linux_old1/drivers/spi/spi-dw.h

259 lines
6.3 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef DW_SPI_HEADER_H
#define DW_SPI_HEADER_H
#include <linux/io.h>
#include <linux/scatterlist.h>
#include <linux/gpio.h>
/* Register offsets */
#define DW_SPI_CTRL0 0x00
#define DW_SPI_CTRL1 0x04
#define DW_SPI_SSIENR 0x08
#define DW_SPI_MWCR 0x0c
#define DW_SPI_SER 0x10
#define DW_SPI_BAUDR 0x14
#define DW_SPI_TXFLTR 0x18
#define DW_SPI_RXFLTR 0x1c
#define DW_SPI_TXFLR 0x20
#define DW_SPI_RXFLR 0x24
#define DW_SPI_SR 0x28
#define DW_SPI_IMR 0x2c
#define DW_SPI_ISR 0x30
#define DW_SPI_RISR 0x34
#define DW_SPI_TXOICR 0x38
#define DW_SPI_RXOICR 0x3c
#define DW_SPI_RXUICR 0x40
#define DW_SPI_MSTICR 0x44
#define DW_SPI_ICR 0x48
#define DW_SPI_DMACR 0x4c
#define DW_SPI_DMATDLR 0x50
#define DW_SPI_DMARDLR 0x54
#define DW_SPI_IDR 0x58
#define DW_SPI_VERSION 0x5c
#define DW_SPI_DR 0x60
#define DW_SPI_CS_OVERRIDE 0xf4
/* Bit fields in CTRLR0 */
#define SPI_DFS_OFFSET 0
#define SPI_FRF_OFFSET 4
#define SPI_FRF_SPI 0x0
#define SPI_FRF_SSP 0x1
#define SPI_FRF_MICROWIRE 0x2
#define SPI_FRF_RESV 0x3
#define SPI_MODE_OFFSET 6
#define SPI_SCPH_OFFSET 6
#define SPI_SCOL_OFFSET 7
#define SPI_TMOD_OFFSET 8
#define SPI_TMOD_MASK (0x3 << SPI_TMOD_OFFSET)
#define SPI_TMOD_TR 0x0 /* xmit & recv */
#define SPI_TMOD_TO 0x1 /* xmit only */
#define SPI_TMOD_RO 0x2 /* recv only */
#define SPI_TMOD_EPROMREAD 0x3 /* eeprom read mode */
#define SPI_SLVOE_OFFSET 10
#define SPI_SRL_OFFSET 11
#define SPI_CFS_OFFSET 12
/* Bit fields in SR, 7 bits */
#define SR_MASK 0x7f /* cover 7 bits */
#define SR_BUSY (1 << 0)
#define SR_TF_NOT_FULL (1 << 1)
#define SR_TF_EMPT (1 << 2)
#define SR_RF_NOT_EMPT (1 << 3)
#define SR_RF_FULL (1 << 4)
#define SR_TX_ERR (1 << 5)
#define SR_DCOL (1 << 6)
/* Bit fields in ISR, IMR, RISR, 7 bits */
#define SPI_INT_TXEI (1 << 0)
#define SPI_INT_TXOI (1 << 1)
#define SPI_INT_RXUI (1 << 2)
#define SPI_INT_RXOI (1 << 3)
#define SPI_INT_RXFI (1 << 4)
#define SPI_INT_MSTI (1 << 5)
/* Bit fields in DMACR */
#define SPI_DMA_RDMAE (1 << 0)
#define SPI_DMA_TDMAE (1 << 1)
/* TX RX interrupt level threshold, max can be 256 */
#define SPI_INT_THRESHOLD 32
enum dw_ssi_type {
SSI_MOTO_SPI = 0,
SSI_TI_SSP,
SSI_NS_MICROWIRE,
};
struct dw_spi;
struct dw_spi_dma_ops {
int (*dma_init)(struct dw_spi *dws);
void (*dma_exit)(struct dw_spi *dws);
int (*dma_setup)(struct dw_spi *dws, struct spi_transfer *xfer);
bool (*can_dma)(struct spi_controller *master, struct spi_device *spi,
struct spi_transfer *xfer);
int (*dma_transfer)(struct dw_spi *dws, struct spi_transfer *xfer);
void (*dma_stop)(struct dw_spi *dws);
};
struct dw_spi {
struct spi_controller *master;
enum dw_ssi_type type;
void __iomem *regs;
unsigned long paddr;
int irq;
u32 fifo_len; /* depth of the FIFO buffer */
u32 max_freq; /* max bus freq supported */
int cs_override;
u32 reg_io_width; /* DR I/O width in bytes */
u16 bus_num;
u16 num_cs; /* supported slave numbers */
void (*set_cs)(struct spi_device *spi, bool enable);
/* Current message transfer state info */
size_t len;
void *tx;
void *tx_end;
void *rx;
void *rx_end;
