linux_old1/drivers/gpu/drm/radeon/cik.c

1762 lines
55 KiB
C
Raw Normal View History

/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/module.h>
#include "drmP.h"
#include "radeon.h"
#include "radeon_asic.h"
#include "cikd.h"
#include "atom.h"
extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save);
extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save);
extern void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc);
/*
* Core functions
*/
/**
* cik_tiling_mode_table_init - init the hw tiling table
*
* @rdev: radeon_device pointer
*
* Starting with SI, the tiling setup is done globally in a
* set of 32 tiling modes. Rather than selecting each set of
* parameters per surface as on older asics, we just select
* which index in the tiling table we want to use, and the
* surface uses those parameters (CIK).
*/
static void cik_tiling_mode_table_init(struct radeon_device *rdev)
{
const u32 num_tile_mode_states = 32;
const u32 num_secondary_tile_mode_states = 16;
u32 reg_offset, gb_tile_moden, split_equal_to_row_size;
u32 num_pipe_configs;
u32 num_rbs = rdev->config.cik.max_backends_per_se *
rdev->config.cik.max_shader_engines;
switch (rdev->config.cik.mem_row_size_in_kb) {
case 1:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB;
break;
case 2:
default:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB;
break;
case 4:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB;
break;
}
num_pipe_configs = rdev->config.cik.max_tile_pipes;
if (num_pipe_configs > 8)
num_pipe_configs = 8; /* ??? */
if (num_pipe_configs == 8) {
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
break;
case 1:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
break;
case 2:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
break;
case 3:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
break;
case 4:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(split_equal_to_row_size));
break;
case 5:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
break;
case 6:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
break;
case 7:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
TILE_SPLIT(split_equal_to_row_size));
break;
case 8:
gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16));
break;
case 9:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
break;
case 10:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 11:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 12:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 13:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
break;
case 14:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 16:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 17:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 27:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
break;
case 28:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 29:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 30:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
default:
gb_tile_moden = 0;
break;
}
WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
}
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 1:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 2:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 3:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 4:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
break;
case 5:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
break;
case 6:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_2_BANK));
break;
case 8:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 9:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 10:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 11:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 12:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_8_BANK));
break;
case 13:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
break;
case 14:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_2_BANK));
break;
default:
gb_tile_moden = 0;
break;
}
WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
}
} else if (num_pipe_configs == 4) {
if (num_rbs == 4) {
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
break;
case 1:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
break;
case 2:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
break;
case 3:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
break;
case 4:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(split_equal_to_row_size));
break;
case 5:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
break;
case 6:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
break;
case 7:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
TILE_SPLIT(split_equal_to_row_size));
break;
case 8:
gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P4_16x16));
break;
case 9:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
break;
case 10:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 11:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 12:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 13:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
break;
case 14:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 16:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 17:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 27:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
break;
case 28:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 29:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 30:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_16x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
default:
gb_tile_moden = 0;
break;
}
WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
}
} else if (num_rbs < 4) {
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
break;
case 1:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
break;
case 2:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
break;
case 3:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
break;
case 4:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size));
break;
case 5:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
break;
case 6:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
break;
case 7:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size));
break;
case 8:
gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
PIPE_CONFIG(ADDR_SURF_P4_8x16));
break;
case 9:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
break;
case 10:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 11:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 12:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 13:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
break;
case 14:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 16:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 17:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 27:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
break;
case 28:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 29:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 30:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
default:
gb_tile_moden = 0;
break;
}
WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
}
}
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 1:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 2:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 3:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 4:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 5:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
break;
case 6:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
break;
case 8:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 9:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 10:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 11:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 12:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 13:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
break;
case 14:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
NUM_BANKS(ADDR_SURF_4_BANK));
break;
default:
gb_tile_moden = 0;
break;
}
WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
}
} else if (num_pipe_configs == 2) {
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
break;
case 1:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
break;
case 2:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
break;
case 3:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
break;
case 4:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(split_equal_to_row_size));
break;
case 5:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
break;
case 6:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
break;
case 7:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
TILE_SPLIT(split_equal_to_row_size));
break;
case 8:
gb_tile_moden = ARRAY_MODE(ARRAY_LINEAR_ALIGNED);
break;
case 9:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
break;
case 10:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 11:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 12:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 13:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
break;
case 14:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 16:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 17:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 27:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
break;
case 28:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 29:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
case 30:
gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P2) |
SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
break;
default:
gb_tile_moden = 0;
break;
}
WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
}
for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 1:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 2:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 3:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 4:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 5:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 6:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
break;
case 8:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 9:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 10:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 11:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 12:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 13:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
NUM_BANKS(ADDR_SURF_16_BANK));
break;
case 14:
gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
NUM_BANKS(ADDR_SURF_8_BANK));
break;
default:
gb_tile_moden = 0;
break;
}
WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
}
} else
DRM_ERROR("unknown num pipe config: 0x%x\n", num_pipe_configs);
}
/**
* cik_select_se_sh - select which SE, SH to address
*
* @rdev: radeon_device pointer
* @se_num: shader engine to address
* @sh_num: sh block to address
*
* Select which SE, SH combinations to address. Certain
* registers are instanced per SE or SH. 0xffffffff means
* broadcast to all SEs or SHs (CIK).
