linux_old1/arch/sparc/kernel/smp_32.c

481 lines
10 KiB
C
Raw Normal View History

/* smp.c: Sparc SMP support.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
*/
#include <asm/head.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/cache.h>
#include <linux/delay.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/cpudata.h>
#include <asm/leon.h>
#include "irq.h"
volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
cpumask_t smp_commenced_mask = CPU_MASK_NONE;
/* The only guaranteed locking primitive available on all Sparc
* processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
* places the current byte at the effective address into dest_reg and
* places 0xff there afterwards. Pretty lame locking primitive
* compared to the Alpha and the Intel no? Most Sparcs have 'swap'
* instruction which is much better...
*/
void __cpuinit smp_store_cpu_info(int id)
{
int cpu_node;
int mid;
cpu_data(id).udelay_val = loops_per_jiffy;
cpu_find_by_mid(id, &cpu_node);
cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
"clock-frequency", 0);
cpu_data(id).prom_node = cpu_node;
mid = cpu_get_hwmid(cpu_node);
if (mid < 0) {
printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
mid = 0;
}
cpu_data(id).mid = mid;
}
void __init smp_cpus_done(unsigned int max_cpus)
{
extern void smp4m_smp_done(void);
extern void smp4d_smp_done(void);
unsigned long bogosum = 0;
int cpu, num = 0;
for_each_online_cpu(cpu) {
num++;
bogosum += cpu_data(cpu).udelay_val;
}
printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
num, bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
switch(sparc_cpu_model) {
case sun4:
printk("SUN4\n");
BUG();
break;
case sun4c:
printk("SUN4C\n");
BUG();
break;
case sun4m:
smp4m_smp_done();
break;
case sun4d:
smp4d_smp_done();
break;
case sparc_leon:
leon_smp_done();
break;
case sun4e:
printk("SUN4E\n");
BUG();
break;
case sun4u:
printk("SUN4U\n");
BUG();
break;
default:
printk("UNKNOWN!\n");
BUG();
break;
};
}
void cpu_panic(void)
{
printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
panic("SMP bolixed\n");
}
struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
void smp_send_reschedule(int cpu)
{
/*
* CPU model dependent way of implementing IPI generation targeting
* a single CPU. The trap handler needs only to do trap entry/return
* to call schedule.
*/
BTFIXUP_CALL(smp_ipi_resched)(cpu);
}
void smp_send_stop(void)
{
}
void arch_send_call_function_single_ipi(int cpu)
{
/* trigger one IPI single call on one CPU */
BTFIXUP_CALL(smp_ipi_single)(cpu);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
int cpu;
/* trigger IPI mask call on each CPU */
for_each_cpu(cpu, mask)
BTFIXUP_CALL(smp_ipi_mask_one)(cpu);
}
void smp_resched_interrupt(void)
{
irq_enter();
scheduler_ipi();
local_cpu_data().irq_resched_count++;
irq_exit();
/* re-schedule routine called by interrupt return code. */
}
void smp_call_function_single_interrupt(void)
{
irq_enter();
generic_smp_call_function_single_interrupt();
local_cpu_data().irq_call_count++;
irq_exit();
}
void smp_call_function_interrupt(void)
{
irq_enter();
generic_smp_call_function_interrupt();
local_cpu_data().irq_call_count++;
irq_exit();
}
void smp_flush_cache_all(void)
{
xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
local_flush_cache_all();
}
void smp_flush_tlb_all(void)
{
xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
local_flush_tlb_all();
}
void smp_flush_cache_mm(struct mm_struct *mm)
{
if(mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
local_flush_cache_mm(mm);
}
}
void smp_flush_tlb_mm(struct mm_struct *mm)
{
if(mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask)) {
xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
cpumask_copy(mm_cpumask(mm),
cpumask_of(smp_processor_id()));
}
local_flush_tlb_mm(mm);
}
}
void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
local_flush_cache_range(vma, start, end);
}
}
void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
local_flush_tlb_range(vma, start, end);
}
}
void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
if(mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
local_flush_cache_page(vma, page);
}
}
void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
if(mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
local_flush_tlb_page(vma, page);
}
}
void smp_flush_page_to_ram(unsigned long page)
{
/* Current theory is that those who call this are the one's
* who have just dirtied their cache with the pages contents
* in kernel space, therefore we only run this on local cpu.
