lines
39 KiB
C
Raw Normal View History

/*
* scan.c - support for transforming the ACPI namespace into individual objects
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/acpi.h>
#include <linux/signal.h>
#include <linux/kthread.h>
#include <acpi/acpi_drivers.h>
#include <acpi/acinterp.h> /* for acpi_ex_eisa_id_to_string() */
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME("scan");
#define STRUCT_TO_INT(s) (*((int*)&s))
extern struct acpi_device *acpi_root;
#define ACPI_BUS_CLASS "system_bus"
#define ACPI_BUS_HID "LNXSYBUS"
#define ACPI_BUS_DEVICE_NAME "System Bus"
static LIST_HEAD(acpi_device_list);
static LIST_HEAD(acpi_bus_id_list);
DEFINE_SPINLOCK(acpi_device_lock);
LIST_HEAD(acpi_wakeup_device_list);
struct acpi_device_bus_id{
char bus_id[15];
unsigned int instance_no;
struct list_head node;
};
/*
* Creates hid/cid(s) string needed for modalias and uevent
* e.g. on a device with hid:IBM0001 and cid:ACPI0001 you get:
* char *modalias: "acpi:IBM0001:ACPI0001"
*/
static int create_modalias(struct acpi_device *acpi_dev, char *modalias,
int size)
{
int len;
int count;
if (!acpi_dev->flags.hardware_id && !acpi_dev->flags.compatible_ids)
return -ENODEV;
len = snprintf(modalias, size, "acpi:");
size -= len;
if (acpi_dev->flags.hardware_id) {
count = snprintf(&modalias[len], size, "%s:",
acpi_dev->pnp.hardware_id);
if (count < 0 || count >= size)
return -EINVAL;
len += count;
size -= count;
}
if (acpi_dev->flags.compatible_ids) {
struct acpi_compatible_id_list *cid_list;
int i;
cid_list = acpi_dev->pnp.cid_list;
for (i = 0; i < cid_list->count; i++) {
count = snprintf(&modalias[len], size, "%s:",
cid_list->id[i].value);
if (count < 0 || count >= size) {
printk(KERN_ERR PREFIX "%s cid[%i] exceeds event buffer size",
acpi_dev->pnp.device_name, i);
break;
}
len += count;
size -= count;
}
}
modalias[len] = '\0';
return len;
}
static ssize_t
acpi_device_modalias_show(struct device *dev, struct device_attribute *attr, char *buf) {
struct acpi_device *acpi_dev = to_acpi_device(dev);
int len;
/* Device has no HID and no CID or string is >1024 */
len = create_modalias(acpi_dev, buf, 1024);
if (len <= 0)
return 0;
buf[len++] = '\n';
return len;
}
static DEVICE_ATTR(modalias, 0444, acpi_device_modalias_show, NULL);
static int acpi_bus_hot_remove_device(void *context)
{
struct acpi_device *device;
acpi_handle handle = context;
struct acpi_object_list arg_list;
union acpi_object arg;
acpi_status status = AE_OK;
if (acpi_bus_get_device(handle, &device))
return 0;
if (!device)
return 0;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Hot-removing device %s...\n", device->dev.bus_id));
if (acpi_bus_trim(device, 1)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Removing device failed\n"));
return -1;
}
/* power off device */
status = acpi_evaluate_object(handle, "_PS3", NULL, NULL);
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND)
ACPI_DEBUG_PRINT((ACPI_DB_WARN,
"Power-off device failed\n"));
if (device->flags.lockable) {
arg_list.count = 1;
arg_list.pointer = &arg;
arg.type = ACPI_TYPE_INTEGER;
arg.integer.value = 0;
acpi_evaluate_object(handle, "_LCK", &arg_list, NULL);
}
arg_list.count = 1;
arg_list.pointer = &arg;
arg.type = ACPI_TYPE_INTEGER;
arg.integer.value = 1;
/*
* TBD: _EJD support.
*/
status = acpi_evaluate_object(handle, "_EJ0", &arg_list, NULL);
if (ACPI_FAILURE(status))
return -ENODEV;
return 0;
}
static ssize_t
acpi_eject_store(struct device *d, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret = count;
acpi_status status;
acpi_object_type type = 0;
struct acpi_device *acpi_device = to_acpi_device(d);
struct task_struct *task;
if ((!count) || (buf[0] != '1')) {
return -EINVAL;
}
#ifndef FORCE_EJECT
if (acpi_device->driver == NULL) {
ret = -ENODEV;
goto err;
}
#endif
status = acpi_get_type(acpi_device->handle, &type);
if (ACPI_FAILURE(status) || (!acpi_device->flags.ejectable)) {
ret = -ENODEV;
goto err;
}
/* remove the device in another thread to fix the deadlock issue */
task = kthread_run(acpi_bus_hot_remove_device,
acpi_device->handle, "acpi_hot_remove_device");
if (IS_ERR(task))
ret = PTR_ERR(task);
err:
return ret;
}
static DEVICE_ATTR(eject, 0200, NULL, acpi_eject_store);
static ssize_t
acpi_device_hid_show(struct device *dev, struct device_attribute *attr, char *buf) {
struct acpi_device *acpi_dev = to_acpi_device(dev);
return sprintf(buf, "%s\n", acpi_dev->pnp.hardware_id);
}
static DEVICE_ATTR(hid, 0444, acpi_device_hid_show, NULL);
static ssize_t
acpi_device_path_show(struct device *dev, struct device_attribute *attr, char *buf) {
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_buffer path = {ACPI_ALLOCATE_BUFFER, NULL};
int result;
result = acpi_get_name(acpi_dev->handle, ACPI_FULL_PATHNAME, &path);
if(result)
goto end;
result = sprintf(buf, "%s\n", (char*)path.pointer);
kfree(path.pointer);
end:
return result;
}
static DEVICE_ATTR(path, 0444, acpi_device_path_show, NULL);
static int acpi_device_setup_files(struct acpi_device *dev)
{
acpi_status status;
acpi_handle temp;
int result = 0;
/*
* Devices gotten from FADT don't have a "path" attribute
*/
if(dev->handle) {
result = device_create_file(&dev->dev, &dev_attr_path);
if(result)
goto end;
}
if(dev->flags.hardware_id) {
result = device_create_file(&dev->dev, &dev_attr_hid);
if(result)
goto end;
}
if (dev->flags.hardware_id || dev->flags.compatible_ids){
result = device_create_file(&dev->dev, &dev_attr_modalias);
if(result)
goto end;
}
/*
* If device has _EJ0, 'eject' file is created that is used to trigger
* hot-removal function from userland.