*/
static void cik_select_se_sh(struct radeon_device *rdev,
u32 se_num, u32 sh_num)
{
u32 data = INSTANCE_BROADCAST_WRITES;
if ((se_num == 0xffffffff) && (sh_num == 0xffffffff))
data = SH_BROADCAST_WRITES | SE_BROADCAST_WRITES;
else if (se_num == 0xffffffff)
data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num);
else if (sh_num == 0xffffffff)
data |= SH_BROADCAST_WRITES | SE_INDEX(se_num);
else
data |= SH_INDEX(sh_num) | SE_INDEX(se_num);
WREG32(GRBM_GFX_INDEX, data);
}
/**
* cik_create_bitmask - create a bitmask
*
* @bit_width: length of the mask
*
* create a variable length bit mask (CIK).
* Returns the bitmask.
*/
static u32 cik_create_bitmask(u32 bit_width)
{
u32 i, mask = 0;
for (i = 0; i < bit_width; i++) {
mask <<= 1;
mask |= 1;
}
return mask;
}
/**
* cik_select_se_sh - select which SE, SH to address
*
* @rdev: radeon_device pointer
* @max_rb_num: max RBs (render backends) for the asic
* @se_num: number of SEs (shader engines) for the asic
* @sh_per_se: number of SH blocks per SE for the asic
*
* Calculates the bitmask of disabled RBs (CIK).
* Returns the disabled RB bitmask.
*/
static u32 cik_get_rb_disabled(struct radeon_device *rdev,
u32 max_rb_num, u32 se_num,
u32 sh_per_se)
{
u32 data, mask;
data = RREG32(CC_RB_BACKEND_DISABLE);
if (data & 1)
data &= BACKEND_DISABLE_MASK;
else
data = 0;
data |= RREG32(GC_USER_RB_BACKEND_DISABLE);
data >>= BACKEND_DISABLE_SHIFT;
mask = cik_create_bitmask(max_rb_num / se_num / sh_per_se);
return data & mask;
}
/**
* cik_setup_rb - setup the RBs on the asic
*
* @rdev: radeon_device pointer
* @se_num: number of SEs (shader engines) for the asic
* @sh_per_se: number of SH blocks per SE for the asic
* @max_rb_num: max RBs (render backends) for the asic
*
* Configures per-SE/SH RB registers (CIK).
*/
static void cik_setup_rb(struct radeon_device *rdev,
u32 se_num, u32 sh_per_se,
u32 max_rb_num)
{
int i, j;
u32 data, mask;
u32 disabled_rbs = 0;
u32 enabled_rbs = 0;
for (i = 0; i < se_num; i++) {
for (j = 0; j < sh_per_se; j++) {
cik_select_se_sh(rdev, i, j);
data = cik_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se);
disabled_rbs |= data << ((i * sh_per_se + j) * CIK_RB_BITMAP_WIDTH_PER_SH);
}
}
cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
mask = 1;
for (i = 0; i < max_rb_num; i++) {
if (!(disabled_rbs & mask))
enabled_rbs |= mask;
mask <<= 1;
}
for (i = 0; i < se_num; i++) {
cik_select_se_sh(rdev, i, 0xffffffff);
data = 0;
for (j = 0; j < sh_per_se; j++) {
switch (enabled_rbs & 3) {
case 1:
data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2);
break;
case 2:
data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2);
break;
case 3:
default:
data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2);
break;
}
enabled_rbs >>= 2;
}
WREG32(PA_SC_RASTER_CONFIG, data);
}
cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
}
/**
* cik_gpu_init - setup the 3D engine
*
* @rdev: radeon_device pointer
*
* Configures the 3D engine and tiling configuration
* registers so that the 3D engine is usable.