*
* XXX This experiment failed, research further... -DaveM
*/
#if 1
xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
#endif
local_flush_page_to_ram(page);
}
void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
local_flush_sig_insns(mm, insn_addr);
}
extern unsigned int lvl14_resolution;
/* /proc/profile writes can call this, don't __init it please. */
static DEFINE_SPINLOCK(prof_setup_lock);
int setup_profiling_timer(unsigned int multiplier)
{
int i;
unsigned long flags;
/* Prevent level14 ticker IRQ flooding. */
if((!multiplier) || (lvl14_resolution / multiplier) < 500)
return -EINVAL;
spin_lock_irqsave(&prof_setup_lock, flags);
for_each_possible_cpu(i) {
load_profile_irq(i, lvl14_resolution / multiplier);
prof_multiplier(i) = multiplier;
}
spin_unlock_irqrestore(&prof_setup_lock, flags);
return 0;
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
extern void __init smp4m_boot_cpus(void);
extern void __init smp4d_boot_cpus(void);
int i, cpuid, extra;
printk("Entering SMP Mode...\n");
extra = 0;
for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
if (cpuid >= NR_CPUS)
extra++;
}
/* i = number of cpus */
if (extra && max_cpus > i - extra)
printk("Warning: NR_CPUS is too low to start all cpus\n");
smp_store_cpu_info(boot_cpu_id);
switch(sparc_cpu_model) {
case sun4:
printk("SUN4\n");
BUG();
break;
case sun4c:
printk("SUN4C\n");
BUG();
break;
case sun4m:
smp4m_boot_cpus();
break;
case sun4d:
smp4d_boot_cpus();
break;
case sparc_leon:
leon_boot_cpus();
break;
case sun4e:
printk("SUN4E\n");
BUG();
break;
case sun4u:
printk("SUN4U\n");
BUG();
break;
default:
printk("UNKNOWN!\n");
BUG();
break;
};
}
/* Set this up early so that things like the scheduler can init
* properly. We use the same cpu mask for both the present and
* possible cpu map.
*/
void __init smp_setup_cpu_possible_map(void)
{
int instance, mid;
instance = 0;
while (!cpu_find_by_instance(instance, NULL, &mid)) {
if (mid < NR_CPUS) {
set_cpu_possible(mid, true);
set_cpu_present(mid, true);
}
instance++;
}
}
void __init smp_prepare_boot_cpu(void)
{
int cpuid = hard_smp_processor_id();
if (cpuid >= NR_CPUS) {
prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
prom_halt();
}
if (cpuid != 0)
printk("boot cpu id != 0, this could work but is untested\n");
current_thread_info()->cpu = cpuid;
set_cpu_online(cpuid, true);
set_cpu_possible(cpuid, true);
}
int __cpuinit __cpu_up(unsigned int cpu)
{
extern int __cpuinit smp4m_boot_one_cpu(int);
extern int __cpuinit smp4d_boot_one_cpu(int);
int ret=0;
switch(sparc_cpu_model) {
case sun4:
printk("SUN4\n");
BUG();
break;
case sun4c:
printk("SUN4C\n");
BUG();
break;
case sun4m:
ret = smp4m_boot_one_cpu(cpu);
break;
case sun4d:
ret = smp4d_boot_one_cpu(cpu);
break;
case sparc_leon:
ret = leon_boot_one_cpu(cpu);
break;
case sun4e:
printk("SUN4E\n");
BUG();
break;
case sun4u:
printk("SUN4U\n");
BUG();
break;
default:
printk("UNKNOWN!\n");
BUG();
break;
};
if (!ret) {
cpumask_set_cpu(cpu, &smp_commenced_mask);
while (!cpu_online(cpu))
mb();
}
return ret;
}
void smp_bogo(struct seq_file *m)
{
int i;
for_each_online_cpu(i) {
seq_printf(m,
"Cpu%dBogo\t: %lu.%02lu\n",
i,
cpu_data(i).udelay_val/(500000/HZ),
(cpu_data(i).udelay_val/(5000/HZ))%100);
}
}
void smp_info(struct seq_file *m)
{
int i;
seq_printf(m, "State:\n");
for_each_online_cpu(i)
seq_printf(m, "CPU%d\t\t: online\n", i);
}