*/
status = acpi_get_handle(dev->handle, "_EJ0", &temp);
if (ACPI_SUCCESS(status))
result = device_create_file(&dev->dev, &dev_attr_eject);
end:
return result;
}
static void acpi_device_remove_files(struct acpi_device *dev)
{
acpi_status status;
acpi_handle temp;
/*
* If device has _EJ0, 'eject' file is created that is used to trigger
* hot-removal function from userland.
*/
status = acpi_get_handle(dev->handle, "_EJ0", &temp);
if (ACPI_SUCCESS(status))
device_remove_file(&dev->dev, &dev_attr_eject);
if (dev->flags.hardware_id || dev->flags.compatible_ids)
device_remove_file(&dev->dev, &dev_attr_modalias);
if(dev->flags.hardware_id)
device_remove_file(&dev->dev, &dev_attr_hid);
if(dev->handle)
device_remove_file(&dev->dev, &dev_attr_path);
}
/* --------------------------------------------------------------------------
ACPI Bus operations
-------------------------------------------------------------------------- */
int acpi_match_device_ids(struct acpi_device *device,
const struct acpi_device_id *ids)
{
const struct acpi_device_id *id;
if (device->flags.hardware_id) {
for (id = ids; id->id[0]; id++) {
if (!strcmp((char*)id->id, device->pnp.hardware_id))
return 0;
}
}
if (device->flags.compatible_ids) {
struct acpi_compatible_id_list *cid_list = device->pnp.cid_list;
int i;
for (id = ids; id->id[0]; id++) {
/* compare multiple _CID entries against driver ids */
for (i = 0; i < cid_list->count; i++) {
if (!strcmp((char*)id->id,
cid_list->id[i].value))
return 0;
}
}
}
return -ENOENT;
}
EXPORT_SYMBOL(acpi_match_device_ids);
static void acpi_device_release(struct device *dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
kfree(acpi_dev->pnp.cid_list);
kfree(acpi_dev);
}
static int acpi_device_suspend(struct device *dev, pm_message_t state)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = acpi_dev->driver;
if (acpi_drv && acpi_drv->ops.suspend)
return acpi_drv->ops.suspend(acpi_dev, state);
return 0;
}
static int acpi_device_resume(struct device *dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = acpi_dev->driver;
if (acpi_drv && acpi_drv->ops.resume)
return acpi_drv->ops.resume(acpi_dev);
return 0;
}
static int acpi_bus_match(struct device *dev, struct device_driver *drv)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = to_acpi_driver(drv);
return !acpi_match_device_ids(acpi_dev, acpi_drv->ids);
}
static int acpi_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
int len;
if (add_uevent_var(env, "MODALIAS="))
return -ENOMEM;
len = create_modalias(acpi_dev, &env->buf[env->buflen - 1],
sizeof(env->buf) - env->buflen);
if (len >= (sizeof(env->buf) - env->buflen))
return -ENOMEM;
env->buflen += len;
return 0;
}
static int acpi_bus_driver_init(struct acpi_device *, struct acpi_driver *);
static int acpi_start_single_object(struct acpi_device *);
static int acpi_device_probe(struct device * dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
int ret;
ret = acpi_bus_driver_init(acpi_dev, acpi_drv);
if (!ret) {
if (acpi_dev->bus_ops.acpi_op_start)
acpi_start_single_object(acpi_dev);
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Found driver [%s] for device [%s]\n",
acpi_drv->name, acpi_dev->pnp.bus_id));
get_device(dev);
}
return ret;
}
static int acpi_device_remove(struct device * dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = acpi_dev->driver;
if (acpi_drv) {
if (acpi_drv->ops.stop)
acpi_drv->ops.stop(acpi_dev, acpi_dev->removal_type);
if (acpi_drv->ops.remove)
acpi_drv->ops.remove(acpi_dev, acpi_dev->removal_type);
}
acpi_dev->driver = NULL;
acpi_driver_data(acpi_dev) = NULL;
put_device(dev);
return 0;
}
static void acpi_device_shutdown(struct device *dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = acpi_dev->driver;
if (acpi_drv && acpi_drv->ops.shutdown)
acpi_drv->ops.shutdown(acpi_dev);
return ;
}
struct bus_type acpi_bus_type = {
.name = "acpi",
.suspend = acpi_device_suspend,
.resume = acpi_device_resume,
.shutdown = acpi_device_shutdown,
.match = acpi_bus_match,
.probe = acpi_device_probe,
.remove = acpi_device_remove,
.uevent = acpi_device_uevent,
};
static int acpi_device_register(struct acpi_device *device,
struct acpi_device *parent)
{
int result;
struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id;
int found = 0;
/*
* Linkage
* -------
* Link this device to its parent and siblings.