*/
static void cik_gpu_init(struct radeon_device *rdev)
{
u32 gb_addr_config = RREG32(GB_ADDR_CONFIG);
u32 mc_shared_chmap, mc_arb_ramcfg;
u32 hdp_host_path_cntl;
u32 tmp;
int i, j;
switch (rdev->family) {
case CHIP_BONAIRE:
rdev->config.cik.max_shader_engines = 2;
rdev->config.cik.max_tile_pipes = 4;
rdev->config.cik.max_cu_per_sh = 7;
rdev->config.cik.max_sh_per_se = 1;
rdev->config.cik.max_backends_per_se = 2;
rdev->config.cik.max_texture_channel_caches = 4;
rdev->config.cik.max_gprs = 256;
rdev->config.cik.max_gs_threads = 32;
rdev->config.cik.max_hw_contexts = 8;
rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_KAVERI:
/* TODO */
break;
case CHIP_KABINI:
default:
rdev->config.cik.max_shader_engines = 1;
rdev->config.cik.max_tile_pipes = 2;
rdev->config.cik.max_cu_per_sh = 2;
rdev->config.cik.max_sh_per_se = 1;
rdev->config.cik.max_backends_per_se = 1;
rdev->config.cik.max_texture_channel_caches = 2;
rdev->config.cik.max_gprs = 256;
rdev->config.cik.max_gs_threads = 16;
rdev->config.cik.max_hw_contexts = 8;
rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
break;
}
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));
WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN);
mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);
rdev->config.cik.num_tile_pipes = rdev->config.cik.max_tile_pipes;
rdev->config.cik.mem_max_burst_length_bytes = 256;
tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT;
rdev->config.cik.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
if (rdev->config.cik.mem_row_size_in_kb > 4)
rdev->config.cik.mem_row_size_in_kb = 4;
/* XXX use MC settings? */
rdev->config.cik.shader_engine_tile_size = 32;
rdev->config.cik.num_gpus = 1;
rdev->config.cik.multi_gpu_tile_size = 64;
/* fix up row size */
gb_addr_config &= ~ROW_SIZE_MASK;
switch (rdev->config.cik.mem_row_size_in_kb) {
case 1:
default:
gb_addr_config |= ROW_SIZE(0);
break;
case 2:
gb_addr_config |= ROW_SIZE(1);
break;
case 4:
gb_addr_config |= ROW_SIZE(2);
break;
}
/* setup tiling info dword. gb_addr_config is not adequate since it does
* not have bank info, so create a custom tiling dword.