int dma_mapped;
u8 n_bytes; /* current is a 1/2 bytes op */
u32 dma_width;
irqreturn_t (*transfer_handler)(struct dw_spi *dws);
u32 current_freq; /* frequency in hz */
/* DMA info */
int dma_inited;
struct dma_chan *txchan;
struct dma_chan *rxchan;
unsigned long dma_chan_busy;
dma_addr_t dma_addr; /* phy address of the Data register */
const struct dw_spi_dma_ops *dma_ops;
void *dma_tx;
void *dma_rx;
/* Bus interface info */
void *priv;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs;
#endif
};
static inline u32 dw_readl(struct dw_spi *dws, u32 offset)
{
return __raw_readl(dws->regs + offset);
}
static inline u16 dw_readw(struct dw_spi *dws, u32 offset)
{
return __raw_readw(dws->regs + offset);
}
static inline void dw_writel(struct dw_spi *dws, u32 offset, u32 val)
{
__raw_writel(val, dws->regs + offset);
}
static inline void dw_writew(struct dw_spi *dws, u32 offset, u16 val)
{
__raw_writew(val, dws->regs + offset);
}
static inline u32 dw_read_io_reg(struct dw_spi *dws, u32 offset)
{
switch (dws->reg_io_width) {
case 2:
return dw_readw(dws, offset);
case 4:
default:
return dw_readl(dws, offset);
}
}
static inline void dw_write_io_reg(struct dw_spi *dws, u32 offset, u32 val)
{
switch (dws->reg_io_width) {
case 2:
dw_writew(dws, offset, val);
break;
case 4:
default:
dw_writel(dws, offset, val);
break;
}
}
static inline void spi_enable_chip(struct dw_spi *dws, int enable)
{
dw_writel(dws, DW_SPI_SSIENR, (enable ? 1 : 0));
}
static inline void spi_set_clk(struct dw_spi *dws, u16 div)
{
dw_writel(dws, DW_SPI_BAUDR, div);
}
/* Disable IRQ bits */
static inline void spi_mask_intr(struct dw_spi *dws, u32 mask)
{
u32 new_mask;
new_mask = dw_readl(dws, DW_SPI_IMR) & ~mask;
dw_writel(dws, DW_SPI_IMR, new_mask);
}
/* Enable IRQ bits */
static inline void spi_umask_intr(struct dw_spi *dws, u32 mask)
{
u32 new_mask;
new_mask = dw_readl(dws, DW_SPI_IMR) | mask;
dw_writel(dws, DW_SPI_IMR, new_mask);
}
/*
* This does disable the SPI controller, interrupts, and re-enable the
* controller back. Transmit and receive FIFO buffers are cleared when the
* device is disabled.
*/
static inline void spi_reset_chip(struct dw_spi *dws)
{
spi_enable_chip(dws, 0);
spi_mask_intr(dws, 0xff);
spi_enable_chip(dws, 1);
}
static inline void spi_shutdown_chip(struct dw_spi *dws)
{
spi_enable_chip(dws, 0);
spi_set_clk(dws, 0);
}
/*
* Each SPI slave device to work with dw_api controller should
* has such a structure claiming its working mode (poll or PIO/DMA),
* which can be save in the "controller_data" member of the
* struct spi_device.
*/
struct dw_spi_chip {
u8 poll_mode; /* 1 for controller polling mode */
u8 type; /* SPI/SSP/MicroWire */
void (*cs_control)(u32 command);
};
extern void dw_spi_set_cs(struct spi_device *spi, bool enable);
extern int dw_spi_add_host(struct device *dev, struct dw_spi *dws);
extern void dw_spi_remove_host(struct dw_spi *dws);
extern int dw_spi_suspend_host(struct dw_spi *dws);
extern int dw_spi_resume_host(struct dw_spi *dws);
/* platform related setup */
extern int dw_spi_mid_init(struct dw_spi *dws); /* Intel MID platforms */
#endif /* DW_SPI_HEADER_H */