*/
INIT_LIST_HEAD(&device->children);
INIT_LIST_HEAD(&device->node);
INIT_LIST_HEAD(&device->g_list);
INIT_LIST_HEAD(&device->wakeup_list);
new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL);
if (!new_bus_id) {
printk(KERN_ERR PREFIX "Memory allocation error\n");
return -ENOMEM;
}
spin_lock(&acpi_device_lock);
/*
* Find suitable bus_id and instance number in acpi_bus_id_list
* If failed, create one and link it into acpi_bus_id_list
*/
list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
if(!strcmp(acpi_device_bus_id->bus_id, device->flags.hardware_id? device->pnp.hardware_id : "device")) {
acpi_device_bus_id->instance_no ++;
found = 1;
kfree(new_bus_id);
break;
}
}
if(!found) {
acpi_device_bus_id = new_bus_id;
strcpy(acpi_device_bus_id->bus_id, device->flags.hardware_id ? device->pnp.hardware_id : "device");
acpi_device_bus_id->instance_no = 0;
list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
}
sprintf(device->dev.bus_id, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no);
if (device->parent) {
list_add_tail(&device->node, &device->parent->children);
list_add_tail(&device->g_list, &device->parent->g_list);
} else
list_add_tail(&device->g_list, &acpi_device_list);
if (device->wakeup.flags.valid)
list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
spin_unlock(&acpi_device_lock);
if (device->parent)
device->dev.parent = &parent->dev;
device->dev.bus = &acpi_bus_type;
device_initialize(&device->dev);
device->dev.release = &acpi_device_release;
result = device_add(&device->dev);
if(result) {
dev_err(&device->dev, "Error adding device\n");
goto end;
}
result = acpi_device_setup_files(device);
if(result)
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error creating sysfs interface for device %s\n", device->dev.bus_id));
device->removal_type = ACPI_BUS_REMOVAL_NORMAL;
return 0;
end:
spin_lock(&acpi_device_lock);
if (device->parent) {
list_del(&device->node);
list_del(&device->g_list);
} else
list_del(&device->g_list);
list_del(&device->wakeup_list);
spin_unlock(&acpi_device_lock);
return result;
}
static void acpi_device_unregister(struct acpi_device *device, int type)
{
spin_lock(&acpi_device_lock);
if (device->parent) {
list_del(&device->node);
list_del(&device->g_list);
} else
list_del(&device->g_list);
list_del(&device->wakeup_list);
spin_unlock(&acpi_device_lock);
acpi_detach_data(device->handle, acpi_bus_data_handler);
acpi_device_remove_files(device);
device_unregister(&device->dev);
}
/* --------------------------------------------------------------------------
Driver Management
-------------------------------------------------------------------------- */
/**
* acpi_bus_driver_init - add a device to a driver
* @device: the device to add and initialize
* @driver: driver for the device
*
* Used to initialize a device via its device driver. Called whenever a
* driver is bound to a device. Invokes the driver's add() ops.
*/
static int
acpi_bus_driver_init(struct acpi_device *device, struct acpi_driver *driver)
{
int result = 0;
if (!device || !driver)
return -EINVAL;
if (!driver->ops.add)
return -ENOSYS;
result = driver->ops.add(device);
if (result) {
device->driver = NULL;
acpi_driver_data(device) = NULL;
return result;
}
device->driver = driver;
/*
* TBD - Configuration Management: Assign resources to device based
* upon possible configuration and currently allocated resources.
*/
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Driver successfully bound to device\n"));
return 0;
}
static int acpi_start_single_object(struct acpi_device *device)
{
int result = 0;
struct acpi_driver *driver;
if (!(driver = device->driver))
return 0;
if (driver->ops.start) {
result = driver->ops.start(device);
if (result && driver->ops.remove)
driver->ops.remove(device, ACPI_BUS_REMOVAL_NORMAL);
}
return result;
}
/**
* acpi_bus_register_driver - register a driver with the ACPI bus
* @driver: driver being registered
*
* Registers a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and binds. Returns zero for
* success or a negative error status for failure.
*/
int acpi_bus_register_driver(struct acpi_driver *driver)
{
int ret;
if (acpi_disabled)
return -ENODEV;
driver->drv.name = driver->name;
driver->drv.bus = &acpi_bus_type;
driver->drv.owner = driver->owner;
ret = driver_register(&driver->drv);
return ret;
}
EXPORT_SYMBOL(acpi_bus_register_driver);
/**
* acpi_bus_unregister_driver - unregisters a driver with the APIC bus
* @driver: driver to unregister
*
* Unregisters a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and unbinds.