* bits 3:0 num_pipes
* bits 7:4 num_banks
* bits 11:8 group_size
* bits 15:12 row_size
*/
rdev->config.cik.tile_config = 0;
switch (rdev->config.cik.num_tile_pipes) {
case 1:
rdev->config.cik.tile_config |= (0 << 0);
break;
case 2:
rdev->config.cik.tile_config |= (1 << 0);
break;
case 4:
rdev->config.cik.tile_config |= (2 << 0);
break;
case 8:
default:
/* XXX what about 12? */
rdev->config.cik.tile_config |= (3 << 0);
break;
}
if ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT)
rdev->config.cik.tile_config |= 1 << 4;
else
rdev->config.cik.tile_config |= 0 << 4;
rdev->config.cik.tile_config |=
((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8;
rdev->config.cik.tile_config |=
((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12;
WREG32(GB_ADDR_CONFIG, gb_addr_config);
WREG32(HDP_ADDR_CONFIG, gb_addr_config);
WREG32(DMIF_ADDR_CALC, gb_addr_config);
cik_tiling_mode_table_init(rdev);
cik_setup_rb(rdev, rdev->config.cik.max_shader_engines,
rdev->config.cik.max_sh_per_se,
rdev->config.cik.max_backends_per_se);
/* set HW defaults for 3D engine */
WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60));
WREG32(SX_DEBUG_1, 0x20);
WREG32(TA_CNTL_AUX, 0x00010000);
tmp = RREG32(SPI_CONFIG_CNTL);
tmp |= 0x03000000;
WREG32(SPI_CONFIG_CNTL, tmp);
WREG32(SQ_CONFIG, 1);
WREG32(DB_DEBUG, 0);
tmp = RREG32(DB_DEBUG2) & ~0xf00fffff;
tmp |= 0x00000400;
WREG32(DB_DEBUG2, tmp);
tmp = RREG32(DB_DEBUG3) & ~0x0002021c;
tmp |= 0x00020200;
WREG32(DB_DEBUG3, tmp);
tmp = RREG32(CB_HW_CONTROL) & ~0x00010000;
tmp |= 0x00018208;
WREG32(CB_HW_CONTROL, tmp);
WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));
WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_frontend) |
SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_backend) |
SC_HIZ_TILE_FIFO_SIZE(rdev->config.cik.sc_hiz_tile_fifo_size) |
SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.cik.sc_earlyz_tile_fifo_size)));
WREG32(VGT_NUM_INSTANCES, 1);
WREG32(CP_PERFMON_CNTL, 0);
WREG32(SQ_CONFIG, 0);
WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
FORCE_EOV_MAX_REZ_CNT(255)));
WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) |
AUTO_INVLD_EN(ES_AND_GS_AUTO));
WREG32(VGT_GS_VERTEX_REUSE, 16);
WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
tmp = RREG32(HDP_MISC_CNTL);
tmp |= HDP_FLUSH_INVALIDATE_CACHE;
WREG32(HDP_MISC_CNTL, tmp);
hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);
WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
WREG32(PA_SC_ENHANCE, ENABLE_PA_SC_OUT_OF_ORDER);
udelay(50);
}
/**
* cik_gpu_is_lockup - check if the 3D engine is locked up
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Check if the 3D engine is locked up (CIK).
* Returns true if the engine is locked, false if not.
*/
bool cik_gpu_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
u32 srbm_status, srbm_status2;
u32 grbm_status, grbm_status2;
u32 grbm_status_se0, grbm_status_se1, grbm_status_se2, grbm_status_se3;
srbm_status = RREG32(SRBM_STATUS);
srbm_status2 = RREG32(SRBM_STATUS2);
grbm_status = RREG32(GRBM_STATUS);
grbm_status2 = RREG32(GRBM_STATUS2);
grbm_status_se0 = RREG32(GRBM_STATUS_SE0);
grbm_status_se1 = RREG32(GRBM_STATUS_SE1);
grbm_status_se2 = RREG32(GRBM_STATUS_SE2);
grbm_status_se3 = RREG32(GRBM_STATUS_SE3);
if (!(grbm_status & GUI_ACTIVE)) {
radeon_ring_lockup_update(ring);
return false;
}
/* force CP activities */
radeon_ring_force_activity(rdev, ring);
return radeon_ring_test_lockup(rdev, ring);
}
/**
* cik_gfx_gpu_soft_reset - soft reset the 3D engine and CPG
*
* @rdev: radeon_device pointer
*
* Soft reset the GFX engine and CPG blocks (CIK).
* XXX: deal with reseting RLC and CPF
* Returns 0 for success.