*/
void acpi_bus_unregister_driver(struct acpi_driver *driver)
{
driver_unregister(&driver->drv);
}
EXPORT_SYMBOL(acpi_bus_unregister_driver);
/* --------------------------------------------------------------------------
Device Enumeration
-------------------------------------------------------------------------- */
acpi_status
acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
{
acpi_status status;
acpi_handle tmp;
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
union acpi_object *obj;
status = acpi_get_handle(handle, "_EJD", &tmp);
if (ACPI_FAILURE(status))
return status;
status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
if (ACPI_SUCCESS(status)) {
obj = buffer.pointer;
status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
ejd);
kfree(buffer.pointer);
}
return status;
}
EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
void acpi_bus_data_handler(acpi_handle handle, u32 function, void *context)
{
/* TBD */
return;
}
static int acpi_bus_get_perf_flags(struct acpi_device *device)
{
device->performance.state = ACPI_STATE_UNKNOWN;
return 0;
}
static acpi_status
acpi_bus_extract_wakeup_device_power_package(struct acpi_device *device,
union acpi_object *package)
{
int i = 0;
union acpi_object *element = NULL;
if (!device || !package || (package->package.count < 2))
return AE_BAD_PARAMETER;
element = &(package->package.elements[0]);
if (!element)
return AE_BAD_PARAMETER;
if (element->type == ACPI_TYPE_PACKAGE) {
if ((element->package.count < 2) ||
(element->package.elements[0].type !=
ACPI_TYPE_LOCAL_REFERENCE)
|| (element->package.elements[1].type != ACPI_TYPE_INTEGER))
return AE_BAD_DATA;
device->wakeup.gpe_device =
element->package.elements[0].reference.handle;
device->wakeup.gpe_number =
(u32) element->package.elements[1].integer.value;
} else if (element->type == ACPI_TYPE_INTEGER) {
device->wakeup.gpe_number = element->integer.value;
} else
return AE_BAD_DATA;
element = &(package->package.elements[1]);
if (element->type != ACPI_TYPE_INTEGER) {
return AE_BAD_DATA;
}
device->wakeup.sleep_state = element->integer.value;
if ((package->package.count - 2) > ACPI_MAX_HANDLES) {
return AE_NO_MEMORY;
}
device->wakeup.resources.count = package->package.count - 2;
for (i = 0; i < device->wakeup.resources.count; i++) {
element = &(package->package.elements[i + 2]);
if (element->type != ACPI_TYPE_LOCAL_REFERENCE)
return AE_BAD_DATA;
device->wakeup.resources.handles[i] = element->reference.handle;
}
return AE_OK;
}
static int acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
{
acpi_status status = 0;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *package = NULL;
int psw_error;
struct acpi_device_id button_device_ids[] = {
{"PNP0C0D", 0},
{"PNP0C0C", 0},
{"PNP0C0E", 0},
{"", 0},
};
/* _PRW */
status = acpi_evaluate_object(device->handle, "_PRW", NULL, &buffer);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW"));
goto end;
}
package = (union acpi_object *)buffer.pointer;
status = acpi_bus_extract_wakeup_device_power_package(device, package);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status, "Extracting _PRW package"));
goto end;
}
kfree(buffer.pointer);
device->wakeup.flags.valid = 1;
/* Call _PSW/_DSW object to disable its ability to wake the sleeping
* system for the ACPI device with the _PRW object.
* The _PSW object is depreciated in ACPI 3.0 and is replaced by _DSW.
* So it is necessary to call _DSW object first. Only when it is not
* present will the _PSW object used.
*/
psw_error = acpi_device_sleep_wake(device, 0, 0, 0);
if (psw_error)
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"error in _DSW or _PSW evaluation\n"));
/* Power button, Lid switch always enable wakeup */
if (!acpi_match_device_ids(device, button_device_ids))
device->wakeup.flags.run_wake = 1;
end:
if (ACPI_FAILURE(status))
device->flags.wake_capable = 0;
return 0;
}
static int acpi_bus_get_power_flags(struct acpi_device *device)
{
acpi_status status = 0;
acpi_handle handle = NULL;
u32 i = 0;
/*
* Power Management Flags
*/
status = acpi_get_handle(device->handle, "_PSC", &handle);
if (ACPI_SUCCESS(status))
device->power.flags.explicit_get = 1;
status = acpi_get_handle(device->handle, "_IRC", &handle);
if (ACPI_SUCCESS(status))
device->power.flags.inrush_current = 1;
/*
* Enumerate supported power management states
*/
for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3; i++) {
struct acpi_device_power_state *ps = &device->power.states[i];
char object_name[5] = { '_', 'P', 'R', '0' + i, '\0' };
/* Evaluate "_PRx" to se if power resources are referenced */
acpi_evaluate_reference(device->handle, object_name, NULL,
&ps->resources);
if (ps->resources.count) {
device->power.flags.power_resources = 1;
ps->flags.valid = 1;
}
/* Evaluate "_PSx" to see if we can do explicit sets */
object_name[2] = 'S';
status = acpi_get_handle(device->handle, object_name, &handle);
if (ACPI_SUCCESS(status)) {
ps->flags.explicit_set = 1;
ps->flags.valid = 1;
}
/* State is valid if we have some power control */
if (ps->resources.count || ps->flags.explicit_set)
ps->flags.valid = 1;
ps->power = -1; /* Unknown - driver assigned */
ps->latency = -1; /* Unknown - driver assigned */
}
/* Set defaults for D0 and D3 states (always valid) */
device->power.states[ACPI_STATE_D0].flags.valid = 1;
device->power.states[ACPI_STATE_D0].power = 100;
device->power.states[ACPI_STATE_D3].flags.valid = 1;
device->power.states[ACPI_STATE_D3].power = 0;
/* TBD: System wake support and resource requirements. */
device->power.state = ACPI_STATE_UNKNOWN;
return 0;
}
static int acpi_bus_get_flags(struct acpi_device *device)
{
acpi_status status = AE_OK;
acpi_handle temp = NULL;
/* Presence of _STA indicates 'dynamic_status' */
status = acpi_get_handle(device->handle, "_STA", &temp);
if (ACPI_SUCCESS(status))
device->flags.dynamic_status = 1;
/* Presence of _CID indicates 'compatible_ids' */
status = acpi_get_handle(device->handle, "_CID", &temp);
if (ACPI_SUCCESS(status))
device->flags.compatible_ids = 1;
/* Presence of _RMV indicates 'removable' */
status = acpi_get_handle(device->handle, "_RMV", &temp);
if (ACPI_SUCCESS(status))
device->flags.removable = 1;
/* Presence of _EJD|_EJ0 indicates 'ejectable' */
status = acpi_get_handle(device->handle, "_EJD", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
else {
status = acpi_get_handle(device->handle, "_EJ0", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
}
/* Presence of _LCK indicates 'lockable' */
status = acpi_get_handle(device->handle, "_LCK", &temp);
if (ACPI_SUCCESS(status))
device->flags.lockable = 1;
/* Presence of _PS0|_PR0 indicates 'power manageable' */
status = acpi_get_handle(device->handle, "_PS0", &temp);
if (ACPI_FAILURE(status))
status = acpi_get_handle(device->handle, "_PR0", &temp);
if (ACPI_SUCCESS(status))
device->flags.power_manageable = 1;
/* Presence of _PRW indicates wake capable */
status = acpi_get_handle(device->handle, "_PRW", &temp);
if (ACPI_SUCCESS(status))
device->flags.wake_capable = 1;
/* TBD: Performance management */
return 0;
}
static void acpi_device_get_busid(struct acpi_device *device,
acpi_handle handle, int type)
{
char bus_id[5] = { '?', 0 };
struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
int i = 0;
/*
* Bus ID
* ------
* The device's Bus ID is simply the object name.
* TBD: Shouldn't this value be unique (within the ACPI namespace)?
*/
switch (type) {
case ACPI_BUS_TYPE_SYSTEM:
strcpy(device->pnp.bus_id, "ACPI");
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
strcpy(device->pnp.bus_id, "PWRF");
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
strcpy(device->pnp.bus_id, "SLPF");
break;
default:
acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
/* Clean up trailing underscores (if any) */
for (i = 3; i > 1; i--) {
if (bus_id[i] == '_')
bus_id[i] = '\0';
else
break;
}
strcpy(device->pnp.bus_id, bus_id);
break;
}
}
static int
acpi_video_bus_match(struct acpi_device *device)
{
acpi_handle h_dummy;
if (!device)
return -EINVAL;
/* Since there is no HID, CID for ACPI Video drivers, we have
* to check well known required nodes for each feature we support.
*/
/* Does this device able to support video switching ? */
if (ACPI_SUCCESS(acpi_get_handle(device->handle, "_DOD", &h_dummy)) &&
ACPI_SUCCESS(acpi_get_handle(device->handle, "_DOS", &h_dummy)))
return 0;
/* Does this device able to retrieve a video ROM ? */
if (ACPI_SUCCESS(acpi_get_handle(device->handle, "_ROM", &h_dummy)))
return 0;
/* Does this device able to configure which video head to be POSTed ? */
if (ACPI_SUCCESS(acpi_get_handle(device->handle, "_VPO", &h_dummy)) &&
ACPI_SUCCESS(acpi_get_handle(device->handle, "_GPD", &h_dummy)) &&
ACPI_SUCCESS(acpi_get_handle(device->handle, "_SPD", &h_dummy)))
return 0;
return -ENODEV;
}
/*
* acpi_bay_match - see if a device is an ejectable driver bay
*
* If an acpi object is ejectable and has one of the ACPI ATA methods defined,
* then we can safely call it an ejectable drive bay