*/
static int cik_gfx_gpu_soft_reset(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 grbm_reset = 0;
if (!(RREG32(GRBM_STATUS) & GUI_ACTIVE))
return 0;
dev_info(rdev->dev, "GPU GFX softreset \n");
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
RREG32(GRBM_STATUS));
dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
RREG32(GRBM_STATUS2));
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
RREG32(GRBM_STATUS_SE0));
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
RREG32(GRBM_STATUS_SE1));
dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
RREG32(GRBM_STATUS_SE2));
dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
RREG32(GRBM_STATUS_SE3));
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
RREG32(SRBM_STATUS));
dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
RREG32(SRBM_STATUS2));
evergreen_mc_stop(rdev, &save);
if (radeon_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
/* Disable CP parsing/prefetching */
WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT);
/* reset all the gfx block and all CPG blocks */
grbm_reset = SOFT_RESET_CPG | SOFT_RESET_GFX;
dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset);
WREG32(GRBM_SOFT_RESET, grbm_reset);
(void)RREG32(GRBM_SOFT_RESET);
udelay(50);
WREG32(GRBM_SOFT_RESET, 0);
(void)RREG32(GRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
RREG32(GRBM_STATUS));
dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
RREG32(GRBM_STATUS2));
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
RREG32(GRBM_STATUS_SE0));
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
RREG32(GRBM_STATUS_SE1));
dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
RREG32(GRBM_STATUS_SE2));
dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
RREG32(GRBM_STATUS_SE3));
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
RREG32(SRBM_STATUS));
dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
RREG32(SRBM_STATUS2));
evergreen_mc_resume(rdev, &save);
return 0;
}
/**
* cik_compute_gpu_soft_reset - soft reset CPC
*
* @rdev: radeon_device pointer
*
* Soft reset the CPC blocks (CIK).
* XXX: deal with reseting RLC and CPF
* Returns 0 for success.
*/
static int cik_compute_gpu_soft_reset(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 grbm_reset = 0;
dev_info(rdev->dev, "GPU compute softreset \n");
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
RREG32(GRBM_STATUS));
dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
RREG32(GRBM_STATUS2));
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
RREG32(GRBM_STATUS_SE0));
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
RREG32(GRBM_STATUS_SE1));
dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
RREG32(GRBM_STATUS_SE2));
dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
RREG32(GRBM_STATUS_SE3));
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
RREG32(SRBM_STATUS));
dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
RREG32(SRBM_STATUS2));
evergreen_mc_stop(rdev, &save);
if (radeon_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
/* Disable CP parsing/prefetching */
WREG32(CP_MEC_CNTL, MEC_ME1_HALT | MEC_ME2_HALT);
/* reset all the CPC blocks */
grbm_reset = SOFT_RESET_CPG;
dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset);
WREG32(GRBM_SOFT_RESET, grbm_reset);
(void)RREG32(GRBM_SOFT_RESET);
udelay(50);
WREG32(GRBM_SOFT_RESET, 0);
(void)RREG32(GRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
RREG32(GRBM_STATUS));
dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
RREG32(GRBM_STATUS2));
dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
RREG32(GRBM_STATUS_SE0));
dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
RREG32(GRBM_STATUS_SE1));
dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
RREG32(GRBM_STATUS_SE2));
dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
RREG32(GRBM_STATUS_SE3));
dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
RREG32(SRBM_STATUS));
dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
RREG32(SRBM_STATUS2));
evergreen_mc_resume(rdev, &save);
return 0;
}
/**
* cik_asic_reset - soft reset compute and gfx
*
* @rdev: radeon_device pointer
*
* Soft reset the CPC blocks (CIK).
* XXX: make this more fine grained and only reset
* what is necessary.
* Returns 0 for success.
*/
int cik_asic_reset(struct radeon_device *rdev)
{
int r;
r = cik_compute_gpu_soft_reset(rdev);
if (r)
dev_info(rdev->dev, "Compute reset failed!\n");
return cik_gfx_gpu_soft_reset(rdev);
}
/* MC */
/**
* cik_mc_program - program the GPU memory controller
*
* @rdev: radeon_device pointer
*
* Set the location of vram, gart, and AGP in the GPU's
* physical address space (CIK).
*/
static void cik_mc_program(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 tmp;
int i, j;
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);
evergreen_mc_stop(rdev, &save);
if (radeon_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
/* Lockout access through VGA aperture*/
WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
/* Update configuration */
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.vram_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.vram_end >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
rdev->vram_scratch.gpu_addr >> 12);
tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
WREG32(MC_VM_FB_LOCATION, tmp);
/* XXX double check these! */
WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
WREG32(MC_VM_AGP_BASE, 0);
WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
if (radeon_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
evergreen_mc_resume(rdev, &save);
/* we need to own VRAM, so turn off the VGA renderer here
* to stop it overwriting our objects */
rv515_vga_render_disable(rdev);
}
/**
* cik_mc_init - initialize the memory controller driver params
*
* @rdev: radeon_device pointer
*
* Look up the amount of vram, vram width, and decide how to place
* vram and gart within the GPU's physical address space (CIK).