*/
static int acpi_bay_match(struct acpi_device *device){
acpi_status status;
acpi_handle handle;
acpi_handle tmp;
acpi_handle phandle;
handle = device->handle;
status = acpi_get_handle(handle, "_EJ0", &tmp);
if (ACPI_FAILURE(status))
return -ENODEV;
if ((ACPI_SUCCESS(acpi_get_handle(handle, "_GTF", &tmp))) ||
(ACPI_SUCCESS(acpi_get_handle(handle, "_GTM", &tmp))) ||
(ACPI_SUCCESS(acpi_get_handle(handle, "_STM", &tmp))) ||
(ACPI_SUCCESS(acpi_get_handle(handle, "_SDD", &tmp))))
return 0;
if (acpi_get_parent(handle, &phandle))
return -ENODEV;
if ((ACPI_SUCCESS(acpi_get_handle(phandle, "_GTF", &tmp))) ||
(ACPI_SUCCESS(acpi_get_handle(phandle, "_GTM", &tmp))) ||
(ACPI_SUCCESS(acpi_get_handle(phandle, "_STM", &tmp))) ||
(ACPI_SUCCESS(acpi_get_handle(phandle, "_SDD", &tmp))))
return 0;
return -ENODEV;
}
/*
* acpi_dock_match - see if a device has a _DCK method
*/
static int acpi_dock_match(struct acpi_device *device)
{
acpi_handle tmp;
return acpi_get_handle(device->handle, "_DCK", &tmp);
}
static void acpi_device_set_id(struct acpi_device *device,
struct acpi_device *parent, acpi_handle handle,
int type)
{
struct acpi_device_info *info;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
char *hid = NULL;
char *uid = NULL;
struct acpi_compatible_id_list *cid_list = NULL;
const char *cid_add = NULL;
acpi_status status;
switch (type) {
case ACPI_BUS_TYPE_DEVICE:
status = acpi_get_object_info(handle, &buffer);
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX "%s: Error reading device info\n", __func__);
return;
}
info = buffer.pointer;
if (info->valid & ACPI_VALID_HID)
hid = info->hardware_id.value;
if (info->valid & ACPI_VALID_UID)
uid = info->unique_id.value;
if (info->valid & ACPI_VALID_CID)
cid_list = &info->compatibility_id;
if (info->valid & ACPI_VALID_ADR) {
device->pnp.bus_address = info->address;
device->flags.bus_address = 1;
}
/* If we have a video/bay/dock device, add our selfdefined
HID to the CID list. Like that the video/bay/dock drivers
will get autoloaded and the device might still match
against another driver.
*/
if (ACPI_SUCCESS(acpi_video_bus_match(device)))
cid_add = ACPI_VIDEO_HID;
else if (ACPI_SUCCESS(acpi_bay_match(device)))
cid_add = ACPI_BAY_HID;
else if (ACPI_SUCCESS(acpi_dock_match(device)))
cid_add = ACPI_DOCK_HID;
break;
case ACPI_BUS_TYPE_POWER:
hid = ACPI_POWER_HID;
break;
case ACPI_BUS_TYPE_PROCESSOR:
hid = ACPI_PROCESSOR_HID;
break;
case ACPI_BUS_TYPE_SYSTEM:
hid = ACPI_SYSTEM_HID;
break;
case ACPI_BUS_TYPE_THERMAL:
hid = ACPI_THERMAL_HID;
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
hid = ACPI_BUTTON_HID_POWERF;
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
hid = ACPI_BUTTON_HID_SLEEPF;
break;
}
/*
* \_SB
* ----
* Fix for the system root bus device -- the only root-level device.
*/
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-18 02:07:00 +08:00
if (((acpi_handle)parent == ACPI_ROOT_OBJECT) && (type == ACPI_BUS_TYPE_DEVICE)) {
hid = ACPI_BUS_HID;
strcpy(device->pnp.device_name, ACPI_BUS_DEVICE_NAME);
strcpy(device->pnp.device_class, ACPI_BUS_CLASS);
}
if (hid) {
strcpy(device->pnp.hardware_id, hid);
device->flags.hardware_id = 1;
}
if (uid) {
strcpy(device->pnp.unique_id, uid);
device->flags.unique_id = 1;
}
if (cid_list || cid_add) {
struct acpi_compatible_id_list *list;
int size = 0;
int count = 0;
if (cid_list) {
size = cid_list->size;
} else if (cid_add) {
size = sizeof(struct acpi_compatible_id_list);
cid_list = ACPI_ALLOCATE_ZEROED((acpi_size) size);
if (!cid_list) {
printk(KERN_ERR "Memory allocation error\n");
kfree(buffer.pointer);
return;
} else {
cid_list->count = 0;
cid_list->size = size;
}
}
if (cid_add)
size += sizeof(struct acpi_compatible_id);
list = kmalloc(size, GFP_KERNEL);
if (list) {
if (cid_list) {
memcpy(list, cid_list, cid_list->size);
count = cid_list->count;
}
if (cid_add) {
strncpy(list->id[count].value, cid_add,
ACPI_MAX_CID_LENGTH);
count++;
device->flags.compatible_ids = 1;
}
list->size = size;
list->count = count;
device->pnp.cid_list = list;
} else
printk(KERN_ERR PREFIX "Memory allocation error\n");
}
kfree(buffer.pointer);
}
static int acpi_device_set_context(struct acpi_device *device, int type)
{
acpi_status status = AE_OK;
int result = 0;
/*
* Context
* -------
* Attach this 'struct acpi_device' to the ACPI object. This makes
* resolutions from handle->device very efficient. Note that we need
* to be careful with fixed-feature devices as they all attach to the
* root object.
*/
if (type != ACPI_BUS_TYPE_POWER_BUTTON &&
type != ACPI_BUS_TYPE_SLEEP_BUTTON) {
status = acpi_attach_data(device->handle,
acpi_bus_data_handler, device);
if (ACPI_FAILURE(status)) {
printk(KERN_ERR PREFIX "Error attaching device data\n");
result = -ENODEV;
}
}
return result;
}
static int acpi_bus_remove(struct acpi_device *dev, int rmdevice)
{
if (!dev)
return -EINVAL;
dev->removal_type = ACPI_BUS_REMOVAL_EJECT;
device_release_driver(&dev->dev);
if (!rmdevice)
return 0;
/*
* unbind _ADR-Based Devices when hot removal
*/
if (dev->flags.bus_address) {
if ((dev->parent) && (dev->parent->ops.unbind))
dev->parent->ops.unbind(dev);
}
acpi_device_unregister(dev, ACPI_BUS_REMOVAL_EJECT);
return 0;
}
static int
acpi_is_child_device(struct acpi_device *device,
int (*matcher)(struct acpi_device *))
{
int result = -ENODEV;
do {
if (ACPI_SUCCESS(matcher(device)))
return AE_OK;
} while ((device = device->parent));
return result;
}
static int
acpi_add_single_object(struct acpi_device **child,
struct acpi_device *parent, acpi_handle handle, int type,
struct acpi_bus_ops *ops)
{
int result = 0;
struct acpi_device *device = NULL;
if (!child)
return -EINVAL;
device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
if (!device) {
printk(KERN_ERR PREFIX "Memory allocation error\n");
return -ENOMEM;
}
device->handle = handle;
device->parent = parent;
device->bus_ops = *ops; /* workround for not call .start */
acpi_device_get_busid(device, handle, type);
/*
* Flags
* -----
* Get prior to calling acpi_bus_get_status() so we know whether
* or not _STA is present. Note that we only look for object
* handles -- cannot evaluate objects until we know the device is
* present and properly initialized.
*/
result = acpi_bus_get_flags(device);
if (result)
goto end;
/*
* Status
* ------
* See if the device is present. We always assume that non-Device
* and non-Processor objects (e.g. thermal zones, power resources,
* etc.) are present, functioning, etc. (at least when parent object
* is present). Note that _STA has a different meaning for some
* objects (e.g. power resources) so we need to be careful how we use
* it.
*/
switch (type) {
case ACPI_BUS_TYPE_PROCESSOR:
case ACPI_BUS_TYPE_DEVICE:
result = acpi_bus_get_status(device);
if (ACPI_FAILURE(result)) {
result = -ENODEV;
goto end;
}
if (!device->status.present) {
/* Bay and dock should be handled even if absent */
if (!ACPI_SUCCESS(
acpi_is_child_device(device, acpi_bay_match)) &&
!ACPI_SUCCESS(
acpi_is_child_device(device, acpi_dock_match))) {
result = -ENODEV;
goto end;
}
}
break;
default:
STRUCT_TO_INT(device->status) =
ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING;
break;
}
/*
* Initialize Device
* -----------------
* TBD: Synch with Core's enumeration/initialization process.
*/
/*
* Hardware ID, Unique ID, & Bus Address
* -------------------------------------
*/
acpi_device_set_id(device, parent, handle, type);
/*
* Power Management
* ----------------
*/
if (device->flags.power_manageable) {
result = acpi_bus_get_power_flags(device);
if (result)
goto end;
}
/*
* Wakeup device management
*-----------------------
*/
if (device->flags.wake_capable) {
result = acpi_bus_get_wakeup_device_flags(device);
if (result)
goto end;
}
/*
* Performance Management
* ----------------------
*/
if (device->flags.performance_manageable) {
result = acpi_bus_get_perf_flags(device);
if (result)
goto end;
}
if ((result = acpi_device_set_context(device, type)))
goto end;
result = acpi_device_register(device, parent);
/*
* Bind _ADR-Based Devices when hot add
*/
if (device->flags.bus_address) {
if (device->parent && device->parent->ops.bind)
device->parent->ops.bind(device);
}
end:
if (!result)
*child = device;
else {
kfree(device->pnp.cid_list);
kfree(device);
}
return result;
}
static int acpi_bus_scan(struct acpi_device *start, struct acpi_bus_ops *ops)
{
acpi_status status = AE_OK;
struct acpi_device *parent = NULL;
struct acpi_device *child = NULL;
acpi_handle phandle = NULL;
acpi_handle chandle = NULL;
acpi_object_type type = 0;
u32 level = 1;
if (!start)
return -EINVAL;
parent = start;
phandle = start->handle;
/*
* Parse through the ACPI namespace, identify all 'devices', and
* create a new 'struct acpi_device' for each.
*/
while ((level > 0) && parent) {
status = acpi_get_next_object(ACPI_TYPE_ANY, phandle,
chandle, &chandle);
/*
* If this scope is exhausted then move our way back up.
*/
if (ACPI_FAILURE(status)) {
level--;
chandle = phandle;
acpi_get_parent(phandle, &phandle);
if (parent->parent)
parent = parent->parent;
continue;
}
status = acpi_get_type(chandle, &type);
if (ACPI_FAILURE(status))
continue;
/*
* If this is a scope object then parse it (depth-first).
*/
if (type == ACPI_TYPE_LOCAL_SCOPE) {
level++;
phandle = chandle;
chandle = NULL;
continue;
}
/*
* We're only interested in objects that we consider 'devices'.