* Returns 0 for success.
*/
static int cik_mc_init(struct radeon_device *rdev)
{
u32 tmp;
int chansize, numchan;
/* Get VRAM informations */
rdev->mc.vram_is_ddr = true;
tmp = RREG32(MC_ARB_RAMCFG);
if (tmp & CHANSIZE_MASK) {
chansize = 64;
} else {
chansize = 32;
}
tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
default:
numchan = 1;
break;
case 1:
numchan = 2;
break;
case 2:
numchan = 4;
break;
case 3:
numchan = 8;
break;
case 4:
numchan = 3;
break;
case 5:
numchan = 6;
break;
case 6:
numchan = 10;
break;
case 7:
numchan = 12;
break;
case 8:
numchan = 16;
break;
}
rdev->mc.vram_width = numchan * chansize;
/* Could aper size report 0 ? */
rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
/* size in MB on si */
rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
rdev->mc.visible_vram_size = rdev->mc.aper_size;
si_vram_gtt_location(rdev, &rdev->mc);
radeon_update_bandwidth_info(rdev);
return 0;
}
/*
* GART
* VMID 0 is the physical GPU addresses as used by the kernel.
* VMIDs 1-15 are used for userspace clients and are handled
* by the radeon vm/hsa code.
*/
/**
* cik_pcie_gart_tlb_flush - gart tlb flush callback
*
* @rdev: radeon_device pointer
*
* Flush the TLB for the VMID 0 page table (CIK).
*/
void cik_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
/* flush hdp cache */
WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0);
/* bits 0-15 are the VM contexts0-15 */
WREG32(VM_INVALIDATE_REQUEST, 0x1);
}
/**
* cik_pcie_gart_enable - gart enable
*
* @rdev: radeon_device pointer
*
* This sets up the TLBs, programs the page tables for VMID0,
* sets up the hw for VMIDs 1-15 which are allocated on
* demand, and sets up the global locations for the LDS, GDS,
* and GPUVM for FSA64 clients (CIK).
* Returns 0 for success, errors for failure.
*/
static int cik_pcie_gart_enable(struct radeon_device *rdev)
{
int r, i;
if (rdev->gart.robj == NULL) {
dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
return -EINVAL;
}
r = radeon_gart_table_vram_pin(rdev);
if (r)
return r;
radeon_gart_restore(rdev);
/* Setup TLB control */
WREG32(MC_VM_MX_L1_TLB_CNTL,
(0xA << 7) |
ENABLE_L1_TLB |
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
ENABLE_ADVANCED_DRIVER_MODEL |
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE |
ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7) |
CONTEXT1_IDENTITY_ACCESS_MODE(1));
WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE);
WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
L2_CACHE_BIGK_FRAGMENT_SIZE(6));
/* setup context0 */
WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(rdev->dummy_page.addr >> 12));
WREG32(VM_CONTEXT0_CNTL2, 0);
WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT));
WREG32(0x15D4, 0);
WREG32(0x15D8, 0);
WREG32(0x15DC, 0);
/* empty context1-15 */
/* FIXME start with 4G, once using 2 level pt switch to full
* vm size space
*/
/* set vm size, must be a multiple of 4 */
WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn);
for (i = 1; i < 16; i++) {
if (i < 8)
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2),
rdev->gart.table_addr >> 12);
else
WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2),
rdev->gart.table_addr >> 12);
}
/* enable context1-15 */
WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(rdev->dummy_page.addr >> 12));
WREG32(VM_CONTEXT1_CNTL2, 4);
WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) |
RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT |
DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT |
PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT |
PDE0_PROTECTION_FAULT_ENABLE_DEFAULT |
VALID_PROTECTION_FAULT_ENABLE_INTERRUPT |
VALID_PROTECTION_FAULT_ENABLE_DEFAULT |
READ_PROTECTION_FAULT_ENABLE_INTERRUPT |
READ_PROTECTION_FAULT_ENABLE_DEFAULT |
WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT |
WRITE_PROTECTION_FAULT_ENABLE_DEFAULT);
/* TC cache setup ??? */
WREG32(TC_CFG_L1_LOAD_POLICY0, 0);
WREG32(TC_CFG_L1_LOAD_POLICY1, 0);
WREG32(TC_CFG_L1_STORE_POLICY, 0);
WREG32(TC_CFG_L2_LOAD_POLICY0, 0);
WREG32(TC_CFG_L2_LOAD_POLICY1, 0);
WREG32(TC_CFG_L2_STORE_POLICY0, 0);
WREG32(TC_CFG_L2_STORE_POLICY1, 0);
WREG32(TC_CFG_L2_ATOMIC_POLICY, 0);
WREG32(TC_CFG_L1_VOLATILE, 0);
WREG32(TC_CFG_L2_VOLATILE, 0);
if (rdev->family == CHIP_KAVERI) {
u32 tmp = RREG32(CHUB_CONTROL);
tmp &= ~BYPASS_VM;
WREG32(CHUB_CONTROL, tmp);
}
/* XXX SH_MEM regs */
/* where to put LDS, scratch, GPUVM in FSA64 space */
for (i = 0; i < 16; i++) {
WREG32(SRBM_GFX_CNTL, VMID(i));
WREG32(SH_MEM_CONFIG, 0);
WREG32(SH_MEM_APE1_BASE, 1);
WREG32(SH_MEM_APE1_LIMIT, 0);
WREG32(SH_MEM_BASES, 0);
}
WREG32(SRBM_GFX_CNTL, 0);
cik_pcie_gart_tlb_flush(rdev);
DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
(unsigned)(rdev->mc.gtt_size >> 20),
(unsigned long long)rdev->gart.table_addr);
rdev->gart.ready = true;
return 0;
}
/**
* cik_pcie_gart_disable - gart disable
*
* @rdev: radeon_device pointer
*
* This disables all VM page table (CIK).
*/
static void cik_pcie_gart_disable(struct radeon_device *rdev)
{
/* Disable all tables */
WREG32(VM_CONTEXT0_CNTL, 0);
WREG32(VM_CONTEXT1_CNTL, 0);
/* Setup TLB control */
WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS |
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
/* Setup L2 cache */
WREG32(VM_L2_CNTL,
ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7) |
CONTEXT1_IDENTITY_ACCESS_MODE(1));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
L2_CACHE_BIGK_FRAGMENT_SIZE(6));
radeon_gart_table_vram_unpin(rdev);
}
/**
* cik_pcie_gart_fini - vm fini callback
*
* @rdev: radeon_device pointer
*
* Tears down the driver GART/VM setup (CIK).
*/
static void cik_pcie_gart_fini(struct radeon_device *rdev)
{
cik_pcie_gart_disable(rdev);
radeon_gart_table_vram_free(rdev);
radeon_gart_fini(rdev);
}
/* vm parser */
/**
* cik_ib_parse - vm ib_parse callback
*
* @rdev: radeon_device pointer
* @ib: indirect buffer pointer
*
* CIK uses hw IB checking so this is a nop (CIK).
*/
int cik_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib)
{
return 0;
}
/*
* vm
* VMID 0 is the physical GPU addresses as used by the kernel.
* VMIDs 1-15 are used for userspace clients and are handled
* by the radeon vm/hsa code.
*/
/**
* cik_vm_init - cik vm init callback
*
* @rdev: radeon_device pointer
*
* Inits cik specific vm parameters (number of VMs, base of vram for
* VMIDs 1-15) (CIK).
* Returns 0 for success.
*/
int cik_vm_init(struct radeon_device *rdev)
{
/* number of VMs */
rdev->vm_manager.nvm = 16;
/* base offset of vram pages */
if (rdev->flags & RADEON_IS_IGP) {
u64 tmp = RREG32(MC_VM_FB_OFFSET);
tmp <<= 22;
rdev->vm_manager.vram_base_offset = tmp;
} else
rdev->vm_manager.vram_base_offset = 0;
return 0;
}
/**
* cik_vm_fini - cik vm fini callback
*
* @rdev: radeon_device pointer
*
* Tear down any asic specific VM setup (CIK).
*/
void cik_vm_fini(struct radeon_device *rdev)
{
}