*/
switch (type) {
case ACPI_TYPE_DEVICE:
type = ACPI_BUS_TYPE_DEVICE;
break;
case ACPI_TYPE_PROCESSOR:
type = ACPI_BUS_TYPE_PROCESSOR;
break;
case ACPI_TYPE_THERMAL:
type = ACPI_BUS_TYPE_THERMAL;
break;
case ACPI_TYPE_POWER:
type = ACPI_BUS_TYPE_POWER;
break;
default:
continue;
}
if (ops->acpi_op_add)
status = acpi_add_single_object(&child, parent,
chandle, type, ops);
else
status = acpi_bus_get_device(chandle, &child);
if (ACPI_FAILURE(status))
continue;
if (ops->acpi_op_start && !(ops->acpi_op_add)) {
status = acpi_start_single_object(child);
if (ACPI_FAILURE(status))
continue;
}
/*
* If the device is present, enabled, and functioning then
* parse its scope (depth-first). Note that we need to
* represent absent devices to facilitate PnP notifications
* -- but only the subtree head (not all of its children,
* which will be enumerated when the parent is inserted).
*
* TBD: Need notifications and other detection mechanisms
* in place before we can fully implement this.
*/
if (child->status.present) {
status = acpi_get_next_object(ACPI_TYPE_ANY, chandle,
NULL, NULL);
if (ACPI_SUCCESS(status)) {
level++;
phandle = chandle;
chandle = NULL;
parent = child;
}
}
}
return 0;
}
int
acpi_bus_add(struct acpi_device **child,
struct acpi_device *parent, acpi_handle handle, int type)
{
int result;
struct acpi_bus_ops ops;
memset(&ops, 0, sizeof(ops));
ops.acpi_op_add = 1;
result = acpi_add_single_object(child, parent, handle, type, &ops);
if (!result)
result = acpi_bus_scan(*child, &ops);
return result;
}
EXPORT_SYMBOL(acpi_bus_add);
int acpi_bus_start(struct acpi_device *device)
{
int result;
struct acpi_bus_ops ops;
if (!device)
return -EINVAL;
result = acpi_start_single_object(device);
if (!result) {
memset(&ops, 0, sizeof(ops));
ops.acpi_op_start = 1;
result = acpi_bus_scan(device, &ops);
}
return result;
}
EXPORT_SYMBOL(acpi_bus_start);
int acpi_bus_trim(struct acpi_device *start, int rmdevice)
{
acpi_status status;
struct acpi_device *parent, *child;
acpi_handle phandle, chandle;
acpi_object_type type;
u32 level = 1;
int err = 0;
parent = start;
phandle = start->handle;
child = chandle = NULL;
while ((level > 0) && parent && (!err)) {
status = acpi_get_next_object(ACPI_TYPE_ANY, phandle,
chandle, &chandle);
/*
* If this scope is exhausted then move our way back up.
*/
if (ACPI_FAILURE(status)) {
level--;
chandle = phandle;
acpi_get_parent(phandle, &phandle);
child = parent;
parent = parent->parent;
if (level == 0)
err = acpi_bus_remove(child, rmdevice);
else
err = acpi_bus_remove(child, 1);
continue;
}
status = acpi_get_type(chandle, &type);
if (ACPI_FAILURE(status)) {
continue;
}
/*
* If there is a device corresponding to chandle then
* parse it (depth-first).
*/
if (acpi_bus_get_device(chandle, &child) == 0) {
level++;
phandle = chandle;
chandle = NULL;
parent = child;
}
continue;
}
return err;
}
EXPORT_SYMBOL_GPL(acpi_bus_trim);
static int acpi_bus_scan_fixed(struct acpi_device *root)
{
int result = 0;
struct acpi_device *device = NULL;
struct acpi_bus_ops ops;
if (!root)
return -ENODEV;
memset(&ops, 0, sizeof(ops));
ops.acpi_op_add = 1;
ops.acpi_op_start = 1;
/*
* Enumerate all fixed-feature devices.
*/
if ((acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON) == 0) {
result = acpi_add_single_object(&device, acpi_root,
NULL,
ACPI_BUS_TYPE_POWER_BUTTON,
&ops);
}
if ((acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
result = acpi_add_single_object(&device, acpi_root,
NULL,
ACPI_BUS_TYPE_SLEEP_BUTTON,
&ops);
}
return result;
}
int __init acpi_boot_ec_enable(void);
static int __init acpi_scan_init(void)
{
int result;
struct acpi_bus_ops ops;
if (acpi_disabled)
return 0;
memset(&ops, 0, sizeof(ops));
ops.acpi_op_add = 1;
ops.acpi_op_start = 1;
result = bus_register(&acpi_bus_type);
if (result) {
/* We don't want to quit even if we failed to add suspend/resume */
printk(KERN_ERR PREFIX "Could not register bus type\n");
}
/*
* Create the root device in the bus's device tree
*/
result = acpi_add_single_object(&acpi_root, NULL, ACPI_ROOT_OBJECT,
ACPI_BUS_TYPE_SYSTEM, &ops);
if (result)
goto Done;
/*
* Enumerate devices in the ACPI namespace.
*/
result = acpi_bus_scan_fixed(acpi_root);
/* EC region might be needed at bus_scan, so enable it now */
acpi_boot_ec_enable();
if (!result)
result = acpi_bus_scan(acpi_root, &ops);
if (result)
acpi_device_unregister(acpi_root, ACPI_BUS_REMOVAL_NORMAL);
Done:
return result;
}
subsys_initcall(acpi_scan_init);